1
|
Li Y, Dong J, Zhan W, Shao Y, Zhu J, Sun N, Dong N, Li Y, Wu L, Zhou Q, Wang Q, Yin H, Cao X, Xu X, Dai R, Zhou Z, Wong HM, Li QL. Constructing the Enamel-Like Dentin Adhesion Interface to Achieve Durable Resin-Dentin Adhesion. ACS NANO 2024; 18:30031-30052. [PMID: 39412197 DOI: 10.1021/acsnano.4c11224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Enamel adhesion is acknowledged as durable; however, achieving long-lasting dentin adhesion remains a formidable challenge due to degradation of exposed collagen matrix after acid-etching of dentin. The idea of developing an enamel-like adhesion interface holds great promise in achieving enduring dentin adhesion. In this study, we constructed an enamel-like adhesion interface using a rapid remineralization strategy comprising an acidic primer and a rapid remineralization medium. Specifically, the acidic primer of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) and epigallocatechin-3-gallate (EGCG) nanocomplex (MDP@EGCG primer) was utilized to partially demineralize dentin within 30 s, and the MDP@EGCG nanocomplex showed a strong interaction with exposed collagen, enhancing collagen remineralization properties. Then, the rapid remineralization medium containing polyaspartate (Pasp) stabilized amorphous calcium and phosphorus nanoclusters (rapid Pasp-CaP) was applied to modified dentin collagen for 1 min, which caused rapid collagen remineralization within a clinically acceptable time frame. This strategy successfully generated an inorganic rough and porous adhesive interface resembling etched enamel, fundamentally addressed issues of collagen exposure, and achieved durable dentin adhesion in vitro and in vivo while also ensuring user-friendliness. It exhibited potential in prolonging the lifespan of adhesive restorations in clinical settings. In addition, it holds significant promise in the fields of caries and dentin sensitivity treatment and collagen-based tissue engineering scaffolds.
Collapse
Affiliation(s)
- Yuzhu Li
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230032, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| | - Jianguo Dong
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Wenfang Zhan
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yurui Shao
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Jiaxin Zhu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Ning Sun
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Nihang Dong
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Youqin Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Leping Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qingli Zhou
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qingqing Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hanlin Yin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei 230094, China
| | - Xiaoma Cao
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| | - Xiaohua Xu
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| | - Ruoxi Dai
- Department of Comprehensive Care, School of Dental Medicine, Tufts University, Boston, Massachusetts 0211, United States
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Quan-Li Li
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230032, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| |
Collapse
|
2
|
Li M, Zheng H, Xu Y, Qiu Y, Wang Y, Jin X, Zhang Z, Zhang L, Fu B. The influence of neutral MDP-Na salt on dentin bond performance and remineralization potential of etch-&-rinse adhesive. BMC Oral Health 2024; 24:997. [PMID: 39182086 PMCID: PMC11344973 DOI: 10.1186/s12903-024-04756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVES To investigate the effect of neutral 10-methacryloyloxydecyl dihydrogen phosphate salt (MDP-Na) on the dentin bond strength and remineralization potential of etch-&-rinse adhesive. METHODS Two experimental etch-&-rinse adhesives were formulated by incorporating 0 wt% (E0) or 20 wt% (E20) neutral MDP-Na into a basic primer. A commercial adhesive, Adper Single Bond 2 (SB, 3 M ESPE), served as the control. Sixty prepared teeth were randomly allocated into three groups (n = 20) and bonded using either one of the experimental adhesives or SB. Following 24 h of water storage, the bonded specimens were sectioned into resin-dentin sticks, with four resin-dentin sticks obtained from each tooth for microtensile bond strength (MTBS) test. Half of the sticks from each group were immediately subjected to tensile loading using a microtensile tester at a crosshead speed of 1 mm/min, while the other half underwent tensile loading after 6-month incubation in artificial saliva (AS). The degree of conversion (DC) of both the control and experimental adhesives (n = 6 in each group) and the adsorption properties of MDP-Na on the dentin organic matrix (n = 5 in each group) were determined using Fourier-transform infrared spectrometry. Furthermore, the effectiveness of neutral MDP-Na in promoting the mineralization of two-dimensional collagen fibrils and the adhesive-dentin interface was explored using transmission electron microscopy and selected-area electron diffraction. Two- and one-way ANOVA was employed to assess the impact of adhesive type and water storage on dentin bond strength and the DC (α = 0.05). RESULTS The addition of MDP-Na into the primer increased both the short- and long-term MTBS of the experimental adhesives (p = 0.00). No difference was noted in the DC between the control, E0 and E20 groups (p = 0.366). The MDP-Na remained absorbed on the demineralized dentin even after thorough rinsing. The intra- and extra-fibrillar mineralization of the two-dimensional collagen fibril and dentin bond hybrid layer was confirmed by transmission electron microscopy and selected-area electron diffraction when the primer was added with MDP-Na. CONCLUSIONS The use of neutral MDP-Na results in high-quality hybrid layer that increase the dentin bond strength of etch-&-rinse adhesive and provides the adhesive with remineralizing capability. This approach may represent a suitable bonding strategy for improving the dentin bond strength and durability of etch-&-rinse adhesive.
Collapse
Affiliation(s)
- Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Yuedan Xu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Yinlin Wang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Xiaoting Jin
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China
| | - Ling Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Yan'an Rd 395, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
3
|
Kielbassa AM, Summer S, Frank W, Lynch E, Batzer JS. Equivalence study of the resin-dentine interface of internal tunnel restorations when using an enamel infiltrant resin with ethanol-wet dentine bonding. Sci Rep 2024; 14:12444. [PMID: 38816512 PMCID: PMC11139992 DOI: 10.1038/s41598-024-63289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
This preregistered ex vivo investigation examined the dentinal hybrid layer formation of a resinous infiltrant (Icon), with reference to both thickness (HLT) and homogeneity when combined with modified tunnel preparation (occlusal cavity only) and internal/external caries infiltration. The adhesives Syntac and Scotchbond MP were used as controls (Groups 1 and 3) or in combination with Icon (Groups 2 and 4). A split-tooth design using healthy third molars from 20 donors resulted in 20 prepared dentine cavities per experimental group. The cavity surfaces (n = 80) were etched (37% H3PO4), rinsed, and air-dried. Rewetting with ethanol was followed by application of the respective primers. After labeling with fluorescent dyes, either Syntac Adhesive/Heliobond or Scotchbond MP Adhesive was used alone or supplemented with Icon. HLT, as evaluated by scanning electron microscopy, did not significantly differ (P > 0.05), and confocal laser scanning microscopy revealed homogeneously mixed/polymerized resin-dentine interdiffusion zones in all groups. Icon can be successfully integrated into an ethanol-wet dentine bonding strategy, and will result in compact and homogeneous hybrid layers of comparable thickness considered equivalent to the non-Icon controls, thus allowing for preservation of the tooth's marginal ridge and interdental space in the case of internal/external infiltration of proximal caries.
Collapse
Affiliation(s)
- Andrej M Kielbassa
- Centre for Operative Dentistry, Periodontology, and Endodontology, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University (DPU), Steiner Landstraße 124, 3500, Krems an der Donau, Austria.
| | - Sabrina Summer
- Department for Biomedical Research, Centre of Experimental Medicine, University for Continuing Education Krems, Krems an der Donau, Austria
| | - Wilhelm Frank
- Centre for Health Sciences, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University (DPU), Krems an der Donau, Austria
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Julia-Susanne Batzer
- Centre for Operative Dentistry, Periodontology, and Endodontology, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University (DPU), Steiner Landstraße 124, 3500, Krems an der Donau, Austria
| |
Collapse
|
4
|
Curley SJ, Szczepanski CR. Interfacial energy as an approach to designing amphipathic surfaces during photopolymerization curing. SOFT MATTER 2024; 20:3854-3867. [PMID: 38651540 DOI: 10.1039/d3sm01528a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Photopolymerization induced phase separation (PIPS) is a platform capable of creating heterogeneous materials from initially miscible resin solutions, where both the reaction's governing thermodynamics and kinetics significantly influence the resulting phase composition and morphology. Here, PIPS is used to develop materials in a single photopolymerization step that are hydrophobic on one face and hydrophilic on the other. These two faces possess a water contact angle difference of 50°, bridged by a bulk-scale chemical gradient. The impact of the PIPS-triggering inert additive is investigated by increasing the loading of poly(methyl methacrylate) (PMMA) in an acrylonitrile/1,6-hexanediol diacrylate comonomer resin. The extent of phase separation in the sample network depends on this loading, with increasing PMMA corresponding to macroscale domains that are more chemically and mechanically distinct. A significant period between the onsets of phase separation and reaction deceleration, determined using in situ FT-IR, facilitates this enhanced phase segregation in PMMA-modified samples. Spatially directed domain formation can be further promoted using multiple interface types in the sample mold, here, glass and stainless steel. With multiple interface types, interfacial rearrangements to minimize surface energy during resin photopolymerization result in a hydrophobic face that is nitrile-rich and a hydrophilic face that is nitrile-poor (e.g., acrylate-rich). Using this strategy, patterned wettability on a single face can also be engineered. This study illustrates the capabilities of PIPS for complex surface design and in applications requiring stark differences in surface character without sharp interfaces.
Collapse
Affiliation(s)
- Sabrina J Curley
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
| | - Caroline R Szczepanski
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Fu D, Holles SB, England E, Zhang Y, Cheng S, Szczepanski C. Compatibility versus reaction diffusion: Factors that determine the heterogeneity of polymerized adhesive networks. Dent Mater 2024; 40:800-810. [PMID: 38485599 PMCID: PMC11098697 DOI: 10.1016/j.dental.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Heterogeneity and phase separation during network polymerization is a major issue contributing to the failure of dental adhesives. This study investigates how the ratio of hydrophobic crosslinkers to hydrophilic comonomer (C/H ratio), as well as cosolvent fraction (ethanol/water) influences the degree of heterogeneity and proclivity for phase separation in a series of model adhesive formulations. METHODS Twelve formulations were investigated, with 4 different C/H ratios (7:1, 2.2:1, 1:1, 0.5:1) and 3 different overall cosolvent fractions (0, 10 and 20 wt%). The heterogeneity and phase behavior were characterized using Fourier Transform Infrared Spectroscopy (FT-IR), dynamic mechanical analysis (DMA), small-angle x-ray scattering (SAXS) and atomic force microscopy (AFM). RESULTS In resins without cosolvent, all characterizations confirm reduced heterogeneity as C/H ratio decreases. However, when 10 or 20 wt% of cosolvent is included in the adhesive formulation, a higher degree of heterogeneity and even distinct phase separation with domains ranging from a few hundreds of nanometers to a few micrometers in size form. This is particularly noticeable at lower C/H ratios, which is surprising as HEMA is commonly considered a compatibilizer between hydrophobic crosslinkers and aqueous (co)solvents. SIGNIFICANCE Our experiments demonstrate that formulations with lower C/H ratio and thus a lower viscosity experience later onsets of diffusion limitations during polymerization, which favors thermodynamically driven phase separation. Therefore, to determine or predict the resulting phase structure of adhesive materials, it is necessary to consider the kinetics and diffusion constraints during the formation of the polymer network and not just the compatibility of resin constituents.
Collapse
Affiliation(s)
- Denghao Fu
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing MI 48824, USA
| | - Sarah Beth Holles
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing MI 48824, USA
| | - Emily England
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing MI 48824, USA
| | - Yunlu Zhang
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing MI 48824, USA
| | - Shiwang Cheng
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing MI 48824, USA
| | - Caroline Szczepanski
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing MI 48824, USA.
| |
Collapse
|
6
|
Korkmaz B, Demirel E, Ye Q, Misra A, Tamerler C, Spencer P. Synergistic enhancement of hydrophobic dental adhesives: autonomous strengthening, polymerization kinetics, and hydrolytic resistance. FRONTIERS IN DENTAL MEDICINE 2024; 5:1373853. [PMID: 39670213 PMCID: PMC11636420 DOI: 10.3389/fdmed.2024.1373853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The leading cause of composite restoration failure is recurrent marginal decay. The margin between the composite and tooth is initially sealed by a low-viscosity adhesive, but chemical, physical, and mechanical stresses work synergistically and simultaneously to degrade the adhesive, destroying the interfacial seal and providing an ideal environment for bacteria to proliferate. Our group has been developing self-strengthening adhesives with improved chemical and mechanical characteristics. This paper reports a self-strengthening adhesive formulation that resists hydrolysis-mediated degradation by providing intrinsic reinforcement of the polymer network through synergistic stimulation of free-radical polymerization, sol-gel reaction, and hydrophobicity. Hydrophobic resin formulation (NE1) was developed using HEMA/BisGMA 28/55w/w and 15 wt% MPS. Control (NC1) contained HEMA/BisGMA 28/55 w/w and 15 wt% MES. The polymerization kinetics, water sorption, leachates, and dynamic mechanical properties of the resin samples were investigated. The NC1 and NE1 samples showed comparable polymerization kinetics, degree of conversion and water sorption. In contrast, NC1 showed significantly higher levels of HEMA and BisGMA leachate, indicating faster degradation in ethanol. At day 3, cumulative HEMA leachate for NC1 was tenfold greater than NE1 (p < 0.05). Dynamic mechanical properties were measured at 37 and 70°C in both dry and wet conditions. Under dry conditions, the storage moduli of NC1 and NE1 were comparable and the glass transition temperature (T g) of NC1 was statistically significant lower (p < 0.001) than NE1. Under wet conditions, the storage modulus of NC1 was lower than NE1 and at 70°C there is a threefold difference in storage modulus. At this temperature and under wet conditions, the storage modulus of NC1 is statistically significantly lower (p < 0.001) than NE1. The results indicated that in the wet environment, NE1 provided lower chain mobility, higher crosslink density, and more hydrogen bonds. The newly formulated methacrylate-based adhesive capitalizes on free-radical polymerization, sol-gel reactions, and hydrophobicity to provide enhanced mechanical properties at elevated temperatures in wet environments and hydrolytic stability under aggressive aging conditions.
Collapse
Affiliation(s)
- Burak Korkmaz
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
| | - Erhan Demirel
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Canon Virginia, Inc., Newport News, VA, United States
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Civil and Environmental Engineering, Florida International University, Miami, FL, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
7
|
Li M, Qiu Y, Wang Y, Zhang S, Duan L, Zhao W, Shi Y, Zhang Z, Tay FR, Fu B. A glycol chitosan derivative with extrafibrillar demineralization potential for self-etch dentin bonding. Dent Mater 2024; 40:327-339. [PMID: 38065798 DOI: 10.1016/j.dental.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVES Extrafibrillar demineralization is an etching technique that removes only minerals from around the collagen fibrils for resin infiltration. The intrafibrillar minerals are left intact to avoid their replacement by water that is hard for adhesive resin monomers to displace. The present work reported the synthesis of a water-soluble methacryloyloxy glycol chitosan-EDTA conjugate (GCE-MA) and evaluated its potential as an extrafibrillar demineralization agent for self-etch dentin bonding. METHODS Glycol chitosan-EDTA was functionalized with a methacryloyloxy functionality. Conjugation was confirmed using Fourier transform-infrared spectroscopy. The GCE-MA was used to prepare experimental self-etch primers. Extrafibrillar demineralization of the primers was evaluated with scaning electron microscopy and transmission electron microscopy. The feasibility of this new self-etch bonding approach was evaluated using microtensile bond strength testing and inhibition of dentin gelatinolytic activity. The antibacterial activity and cytotoxicity of GCE-MA were also analyzed. RESULTS Conjugation of EDTA and the methacryloyloxy functionality to glycol chitosan was successful. The functionalized conjugate was capable of extrafibrillar demineralization of mineralized collagen fibrils. Tensile bond strength of the experimental self-etch primer to dentin was comparable to that of phosphoric acid-etched dentin and the commercial self-etch primer Clearfil SE Bond 2. The GCE-MA also inhibited soluble rhMMP-9. In-situ zymography detected minimal fluorescence in hybrid layers conditioned with the experimental primer. The GCE-MA was noncytotoxic and possessed antibacterial activities against planktonic bacteria. SIGNIFICANCE Synthesis of GCE-MA brought into fruition a self-etch conditioner that selectively demineralizes the extrafibrillar mineral component of dentin. A self-etch primer prepared with GCE-MA achieved bond strengths comparable to commercial reference adhesive systems.
Collapse
Affiliation(s)
- Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yinlin Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Sisi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lian Duan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Zhong Q, Zhou Q, Xiao T, Li X, Xu W, Li Y, Tao Y, Wu L, Zhou Z, Wong HM, Li QL. Er:YAG Laser Physical Etching and Ultra-High-Molecular-Weight Cross-Linked Sodium Polyacrylate Chemical Etching for a Reliable Dentin Dry Bonding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39127-39142. [PMID: 37565782 DOI: 10.1021/acsami.3c07091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dentin bond interface stability is the key issue of dental adhesion in present clinical dentistry. The concept of selective extrafibrillar demineralization has opened a new way to maintain intrafibrillar minerals to prevent interface degradation. Here, using ultra-high-molecular-weight sodium polyacrylate [Carbopol (Carbo) > 40 kDa] as a calcium chelator, we challenge this concept and propose a protocol for reliable dentin dry bonding. The results of high-resolution transmission electron microscopy revealed periodic bands of 67 nm dentin collagen fibrils after Carbo etching, and the hydroxyproline concentration increasing with prolonged chelating time denied the concept of extrafibrillar demineralization. The results that wet and dry bonding with Carbo-based demineralization produced a weaker bond strength than the traditional phosphoric acid wet adhesion suggested that the Carbo-based demineralization is an unreliable adhesion strategy. A novel protocol of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion revealed that a micro-/nano-level rough, rigid, and non-collagen exposed dentin surface was produced, the micro-tensile bond strength was maintained after aging under dry and wet bonding modes, and in situ zymography and nanoleakage within the hybrid layers presented lower signals after aging. Cell culture in vitro and a rabbit deep dentin adhesion model in vivo proved that this protocol is safe and biocompatible. Taken together, the concept of extrafibrillar demineralization is limited and insufficient to use in the clinic. The strategy of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion produces a bonding effect with reliability, durability, and safety.
Collapse
Affiliation(s)
- Qi Zhong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qingli Zhou
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Ting Xiao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaofeng Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Wu Xu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yuzhu Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yang Tao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Quan-Li Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
- Department of Stomatology, Longgang Otorhinolaryngology Hospital, Shenzhen 518172, China
| |
Collapse
|
9
|
Effects of Alternative Solvents in Experimental Enamel Infiltrants on Bond Strength and Selected Properties. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4293975. [DOI: 10.1155/2022/4293975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
Objective. To evaluate different concentrations of solvents (tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO) and monomers on the degree of conversion, microtensile bond strength, and mechanical properties of experimental resin infiltrants. Materials and Methods. Resin infiltrants were formulated and divided into eleven groups: (1) Icon, (2) 75% TEGDMA (T) +25% UDMA (U), (3) T +25% BIS-EMA (B), (4) T + U +0.5%DMSO, (5) T + U +5% DMSO, (6) T + U +0.5% THF, (7) T + U +5% THF, (8) T + B +0.5% DMSO, (9) T + B +5% DMSO, (10) T + B +0.5% THF, and (11) T + B +5% THF. One hundred and ten bovine mandibular incisors were sectioned, treated, and destined to the degree of conversion, tensile cohesive strength, microtensile bond strength, flexural strength, and elastic modulus. Data were submitted to one-way ANOVA and Tukey’s test (
). Results. The degree of conversion was lowest for T + B +5%THF (41.9%) and highest for T + U +5%THF (62.1%). In flexural strength and E-modulus, the T + B (96.5 MPa and 0.49 GPa) obtained the highest values and the lowest for T + U +5% DMSO (18.5 MPa and 9.7 GPa). Icon showed the highest bond strength (19.3 MPa) and cohesive strength (62.2 MPa), while T + U +5%DMSO (9.7 MPa) and T + B +5% DMSO (9.8 MPa) the lowest values and T + B +0.5% DMSO (12.3 MPa) the lowest cohesive strength. Conclusions. The addition of lower concentrations of DMSO or THF (0.5%) did not impair bond strength or significantly affect monomer conversion, but reduced the mechanical properties of resin infiltration.
Collapse
|
10
|
Sodium carboxymethyl cellulose-based extrafibrillar demineralization to optimize dentin bonding durability. Dent Mater 2022; 38:2096-2114. [DOI: 10.1016/j.dental.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/02/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
|
11
|
Autonomous-Strengthening Adhesive Provides Hydrolysis-Resistance and Enhanced Mechanical Properties in Wet Conditions. Molecules 2022; 27:molecules27175505. [PMID: 36080272 PMCID: PMC9457668 DOI: 10.3390/molecules27175505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The low-viscosity adhesive that is used to bond composite restorative materials to the tooth is readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite/tooth interface, demineralize the tooth, and further erode the adhesive. This paper presents the preparation and characterization of a low-crosslink-density hydrophilic adhesive that capitalizes on sol-gel reactions and free-radical polymerization to resist hydrolysis and provide enhanced mechanical properties in wet environments. Polymerization behavior, water sorption, and leachates were investigated. Dynamic mechanical analyses (DMA) were conducted using water-saturated adhesives to mimic load transfer in wet conditions. Data from all tests were analyzed using appropriate statistical tests (α = 0.05). The degree of conversion was comparable for experimental and control adhesives at 88.3 and 84.3%, respectively. HEMA leachate was significantly lower for the experimental (2.9 wt%) compared to control (7.2 wt%). After 3 days of aqueous aging, the storage and rubbery moduli and the glass transition temperature of the experimental adhesive (57.5MPa, 12.8MPa, and 38.7 °C, respectively) were significantly higher than control (7.4MPa, 4.3 MPa, and 25.9 °C, respectively). The results indicated that the autonomic sol-gel reaction continues in the wet environment, leading to intrinsic reinforcement of the polymer network, improved hydrolytic stability, and enhanced mechanical properties.
Collapse
|
12
|
Li MX, Duan L, Chen ML, Tian FC, Fu BP. Effect of an extrafibrillar dentin demineralization strategy on the durability of the resin-dentin bond. J Mech Behav Biomed Mater 2021; 126:105038. [PMID: 34923366 DOI: 10.1016/j.jmbbm.2021.105038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to evaluate the potential of the extrafibrillar dentin demineralization strategy on the long-term dentin bond strength of an etch-and-rinse adhesive. METHODS A water-soluble glycol chitosan-EDTA (GCE), a chelating conditioner, was synthesized and subjected to size-exclusion dialysis to obtain molecules >40 kDa. The conjugation of EDTA to glycol chitosan was analyzed by Fourier transform infrared (FTIR) spectroscopy. Mid-coronal dentin surfaces of 80 teeth were either acid-etched with 35% phosphoric acid or conditioned with 25 mg/mL GCE (n = 40) and thoroughly water-sprayed before applying the etch-and-rinse adhesive Adper Single Bond Plus and placing Z250 composite resin (3 M Oral Care; St Paul, MN, USA). Resin-bonded specimens were prepared into beams with a cross-sectional area of about 0.9 mm2 vertically through the resin-dentin interfaces before the microtensile bond strengths (MTBS) were determined immediately or after 3, 6, or 12 months of water storage. The resin-dentin interfaces were analyzed using transmission electron microscopy (TEM). The MTBS data were analyzed using two-way ANOVA followed by the LSD post-hoc multiple comparisons (P < 0.05). RESULTS FTIR spectra showed that EDTA was successfully conjugated to glycol chitosan. The phosphoric acid-etching group and GCE-conditioning group showed similar bond strength values after 24 h of water storage. The bond strength of the phosphoric acid-etching group after 12-month water aging was significantly reduced from 51.61 ± 3.30 MPa to 38.57 ± 4.81 MPa, while the bond strength of the GCE-conditioning group was not significantly reduced from 50.28 ± 3.62 MPa to 46.40 ± 4.71 MPa.The degradation of the hybrid layer could be detected in the phosphoric acid-etching group after 12 months of water aging, but not in the GCE-conditioning group. CONCLUSION The extrafibrillar dentin demineralization strategy using GCE conditioner could defy the hybrid layer degradation of the dentin bond after 12 months of water aging and enhance the dentin bond durability of the etch-and-rinse adhesive Adper Single Bond Plus.
Collapse
Affiliation(s)
- Ming Xing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lian Duan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Mei Ling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fu Cong Tian
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Bai Ping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Spencer P, Ye Q, Kamathewatta NJB, Woolfolk SK, Bohaty BS, Misra A, Tamerler C. Chemometrics-Assisted Raman Spectroscopy Characterization of Tunable Polymer-Peptide Hybrids for Dental Tissue Repair. FRONTIERS IN MATERIALS 2021; 8:681415. [PMID: 34113623 PMCID: PMC8186416 DOI: 10.3389/fmats.2021.681415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interfaces that biological tissues form with biomaterials are invariably defective and frequently the location where failure initiates. Characterizing the phenomena that lead to failure is confounded by several factors including heterogeneous material/tissue interfaces. To seamlessly analyze across these diverse structures presents a wealth of analytical challenges. This study aims to develop a molecular-level understanding of a peptide-functionalized adhesive/collagen hybrid biomaterial using Raman spectroscopy combined with chemometrics approach. An engineered hydroxyapatite-binding peptide (HABP) was copolymerized in dentin adhesive and dentin was demineralized to provide collagen matrices that were partially infiltrated with the peptide-functionalized adhesive. Partial infiltration led to pockets of exposed collagen-a condition that simulates defects in adhesive/dentin interfaces. The spectroscopic results indicate that co-polymerizable HABP tethered to the adhesive promoted remineralization of the defects. The spatial distribution of collagen, adhesive, and mineral as well as crystallinity of the mineral across this heterogeneous material/tissue interface was determined using micro-Raman spectroscopy combined with chemometrics approach. The success of this combined approach in the characterization of material/tissue interfaces stems from its ability to extract quality parameters that are related to the essential and relevant portions of the spectral data, after filtering out noise and non-relevant information. This ability is critical when it is not possible to separate components for analysis such as investigations focused on, in situ chemical characterization of interfaces. Extracting essential information from complex bio/material interfaces using data driven approaches will improve our understanding of heterogeneous material/tissue interfaces. This understanding will allow us to identify key parameters within the interfacial micro-environment that should be harnessed to develop durable biomaterials.
Collapse
Affiliation(s)
- Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Nilan J. B. Kamathewatta
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Sarah K. Woolfolk
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Brenda S. Bohaty
- Department of Pediatric Dentistry, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Civil Engineering, University of Kansas, Lawrence, KS, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
14
|
Aung SSMP, Takagaki T, Ikeda M, Tagami J. Ultra-morphological studies on enamel-universal adhesive interface. J Dent 2020; 104:103527. [PMID: 33188847 DOI: 10.1016/j.jdent.2020.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 11/09/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Nowadays, the universal adhesives are often used for silane application prior to application of self-adhesive resin cements. The purpose of this study was to evaluate enamel surface roughness and to observe the enamel-adhesive interface after acid-base challenge using three different self-adhesive resin cements combined with universal adhesives. MATERIALS AND METHODS Three self-adhesive resin cements: PANAVIA SA Luting Cement Plus (SA), Calibra Universal (CA) and MaxCem Elite Chroma (MC) which in conjunction with the particular universal adhesives: Clearfil Universal Bond Quick (UQ), Prime&Bond Universal (PB) and Optibond Universal (OB) were tested. Thirty enamel surfaces from caries-free human premolars were ground and bonded with the tested self-adhesive resin cements combined with universal adhesives. The surface roughness test (Sa) with or without applying adhesives was performed with 3D-CLSM. The interface of the bonded specimens after acid-base challenge was also examined by SEM. RESULTS The Sa of OB was significantly higher than those of PB and UQ. There were statistically significant differences among all of the groups (p < 0.05). An acid-base resistant zone (ABRZ) was observed in all groups, however, formation of the ABRZ was material dependent. CONCLUSION OB provided most etching performance to enamel of human premolars and MC group with OB presented durability against acid-base challenge. CLINICAL SIGNIFICANCE Nowadays, the combination of self-adhesive resin cement and universal adhesive may be a viable option for a reliable bonding performance and bonding durability in indirect restorative dentistry.
Collapse
Affiliation(s)
- San San May Phyo Aung
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Tomohiro Takagaki
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Masaomi Ikeda
- Department of Oral Prosthetic Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
15
|
Gungormus M, Tulumbaci F. Peptide-assisted pre-bonding remineralization of dentin to improve bonding. J Mech Behav Biomed Mater 2020; 113:104119. [PMID: 33035925 DOI: 10.1016/j.jmbbm.2020.104119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Bonding with dentin is a complex process involving physical and chemical adhesion where the adhesive must be able to penetrate and envelop collagen fibers. Acid etching clears the dentin of debris, which prevents adhesives to interact with dentin. However, it also demineralizes the outermost surface of dentin and exposes collagen fibers. The mineral-free collagen is susceptible to collapse after drying and to proteolytic or microbial attack, ultimately impairing the bonding with dentin. To address this, we have attempted a pre-bonding rapid remineralization approach to recover the mineral content of etched dentin. We have used a mineralization-promoting peptide and high calcium/phosphate concentration to achieve this in a clinically applicable timeframe. Partial remineralization was confirmed via SEM and XRD analyses. The mechanical properties and the stability of the partially remineralized dentin were investigated via microhardness, collagen hydrolysis and shrinkage tests. The bonding properties were investigated via shear bond strength (SBS) and microleakage tests. Pre-bonding remineralization of dentin with peptide for 10 min significantly increased the stiffness, resistance to hydrolysis and reduced shrinkage due to drying. SBS was increased with both an etch&rinse and a self-etch adhesive. However, pre-bonding remineralization resulted in reduced microleakage only with the etch&rinse adhesive. The described method is readily applicable to clinic since it is expected to add only 10 min to the procedure. Future in situ and/or in vivo studies will help to confirm the benefits observed in this in vitro study and allow optimize the parameters of the method.
Collapse
Affiliation(s)
- Mustafa Gungormus
- Department of Basic Sciences, School of Dentistry, Ankara Yildirim Beyazit University, Ankara, Turkey; Department of Biomedical Engineering, School of Engineering and Natural Sciences Ankara Yildirim Beyazit University, Ankara, Turkey.
| | - Fatih Tulumbaci
- Department of Pediatric Dentistry, School of Dentistry, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
16
|
Esteban Florez FL, Trofimov AA, Ievlev A, Qian S, Rondinone AJ, Khajotia SS. Advanced characterization of surface-modified nanoparticles and nanofilled antibacterial dental adhesive resins. Sci Rep 2020; 10:9811. [PMID: 32555360 PMCID: PMC7299952 DOI: 10.1038/s41598-020-66819-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Nanotechnology can improve the performance of dental polymers. The objective of this study was to modify the surfaces of nanoparticles with silanes and proteins, characterize nanoparticles' agglomeration levels and interfaces between nanoparticles and the polymeric matrix. Undoped (n-TiO2), nitrogen-doped (N_TiO2) and nitrogen-fluorine co-doped titanium dioxide nanoparticles (NF_TiO2) were synthesized and subjected to surface modification procedures in preparation for Small-Angle X-Ray Scattering (SAXS) and Small-Angle Neutron Scattering (SANS) characterizations. Experimental adhesives were manually synthesized by incorporating 20% (v/v) of n-TiO2, N_TiO2 or NF_TiO2 (as-synthesized or surface-modified) into OptiBond Solo Plus (OPTB). Specimens (n = 15/group; d = 6.0 mm, t = 0.5 mm) of OPTB and experimental adhesives were characterized using Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS), 2-D ToF-SIMS chemical imaging and SANS. SAXS results indicated that surface-modified nanoparticles displayed higher scattering intensities in a particle-size dependent manner. ToF-SIMS results demonstrated that nanoparticles' incorporation did not adversely impact the parental polymer. 2-D ToF-SIMS chemical imaging demonstrated the distribution of Ti+ and confirmed nitrogen-doping levels. SANS results confirmed nanoparticles' functionalization and revealed the interfaces between nanoparticles and the polymer matrix. Metaloxide nanoparticles were successfully fabricated, incorporated and covalently functionalized in a commercial dental adhesive resin, thereby supporting the utilization of nanotechnology in dentistry.
Collapse
Affiliation(s)
- Fernando Luis Esteban Florez
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, Oklahoma, 73117, USA.
| | - Artem A Trofimov
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee, 37831, USA
| | - Anton Ievlev
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee, 37831, USA
| | - Shuo Qian
- Oak Ridge National Laboratory, Neutron Scattering Division, Oak Ridge, Tennessee, 37831, USA
| | - Adam Justin Rondinone
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee, 37831, USA
| | - Sharukh Soli Khajotia
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, Oklahoma, 73117, USA
| |
Collapse
|
17
|
Abedin F, Ye Q, Spencer P. Hydrophilic dyes as photosensitizers for photopolymerization of dental adhesives. J Dent 2020; 99:103405. [PMID: 32522687 DOI: 10.1016/j.jdent.2020.103405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study explored hydrophilic dyes as photosensitizers for application in dental adhesives. The goal was to identify dyes that enhance the degree of conversion (DC) of the hydrophilic-rich phase without impairing polymerization of the hydrophobic-rich phase. METHODS Properties that were investigated included the molar extinction coefficient at 480 nm, relative normalized photon absorption efficiency (PAE), rate of polymerization and degree of conversion (DC). The following hydrophilic dyes: Bromophenol blue sodium salt, Rosebengal sodium salt, Erythrosin B, New Fuchsin and Victoria blue B were identified as suitable photosensitizers. RESULTS In this study it was observed that dyes such as Bromophenol blue sodium salt, New Fuchsin, Victoria blue B and Rosebengal sodium salt were suitable candidates for dental adhesive photopolymerization, leading to substantial degree of conversion to both the hydrophilic-rich phase and the hydrophobic-rich phase. CONCLUSIONS In addition to the ability of the photosensitizer to absorb light in the visible range and transition to an excited state as a result of the absorbed energy, other factors such as the efficiency of the photosensitizer/light curing unit (LCU) combination, stability/efficiency of the excited state of the photosensitizer and/or initiating reactive species play an important role in the photopolymerization of the dental adhesive.
Collapse
Affiliation(s)
- Farhana Abedin
- Department of Electromechanical Engineering Technology, California State Polytechnic University, 3801 W Temple Ave, Pomona, CA, 91768, United States.
| | - Qiang Ye
- Institute of Bioengineering Research Laboratories, The University of Kansas, 1530 W 15thStreet, Lawrence, KS, 66045, United States.
| | - Paulette Spencer
- Institute of Bioengineering Research Laboratories, The University of Kansas, 1530 W 15thStreet, Lawrence, KS, 66045, United States; Department of Mechanical Engineering, The University of Kansas, 1530 W 15thStreet, Lawrence, KS, 66045, United States.
| |
Collapse
|
18
|
Multifunctional monomer acts as co-initiator and crosslinker to provide autonomous strengthening with enhanced hydrolytic stability in dental adhesives. Dent Mater 2019; 36:284-295. [PMID: 31806495 DOI: 10.1016/j.dental.2019.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate a new synthesized multifunctional monomer, aminosilane functionalized methacrylate (ASMA), containing polymerizable methacrylate, tertiary amine, and methoxysilane functionalities in dental adhesive formulations, and to investigate the polymerization kinetics, leachates, thermal and mechanical properties of copolymers. METHODS Adhesive contained HEMA/BisGMA (45/55, w/w) was used as a control, and mixtures based on HEMA/BisGMA/ASMA at the mass ratio of 45/(55-x)/x were used as experimental adhesive. Adhesives were characterized with regard to water miscibility, photo-polymerization behavior (Fourier transform infrared spectroscopy, FTIR), leached co-monomers (high performance liquid chromatography, HPLC), thermal properties (modulated differential scanning calorimeter, MDSC), and mechanical properties (dynamic mechanical analyzer, DMA). Stress relaxation times and the corresponding moduli, obtained from stress relaxation tests, are used in a simulated linear loading case. RESULTS As compared to the control, ASMA-containing adhesives showed higher water miscibility, lower viscosity, improved monomer-to-polymer conversion, significantly greater Tg and rubbery modulus. HPLC results indicated a substantial reduction of leached HEMA (up to 85wt%) and BisGMA (up to 55wt%) in ethanol. The simulation reveals that the ASMA-containing adhesive becomes substantially stiffer than the control. SIGNIFICANCE ASMA monomer plays multiple roles, i.e. it serves as both a co-initiator and crosslinker while also providing autonomous strengthening and enhanced hydrolytic stability in the adhesive formulations. This multifunctional monomer offers significant promise for improving the durability of the adhesive at the composite/tooth interface.
Collapse
|
19
|
Fugolin AP, Dobson A, Ferracane JL, Pfeifer CS. Effect of residual solvent on performance of acrylamide-containing dental materials. Dent Mater 2019; 35:1378-1387. [PMID: 31378307 PMCID: PMC6750967 DOI: 10.1016/j.dental.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Methacrylamide-based monomers are being pursued as novel, hydrolytically stable materials for use in dental adhesives. The impact of residual solvents, due to the chemical synthesis procedures or the need for solvated adhesives systems, on the kinetics of polymerization and mechanical properties was the aim of the present investigation. METHODS Two base monomers (70wt% BisGMA or HEMAM-BDI - newly synthesized secondary methacrylamide) were combined with 30wt% N,N-dimethylacrylamide. Eethyl acetate (EtOAc), or 75vol% ethanol/25vol% water (EtOH/H2O) were added as solvents in concentrations of 2, 5, 15 and 20wt%. The resins were made polymerizable by the addition of 0.2wt% 2,2-dimethoxy-2-phenyl acetophenone (DMPA) and 0.4wt% diphenyliodonium hexafluorophosphate (DPI-PF6). Specimens (n=3) were photoactivated with a mercury arc lamp (Acticure 4000, 320-500nm, 250mW/cm2) for 5min. Degree of conversion (DC, %) was tracked in near-IR spectroscopy in real time and yield strength and modulus of elasticity were measured in three-point bending after dry and wet storage (n=6). The data was subject to one-way ANOVA/Tukey's Test (p≤0.05), or Student's t-test (p≤0.001). RESULTS In all groups for both BisGMA and HEMAM-BDI-based materials, DC and DC at Rpmax increased and maximum rate of polymerization decreased as solvent concentration increased. Despite the increased DC, BisGMA mixtures showed a decrease in FS starting at 5wt% EtOAc or 15wt% EtOH/H2O. Yield strength for the HEMAM-BDI groups was overall lower than that of the BisGMA groups, but the modulus of elasticity was significantly higher. SIGNIFICANCE The presence of residual solvent, from manufacturing or from practitioner's handling, affects polymerization kinetics and mechanical properties of resins. Methacrylates appear to be more strongly influenced than methacrylamides.
Collapse
Affiliation(s)
- Ana P Fugolin
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Adam Dobson
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Jack L Ferracane
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Carmem S Pfeifer
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
20
|
Xie SX, Boone K, VanOosten SK, Yuca E, Song L, Ge X, Ye Q, Spencer P, Tamerler C. Peptide Mediated Antimicrobial Dental Adhesive System. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019. [PMID: 33542835 DOI: 10.3390/a9030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The most common cause for dental composite failures is secondary caries due to invasive bacterial colonization of the adhesive/dentin (a/d) interface. Innate material weakness often lead to an insufficient seal between the adhesive and dentin. Consequently, bacterial by-products invade the porous a/d interface leading to material degradation and dental caries. Current approaches to achieve antibacterial properties in these materials continue to raise concerns regarding hypersensitivity and antibiotic resistance. Herein, we have developed a multi-faceted, bio-functionalized approach to overcome the vulnerability of such interfaces. An antimicrobial adhesive formulation was designed using a combination of antimicrobial peptide and a ε-polylysine resin system. Effector molecules boasting innate immunity are brought together with a biopolymer offering a two-fold biomimetic design approach. The selection of ε-polylysine was inspired due to its non-toxic nature and common use as food preservative. Biomolecular characterization and functional activity of our engineered dental adhesive formulation were assessed and the combinatorial formulation demonstrated significant antimicrobial activity against Streptococcus mutans. Our antimicrobial peptide-hydrophilic adhesive hybrid system design offers advanced, biofunctional properties at the critical a/d interface.
Collapse
Affiliation(s)
- Sheng-Xue Xie
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Kay VanOosten
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Department of Molecular Biology and Genetics, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Xueping Ge
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
21
|
Xie SX, Boone K, VanOosten SK, Yuca E, Song L, Ge X, Ye Q, Spencer P, Tamerler C. Peptide Mediated Antimicrobial Dental Adhesive System. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:557. [PMID: 33542835 PMCID: PMC7857482 DOI: 10.3390/app9030557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The most common cause for dental composite failures is secondary caries due to invasive bacterial colonization of the adhesive/dentin (a/d) interface. Innate material weakness often lead to an insufficient seal between the adhesive and dentin. Consequently, bacterial by-products invade the porous a/d interface leading to material degradation and dental caries. Current approaches to achieve antibacterial properties in these materials continue to raise concerns regarding hypersensitivity and antibiotic resistance. Herein, we have developed a multi-faceted, bio-functionalized approach to overcome the vulnerability of such interfaces. An antimicrobial adhesive formulation was designed using a combination of antimicrobial peptide and a ε-polylysine resin system. Effector molecules boasting innate immunity are brought together with a biopolymer offering a two-fold biomimetic design approach. The selection of ε-polylysine was inspired due to its non-toxic nature and common use as food preservative. Biomolecular characterization and functional activity of our engineered dental adhesive formulation were assessed and the combinatorial formulation demonstrated significant antimicrobial activity against Streptococcus mutans. Our antimicrobial peptide-hydrophilic adhesive hybrid system design offers advanced, biofunctional properties at the critical a/d interface.
Collapse
Affiliation(s)
- Sheng-Xue Xie
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Kay VanOosten
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Department of Molecular Biology and Genetics, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Xueping Ge
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
22
|
Parthasarathy R, Misra A, Song L, Ye Q, Spencer P. Structure-property relationships for wet dentin adhesive polymers. Biointerphases 2018; 13:061004. [PMID: 30558430 PMCID: PMC6296910 DOI: 10.1116/1.5058072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Dentin adhesive systems for composite tooth restorations are composed of hydrophilic/hydrophobic monomers, solvents, and photoinitiators. The adhesives undergo phase separation and concomitant compositional change during their application in the wet oral environment; phase separation compromises the quality of the hybrid layer in the adhesive/dentin interface. In this work, the adhesive composition in the hybrid layer can be represented using the phase boundaries of a ternary phase diagram for the hydrophobic monomer/hydrophilic monomer/water system. The polymer phases, previously unaccounted for, play an important role in determining the mechanical behavior of the bulk adhesive, and the chemomechanical properties of the phases are intimately related to the effects produced by differences in the hydrophobic-hydrophilic composition. As the composition of the polymer phases varies from hydrophobic-rich to hydrophilic-rich, the amount of the adsorbed water and the nature of polymer-water interaction vary nonlinearly and strongly correlate with the change in elastic moduli under wet conditions. The failure strain, loss modulus, and glass transition temperature vary nonmonotonically with composition and are explained based upon primary and secondary transitions observed in dynamic mechanical testing. Due to the variability in composition, the assignment of mechanical properties and the choice of suitable constitutive models for polymer phases in the hybrid layer are not straightforward. This work investigates the relationship between composition and chemomechanical properties of the polymer phases formed on the water-adhesive phase boundary using quasistatic and dynamic mechanical testing, mass transfer experiments, and vibrational spectroscopy.
Collapse
Affiliation(s)
- Ranganathan Parthasarathy
- Department of Civil and Architectural Engineering, Tennessee State University, 3500 John A Merritt Blvd, Nashville, Tennessee 37209
| | - Anil Misra
- Department of Civil and Environmental Engineering, Institute for Bioengineering Research, University of Kansas, 5104B Learned Hall, 1530 W 15th Street, Lawrence, Kansas 66045
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 5104A Learned Hall, 1530 W 15th Street, Lawrence, Kansas 66045
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 5101E Learned Hall, 1530 W 15th Street, Lawrence, Kansas 66045
| | - Paulette Spencer
- Department of Mechanical Engineering, Institute for Bioengineering Research, University of Kansas, 3111 Learned Hall, 1530 W 15th Street, Lawrence, Kansas 66045
| |
Collapse
|
23
|
Ye Q, Abedin F, Parthasarathy R, Spencer P. Photoinitiators in Dentistry: Challenges and Advances. PHOTOPOLYMERISATION INITIATING SYSTEMS 2018. [DOI: 10.1039/9781788013307-00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photopolymerization is used in a wide range of clinical applications in dentistry and the demand for dental materials that can restore form, function and esthetics is increasing rapidly. Simultaneous with this demand is the growing need for photoinitiators that provide effective and efficient in situ polymerization of dental materials using visible light irradiation. This chapter reviews the fundamentals of Type I and II photoinitiators. The advantages and disadvantages of these photoinitiators will be considered with a particular focus on parameters that affect the polymerization process in the oral cavity. The chapter examines recent developments in photoinitiators and opportunities for future research in the design and development of photoinitiators for dental applications. Future research directions that employ computational models in conjunction with iterative synthesis and experimental methods will also be explored in this chapter.
Collapse
Affiliation(s)
- Qiang Ye
- Institute for Bioengineering Research, School of Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
| | - Farhana Abedin
- Electromechanical Engineering Technology program, College of Engineering, California State Polytechnic University Pomona 3801 W. Temple Ave Pomona CA 91768 USA
| | - Ranganathan Parthasarathy
- Nanomaterials Research Lab, Tennessee State University 3500 John A Merritt Blvd Nashville TN 37209 USA
| | - Paulette Spencer
- Institute for Bioengineering Research, School of Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
- Department of Mechanical Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
| |
Collapse
|
24
|
Abstract
From the conception of resin-enamel adhesion to today's contemporary dental adhesive systems, clinicians are no longer afraid of exploring the many advantages brought by adhesive restorative concepts. To maximize the performance of adhesive-based restorative procedures, practitioners must be familiar with the mechanism of adhesion, clinical indications, proper handling, the inherent limitations of the materials and the biological challenges. This review provides an overview of the current status of restorative dental adhesives, their mechanism of adhesion, mechanisms of degradation of dental adhesive interfaces, how to maximize performance, and future trends in adhesive dentistry.
Collapse
|
25
|
Leite MLDAES, Costa CADS, Duarte RM, Andrade AKMD, Soares DG. Bond Strength and Cytotoxicity of a Universal Adhesive According to the Hybridization Strategies to Dentin. Braz Dent J 2018; 29:68-75. [DOI: 10.1590/0103-6440201801698] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022] Open
Abstract
Abstract This study evaluated application protocol (etch-and-rinse/ER and self-etching/SE) and dentin wettability (wet and dry) on microtensile bond strength (μTBS) and transdentinal cytotoxicity of ScotchbondTM Universal (SU) adhesive system. The μTBS values and fracture mode were registered 24 h after adhesive system application and resin composite block build-up (n=5). For analysis of transdentinal cytotoxicity, odontoblast-like MDPC-23 cells were seeded on pulpal surface of dentin discs (0.4 mm thick) adapted to artificial pulp chambers (n=8). The adhesive system was applied to occlusal surface, followed by 24-h incubation time. Cell viability (Alamar Blue) and morphology (SEM) were assessed. Adper Single Bond 2 and Clearfil SE Bond were used as positive controls of the ER and SE application protocols, respectively. No treatment was performed on negative control (NC) group. Data were analyzed by ANOVA and Tukey’s tests (α=5%). Higher μTBS values were found for ER mode in comparison with SE protocol (p<0.05). Dentin wettability had no effect on bond strength of SU in both the ER and SE techniques (p>0.05). Most fractures involved hybrid layer and/or adhesive layer. Neither variable prevented the intense toxic effects of adhesive systems on MDPC-23 cultured cells, since intense reduction in cell viability (±88%) and severe alterations in cell morphology were observed for all groups compared to NC, with no differences among them (p>0.05). Therefore, it was concluded that application of SU following the ER protocol had better adhesive performance. However, this adhesive system featured intense transdentinal cytotoxicity to pulp cells, regardless of application protocol and dentin wettability.
Collapse
|
26
|
Pucci CR, Gu LS, Zeng C, Gou YP, Tay FR, Niu LN. Susceptibility of contemporary single-bottle self-etch dentine adhesives to intrinsic water permeation. J Dent 2017; 66:52-61. [PMID: 28844892 DOI: 10.1016/j.jdent.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To evaluate the effect of intrinsic water permeation on the microtensile bond strengths of different adhesive systems to dentine and the quality of resin-dentine interfaces. METHODS Ninety-six non-carious human third molars were divided into 4 groups: Clearfil S3 Bond Plus (CSBP; Kuraray); Clearfil S3 Bond (C3S; Kuraray); iBond Self-Etch (IB; Heraeus-Kulzer) and Prime&Bond NT (PB, control etch-and-rinse adhesive, Dentply-Sirona). For each adhesive, specimens from one subgroup (N=10) were bonded using zero pulpal pressure, while specimens from the other subgroup (N=10) were bonded using 15cm water pressure (PP). Each bonded tooth was sectioned into 1×1mm sticks and stressed to failure. Data were analysed using two-way ANOVA and Holm-Sidak pairwise comparisons to examine the effects of "adhesive", "pulpal pressure" and their interaction on bond strength (α=0.05). Representative fractured sticks were examined by SEM. The remaining tooth slabs in each subgroup were used for TEM and CLSM. RESULTS Microtensile bond strengths (mean±SD; in MPa) were: 33.4±6.9 (CSBP), 33.2±4.7 (CSBP-PP), 35.0±8.6 (C3S), 25.5±7.3 (C3S-PP), 18.4±4.0 (IB), 16.5±6.9 (IB-PP), 28.2±5.5 (PB), 20.5±7.2 (PB-PP). "Adhesive-type" (P<0.001), "pulpal-pressure" (P<0.001) and their interactions (P<0.001) significantly affected bond strength results. No difference between no-PP and PP subgroups was found for CSBP and IB (P>0.05). Water droplets were identified along the resin-dentine interface for IB, IB-PP and C3S-PP. CONCLUSION IB exhibits water sensitivity when bonding is performed with/without pulpal pressure. C3S exhibits water sensitivity when bonding is performed with pulpal pressure. CSBP does not exhibit water sensitivity when bonding is performed with/without pulpal pressure. CLINICAL SIGNIFICANCE Intrinsic water permeation during bonding procedures significantly affects bond strength results and the resin-dentine interface of contemporary single-bottle self-etch dentine adhesive systems.
Collapse
Affiliation(s)
- Cesar R Pucci
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University UNESP, São Jose dos Campos, São Paulo, Brazil
| | - Li-Sha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chang Zeng
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Ping Gou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
27
|
Hirai K, Tsujimoto A, Nojiri K, Ueta H, Takamizawa T, Barkmeier WW, Latta MA, Miyazaki M. Influence of photoirradiation conditions on dentin bond durability and interfacial characteristics of universal adhesives. Dent Mater J 2017; 36:747-754. [PMID: 28652552 DOI: 10.4012/dmj.2016-019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The influence of photoirradiation conditions on dentin bond durability and interfacial characteristics of universal adhesives was investigated. Universal adhesives were applied to the dentin surfaces and photoirradiated with 100 mW/cm2 for 40 s, 200 mW/cm2 for 20 s, and 400 mW/cm2 for 10 s. A resin composite was bonded to dentin to determine shear bond strength after 24 h water storage and 30,000 thermal cycles, and water contact angle of cured adhesive were measured by the sessile drop method. Greater dentin bond strengths after 24 h water storage and 30,000 thermal cycles were achieved under these conditions at light intensity exceeding 200 mW/cm2. Universal adhesives photoirradiated above 200 mW/cm2 exhibited significantly higher water contact angles than those at 100 mW/cm2. The results of this study suggested that the photoirradiation conditions affect the dentin bond durability and interfacial characteristics of universal adhesives even at the same total energy.
Collapse
Affiliation(s)
- Kazutaka Hirai
- Department of Operative Dentistry, Nihon University School of Dentistry
| | - Akimasa Tsujimoto
- Department of Operative Dentistry, Nihon University School of Dentistry.,Department of General Dentistry, Creighton University School of Dentistry
| | - Kie Nojiri
- Department of Operative Dentistry, Nihon University School of Dentistry
| | - Hirofumi Ueta
- Department of Operative Dentistry, Nihon University School of Dentistry
| | | | - Wayne W Barkmeier
- Department of General Dentistry, Creighton University School of Dentistry
| | - Mark A Latta
- Department of General Dentistry, Creighton University School of Dentistry
| | - Masashi Miyazaki
- Department of Operative Dentistry, Nihon University School of Dentistry
| |
Collapse
|
28
|
Computer-aided Molecular Design of Water Compatible Visible Light Photosensitizers for Dental Adhesive. Chem Eng Sci 2016; 159:131-139. [PMID: 29176909 DOI: 10.1016/j.ces.2016.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dental adhesive resin undergoes phase separation during its infiltration through the wet demineralized dentin and it has been observed previously that the hydrophilic-rich phase is a vulnerable region for failure due to the lack of photo-polymerization and crosslinking density. The lack of photo-polymerization is mostly due to the partitioning of photo-initiators in low concentrations within this phase. Here, a computational approach has been employed to design candidate water compatible visible light photosensitizers which could improve the photo-polymerization of the hydrophilic-rich phase. This study is an extension of our previous work. QSPRs were developed for properties related to the photo-polymerization reaction of the adhesive monomers and hydrophilicity of the photosensitizer using connectivity indices as descriptors. QSPRs and structural constraints were formulated into an optimization problem which was solved stochastically via Tabu Search. Four candidate photosensitizer molecules have been proposed here which have the iminium ion as a common feature.
Collapse
|
29
|
Abedin F, Ye Q, Song L, Ge X, Camarda K, Spencer P. Effect of Partition of Photo-initiator Components and Addition of Iodonium Salt on the Photopolymerization of Phase-Separated Dental Adhesive. JOM (WARRENDALE, PA. : 1989) 2016; 68:1090-1099. [PMID: 27158215 PMCID: PMC4856225 DOI: 10.1007/s11837-016-1816-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
The polymerization kinetics of physically separated hydrophobic- and hydrophilic-rich phases of a model dental adhesive have been investigated. The two phases were prepared from neat resin containing 2-hydroxyethyl methacrylate (HEMA) and bisphenol A glycerolate dimethacrylate (BisGMA) in the ratio of 45:55 (wt/wt). Neat resins containing various combinations of popular photo-initiating compounds, e.g., camphoquinone (CQ), ethyl 4-(dimethylamino)benzoate (EDMAB), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and diphenyliodonium hexafluorophosphate (DPIHP) were prepared. To obtain the two phases 33 wt% of deuterium oxide (D2O) was added to the neat resins. This amount of D2O exceeded the miscibility limit for the resins. The concentration of each component of the photo-initiating system in the two phases was quantified by HPLC. When combined with CQ, DMAEMA is less efficient as a co-initiator compared to EDMAB. The addition of DPIHP as the third component into either CQ/EDMAB or CQ/DMAEMA photo-initiating systems leads to comparable performance in both the hydrophobic- and hydrophilic-rich phases. The addition of the iodonium salt significantly improved the photopolymerization of the hydrophilic-rich phase; the hydrophilic-rich phase exhibited extremely poor polymerization when the iodonium salt was not included in the formulation. The partition concentration of EDMAB in the hydrophilic-rich phase was significantly lower than that of DMAEMA or DPIHP. This study indicates the need for a combination of hydrophobic/hydrophilic photosensitizer and addition of iodonium salt to improve polymerization within the hydrophilic-rich phase of the dental adhesive.
Collapse
Affiliation(s)
- Farhana Abedin
- Bioengineering Research Center, The University of Kansas, Lawrence, KS; Bioengineering Graduate Program, The University of Kansas, Lawrence, KS
| | - Qiang Ye
- Bioengineering Research Center, The University of Kansas, Lawrence, KS
| | - Linyong Song
- Bioengineering Research Center, The University of Kansas, Lawrence, KS
| | - Xueping Ge
- Bioengineering Research Center, The University of Kansas, Lawrence, KS
| | - Kyle Camarda
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, KS
| | - Paulette Spencer
- Bioengineering Research Center, The University of Kansas, Lawrence, KS; Department of Mechanical Engineering, The University of Kansas, Lawrence, KS
| |
Collapse
|
30
|
Transdentinal cytotoxicity of resin-based luting cements to pulp cells. Clin Oral Investig 2015; 20:1559-66. [PMID: 26481234 DOI: 10.1007/s00784-015-1630-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the transdentinal cytotoxicity of components released from different resin-based luting cements to cultured MDPC-23 odontoblast-like cells and human dental pulp cells (HDPCs). MATERIALS AND METHODS Artificial pulp chamber (APC)/dentin disc sets were distributed into four groups according to the materials tested (n = 10), as follows: G1, control (no treatment); G2, resin-modified glass-ionomer cement (RelyX Luting 2); G3, self-adhesive resin cement (RelyX U200); and G4, conventional resin cement (RelyX ARC). The materials were applied to the occlusal surfaces (facing up) of the dentin discs adapted to the APCs. The pulpal surfaces of the discs were maintained in contact with culture medium. Then, an aliquot of 400 μL from the extract (culture medium + resin-based components that diffused through dentin) of each luting cement was applied for 24 h to HDPCs or MDPC-23 cells previously seeded in wells of 24-well plates. Cell viability analysis was performed by the MTT assay (1-way ANOVA/Tukey test; α = 5 %). RESULTS For MDPC-23 cells, RelyX ARC (G4) and RelyX Luting 2 (G2) caused greater reduction in cell viability compared with the negative control group (P < 0.05). Only the HDPCs exposed to RelyX ARC (G4) extract showed a tendency toward viability decrease (9.3 %); however, the values were statistically similar to those of the control group (G1) (P > 0.05). CONCLUSIONS In accordance with the safe limits of ISO 10993-5:1999 (E) recommendations, all resin-based luting cements evaluated in this study can be considered as non-toxic to pulp cells. CLINICAL RELEVANCE Cytotoxicity of resin-based luting cements is material-dependent, and the different protocols for the application of these dental materials to dentin may interfere with their cytotoxicity.
Collapse
|
31
|
Abedin F, Ye Q, Camarda K, Spencer P. Impact of light intensity on the polymerization kinetics and network structure of model hydrophobic and hydrophilic methacrylate based dental adhesive resin. J Biomed Mater Res B Appl Biomater 2015; 104:1666-1678. [PMID: 26340329 DOI: 10.1002/jbm.b.33517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/23/2015] [Indexed: 11/05/2022]
Abstract
The impact of light intensity on the degree of conversion (DC), rate of polymerization and network structure was investigated for hydrophobic and hydrophilic dental adhesive resins. Two and three component photoinitiating (PI) systems were used in this study. Low light intensities had a negative impact on the polymerization efficiency for the hydrophilic resin with 2 component PI system. Incorporation of iodonium salt in the hydrophilic resin significantly improved the polymerization efficiency of the HEMA/BisGMA system and led to a substantial DC, even at low light intensities. The results suggested that shorter polymer chains were formed in the presence of iodonium salt. It appears that there is little or no impact of light intensity on the polymer structure of the 2 component PI system. Light intensity has subtle impact on the polymer structure of the 3 component PI system. In the case of the hydrophobic resin, the polymer is so highly cross-linked that the presence of shorter chains for the 3 component PI system does not cause a decrease in the glass transition temperature (Tg ) when compared to the 2 component PI system. For the hydrophilic resin, the presence of shorter polymer chains in the 3 component PI system reduces the Tg when compared with the corresponding 2 component PI system. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1666-1678, 2016.
Collapse
Affiliation(s)
- Farhana Abedin
- Bioengineering Graduate Program, The University of Kansas, Lawrence, Kansas, 66045.,Bioengineering Research Center, The University of Kansas, Lawrence, Kansas, 66045
| | - Qiang Ye
- Bioengineering Research Center, The University of Kansas, Lawrence, Kansas, 66045.
| | - Kyle Camarda
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas, 66045
| | - Paulette Spencer
- Bioengineering Research Center, The University of Kansas, Lawrence, Kansas, 66045.,Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas, 66045
| |
Collapse
|
32
|
Soares DG, Brito CA, Tavares da Silva RHB, Ribeiro APD, Hebling J, de Souza Costa CA. Cytocompatibility of HEMA-free resin-based luting cements according to application protocols on dentine surfaces. Int Endod J 2015; 49:551-60. [DOI: 10.1111/iej.12479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/05/2015] [Indexed: 12/23/2022]
Affiliation(s)
- D. G. Soares
- Department of Physiology and Pathology; Araraquara School of Dentistry; Universidade Estadual Paulista - UNESP; Araraquara São Paulo Brazil
| | - C. A. Brito
- Department of Dentistry; Paulista University; Goiânia Goiás Brazil
| | - R. H. B. Tavares da Silva
- Department of Dental Materials and Prosthodontics; Araraquara School of Dentistry; Universidade Estadual Paulista - UNESP; Araraquara São Paulo Brazil
| | - A. P. D. Ribeiro
- Department of Dentistry; Federal University of Brasilia, Brasilia; Campus Universitario Darcy Ribeiro; Brazilia Brazil
| | - J. Hebling
- Department of Orthodontics and Pediatric Dentistry; Araraquara School of Dentistry; Universidade Estadual Paulista - UNESP; Araraquara São Paulo Brazil
| | - C. A. de Souza Costa
- Department of Physiology and Pathology; Araraquara School of Dentistry; Universidade Estadual Paulista - UNESP; Araraquara São Paulo Brazil
| |
Collapse
|
33
|
Ge X, Ye Q, Song L, Misra A, Spencer P. Visible-Light Initiated Free-Radical/Cationic Ring-Opening Hybrid Photopolymerization of Methacrylate/Epoxy: Polymerization Kinetics, Crosslinking Structure, and Dynamic Mechanical Properties. MACROMOL CHEM PHYS 2015; 216:856-872. [PMID: 28713208 PMCID: PMC5507371 DOI: 10.1002/macp.201400506] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.
Collapse
Affiliation(s)
- Xueping Ge
- Bioengineering Research Center, School of Engineering, University of Kansas, Lawrence 66045, KS, USA
| | - Qiang Ye
- Bioengineering Research Center, School of Engineering, University of Kansas, Lawrence 66045, KS, USA
| | - Linyong Song
- Bioengineering Research Center, School of Engineering, University of Kansas, Lawrence 66045, KS, USA
| | - Anil Misra
- Bioengineering Research Center, School of Engineering, University of Kansas, Lawrence 66045, KS, USA Department of Civil Engineering, University of Kansas, Lawrence 66045, KS, USA
| | - Paulette Spencer
- Bioengineering Research Center, School of Engineering, University of Kansas, Lawrence 66045, KS, USA Department of Mechanical Engineering, University of Kansas, Lawrence 66045, KS, USA
| |
Collapse
|
34
|
Leme AA, Vidal CMP, Hassan LS, Bedran-Russo AK. Potential role of surface wettability on the long-term stability of dentin bonds after surface biomodification. J Biomech 2015; 48:2067-71. [PMID: 25869721 DOI: 10.1016/j.jbiomech.2015.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/17/2015] [Accepted: 03/13/2015] [Indexed: 11/16/2022]
Abstract
Degradation of the adhesive interface contributes to the failure of resin composite restorations. The hydrophilicity of the dentin matrix during and after bonding procedures may result in an adhesive interface that is more prone to degradation over time. This study assessed the effect of chemical modification of the dentin matrix on the wettability and the long-term reduced modulus of elasticity (Er) of adhesive interfaces. Human molars were divided into groups according to the priming solutions: distilled water (control), 6.5% Proanthocyanidin-rich grape seed extract (PACs), 5.75% 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/1.4% n-hydroxysuccinimide (EDC/NHS) and 5% Glutaraldehyde (GA). The water-surface contact angle was assessed before and after chemical modification of the dentin matrix. The demineralized dentin surface was treated with the priming solutions and restored with One Step Plus (OS) and Single Bond Plus (SB) and resin composite. Er of the adhesive, hybrid layer and underlying dentin was evaluated after 24h and 30 months in artificial saliva. The dentin hydrophilicity significantly decreased after application of the priming solutions. Aging significantly decreased Er in the hybrid layer and underlying dentin of control groups. Er of GA groups remained stable over time at the hybrid layer and underlying dentin. Significant higher Er was observed for PACs and EDC/NHS groups at the hybrid layer after 24h. The decreased hydrophilicity of the modified dentin matrix likely influence the immediate mechanical properties of the hybrid layer. Dentin biomodification prevented substantial aging at the hybrid layer and underlying dentin after 30 months storage.
Collapse
Affiliation(s)
- Ariene A Leme
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cristina M P Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lina Saleh Hassan
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
35
|
Abedin F, Ye Q, Parthasarathy R, Misra A, Spencer P. Polymerization behavior of hydrophilic-rich phase of dentin adhesive. J Dent Res 2015; 94:500-7. [PMID: 25576471 DOI: 10.1177/0022034514565646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The 2-fold objectives of this study were 1) to understand whether model hydrophobic- and hydrophilic-rich phase mimics of dentin adhesive polymerize similarly and 2) to determine which factor, the dimethacrylate component, bisphenol A glycerolate dimethacrylate (BisGMA) or photoinitiator concentration, has greater influence on the polymerization of the hydrophilic-rich phase mimic. Current dentin adhesives are sensitive to moisture, as evidenced by nanoleakage in the hybrid layer and phase separation into hydrophobic- and hydrophilic-rich phases. Phase separation leads to limited availability of the cross-linkable dimethacrylate monomer and hydrophobic photoinitiators within the hydrophilic-rich phase. Model hydrophobic-rich phase was prepared as a single-phase solution by adding maximum wt% deuterium oxide (D2O) to HEMA/BisGMA neat resins containing 45 wt% 2-hydroxyethyl methacrylate (HEMA). Mimics of the hydrophilic-rich phase were prepared similarly but using HEMA/BisGMA neat resins containing 95, 99, 99.5, and 100 wt% HEMA. The hydrophilic-rich mimics were prepared with standard or reduced photoinitiator content. The photoinitiator systems were camphorquinone (CQ)/ethyl 4-(dimethylamino)benzoate (EDMAB) with or without [3-(3, 4-dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-2-hydroxypropyl]trimethylammonium chloride (QTX). The polymerization kinetics was monitored using a Fourier transform infrared spectrophotometer with a time-resolved collection mode. The hydrophobic-rich phase exhibited a significantly higher polymerization rate compared with the hydrophilic-rich phase. Postpolymerization resulting in the secondary rate maxima was observed for the hydrophilic-rich mimic. The hydrophilic-rich mimics with standard photoinitiator concentration but varying cross-linker (BisGMA) content showed postpolymerization and a substantial degree of conversion. In contrast, the corresponding formulations with reduced photoinitiator concentrations exhibited lower polymerization and inhibition/delay of postpolymerization within 2 h. Under conditions relevant to the wet, oral environment, photoinitiator content plays an important role in the polymerization of the hydrophilic-rich phase mimic. Since the hydrophilic-rich phase is primarily water and monomethacrylate monomer (e.g., HEMA as determined previously), substantial polymerization is important to limit the potential toxic response from HEMA leaching into the surrounding tissues.
Collapse
Affiliation(s)
- F Abedin
- Bioengineering Research Center, University of Kansas, Lawrence, KS, USA Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | - Q Ye
- Bioengineering Research Center, University of Kansas, Lawrence, KS, USA
| | - R Parthasarathy
- Bioengineering Research Center, University of Kansas, Lawrence, KS, USA
| | - A Misra
- Bioengineering Research Center, University of Kansas, Lawrence, KS, USA Department of Civil Engineering, University of Kansas, Lawrence, KS, USA
| | - P Spencer
- Bioengineering Research Center, University of Kansas, Lawrence, KS, USA Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
36
|
One-pot synthesis of antibacterial monomers with dual biocidal modes. J Dent 2014; 42:1078-95. [PMID: 24930871 DOI: 10.1016/j.jdent.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The present study reported a method for preparing a blend of antibacterial quaternary ammonium silanes and quaternary ammonium methacryloxy silane (QAMS) based on the sol-gel reaction between dimethyldiethoxy silane and two trialkoxysilanes, one with an antibacterial quaternary ammonium functionality and the other with a methacryloxy functionality. METHODS Reaction products of the sol-gel reaction were characterised by direct infusion mass spectrometry, FTIR and proton, carbon and silicon NMR. This blend of monomers was incorporated into an experimental universal adhesive for evaluation of antimicrobial activity against Streptococcus mutans biofilms, microtensile bond strength and cytotoxicty. Retention of quaternary ammonium species on polymerised adhesive, leaching of these species from the adhesive and the ability of resin-dentine interfaces to inhibit S. mutans biofilms were evaluated over a 3-month water-ageing period. RESULTS The antibacterial adhesive version killed bacteria in S. mutans biofilms not only through the release of non-copolymerisable quaternary ammonium silane species (release-killing), but also via immobilised quaternary ammonium methacryloxy silane that are copolymerised with adhesive resin comonomers (contact-killing). Contact-killing was retained after water-ageing. The QAMS-containing universal adhesive has similar tensile bond strength as the control and two commercially available universal adhesives, when it was used for bonding to dentine in the etch-and-rinse mode and self-etching mode. Incorporation of the antimicrobial quaternary ammonium species blend did not adversely affect the cytotoxicity of the universal adhesive formulation. CONCLUSIONS Instead of using quaternary ammonium dimethacrylates and nanosilver, an alternative bimodal antimicrobial strategy for formulating antimicrobial universal dentine adhesives is achieved using the one-pot sol-gel synthesis scheme. CLINICAL SIGNIFICANCE The QAMS containing universal dentine adhesives with dual antimicrobial activity is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.
Collapse
|