1
|
Feng W, Qian Y. Biodegradable fluorescent protein chromophore nanoparticles for hypoxic two-photon photodynamic therapy. Biomater Sci 2024; 12:6123-6135. [PMID: 39441648 DOI: 10.1039/d4bm01162g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this paper, biodegradable red fluorescent protein (RFP) chromophore analogue DPFP-SS-FA nanoparticles were synthesized for hypoxic two-photon photodynamic therapy. The maximum emission wavelength of DPFP-SS-FA is in the red-to-near-infrared region at 674 nm. Interestingly, these DPFP-SS-FA nanoparticles remain stable under physiological conditions, but deplete glutathione and disintegrate into the RFP chromophore analogue monomer in the tumor microenvironment. Meanwhile, electron paramagnetic resonance data have shown that DPFP-SS-FA produced enhanced 1O2/O2˙- signals after glutathione depletion causing an enhanced PDT effect. DPFP-SS-FA has negligible cell dark toxicity and high phototoxicity in hypoxic environments, indicating the outstanding hypoxia-overcoming ability of DPFP-SS-FA. In addition, due to its folic acid receptor and lysosome dual-targeting ability, DPFP-SS-FA is highly enriched in A-549 tumor cells. In particular, the hypoxic two-photon photodynamic therapy mediated by DPFP-SS-FA nanoparticles was validated in a zebrafish tumor model. Under 800 nm two-photon excitation, DPFP-SS-FA enabled bright two-photon fluorescence imaging and significantly inhibited the growth of tumor cells in zebrafish. The biodegradable DPFP-SS-FA nanoparticles reasonably constructed in this study can serve as excellent candidates for efficient hypoxic two-photon photosensitizers to treat deep tumor tissues.
Collapse
Affiliation(s)
- Wan Feng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Zhang H, Li L, Li W, Yin H, Wang H, Ke X. Endosomal pH, Redox Dual-Sensitive Prodrug Micelles Based on Hyaluronic Acid for Intracellular Camptothecin Delivery and Active Tumor Targeting in Cancer Therapy. Pharmaceutics 2024; 16:1327. [PMID: 39458656 PMCID: PMC11511143 DOI: 10.3390/pharmaceutics16101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: CPT is a pentacyclic monoterpene alkaloid with a wide spectrum of antitumor activity. Its clinical application is restricted due to poor water solubility, instability, and high toxicity. We developed a new kind of multifunctional micelles to improve its solubility, reduce the side effecs, and obtain enhanced antitumor effects. Methods: We constructed HA-CPT nano-self-assembly prodrug micelles, which combined the advantages of pH-sensitivity, redox-sensitivity, and active targeting ability to CD44 receptor-overexpressing cancer cells. To synthesize dual sensitive HA-CPT conjugates, CPT was conjugated with HA by pH-sensitive histidine (His) and redox-sensitive 3,3'-dithiodipropionic acid (DTPA). In vitro, we studied the cellular uptake and antitumor effect for tumor cell lines. In vivo, we explored the bio-distribution and antitumor effects of the micelles in HCT 116 tumor bearing nude mice. Results: The dual-sensitive and active targeting HA-His-ss-CPT micelles was proved to be highly efficient in CPT delivery by the in vitro cellular uptake study. The HA-His-ss-CPT micelles escaped from endosomes of tumor cells within 4 h after cellular uptake due to the proton sponge effect of the conjugating His and then quickly released CPT in the cytosol by glutathione (GSH). In mice, HA-His-ss-CPT micelles displayed efficient tumor accumulation and conspicuous inhibition of tumor growth. Conclusions: The novel, dual-sensitive, active targeting nano-prodrug micelles exhibited high efficiency in drug delivery and cancer therapy. This "all in one" drug delivery system can be realized in an ingenious structure and avoid intricate synthesis. This construction strategy can illume the design of nanocarriers responding to endogenous stimuli in tumors.
Collapse
Affiliation(s)
- Huiping Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Liang Li
- Modern Tranditional Chinese Medicine Research Institute, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222000, China;
| | - Wei Li
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Hongxia Yin
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Huiyun Wang
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Xue Ke
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
4
|
Shao L, Liu D, Liu X, Wang X, Yang X, Niu R, Yin S, Xu P, Mao Y, Du X, Yang L. Glucose oxidase and MnO 2 functionalized liposome for catalytic radiosensitization enhanced synergistic breast cancer therapy. Biomed Pharmacother 2024; 179:117402. [PMID: 39243428 DOI: 10.1016/j.biopha.2024.117402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
In recent years, the integration of radiotherapy and nanocatalytic medicine has gained widespread attention in the treatment of breast cancer. Herein, the glucose oxidase (GOx) and MnO2 nanoparticles co-modified multifunctional liposome of GOx-MnO2@Lip was constructed for enhanced radiotherapy. Introduction of GOx would not only elevate the glucose consumption to starve the cancer cells, but also increased the endogenous H2O2 level. Meanwhile, high intracellular GSH concentration facilitated the release of Mn2+ to amplify the cytotoxic ·OH through cascade catalytic reactions within the tumor microenvironment, resulting in a favorable tumor suppression rate of 74.45 %. Furthermore, the blood biochemical and blood routine demonstrated that GOx-MnO2@Lip had no obvious toxic side effects. Therefore, this work provided a potential vehicle for synergistic cancer starving therapy, chemodynamic therapy and radiotherapy for improving therapeutic efficacy of breast cancer.
Collapse
Affiliation(s)
- Lihua Shao
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Dun Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xuexue Liu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Xian Yang
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Runyan Niu
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Shaoping Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yonghuan Mao
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xiao Du
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Lin Yang
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Li QY, Zhu RR, Yu HY, Liu CL, Diao FY, Jiang YQ, Lin YQ, Li XT, Wang WJ. Multifunctional targeting of docetaxel plus bakuchiol micelles in the treatment of invasion and metastasis of ovarian cancer. Biomed Mater 2024; 19:065002. [PMID: 39208838 DOI: 10.1088/1748-605x/ad7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The invasion and metastasis of tumors pose significant challenges in the treatment of ovarian cancer (OC), making it difficult to cure. One potential treatment approach that has gained attention is the use of matrix metalloproteinase reactive controlled release micelle preparations. In this study, we developed a novel PEG5000-PVGLIG-hyaluronic acid docetaxel/bakuchiol (PP-HA-DTX/BAK) micelles formulation with desirable characteristics such as particle size, narrow polydispersity index, and a ZETA potential of approximately -5 mV. The surface modification with HA facilitates tumor penetration into the tumor interior, while the incorporation of DSPE-PEG2000-PVGLIG-PEG5000helps conceal DSPE-PEG2000-HA, reducing off-target effects and prolonging drug circulation timein vivo. Bothin vitroandin vivoexperiments demonstrated that these micelles effectively inhibit proliferation, invasion, and metastasis of OC cells while promoting apoptosis. Therefore, our findings suggest that PP-HA-DTX/BAK micelles represent a safe and effective therapeutic strategy for treating OC.
Collapse
Affiliation(s)
- Qi-Yan Li
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ri-Ran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong 250011, People's Republic of China
| | - Hai-Ying Yu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Chun-Lin Liu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Fei-Yan Diao
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ya-Qi Jiang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Yong-Qiang Lin
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Xue-Tao Li
- Liaoning University of Traditional Chinese Medicine, School of Pharmacy, Dalian 116600, People's Republic of China
| | - Wei-Jian Wang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| |
Collapse
|
6
|
Li Y, Fu J, Hou H, Tang W, Liu Z, Gao D, Zhao F, Gao X, Sun F, Tan H. Chondroitin sulfate-modified antiangiogenic peptide conjugate induces cell apoptosis via the mitochondria-mediated pathway to perform antitumor activity. Int J Biol Macromol 2024; 262:129671. [PMID: 38423906 DOI: 10.1016/j.ijbiomac.2024.129671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Tumor growth and metastasis heavily rely on angiogenesis, crucial for solid tumor development. Inhibiting angiogenesis associated with tumors emerges as a potent therapeutic approach. Our previous work synthesized the chondroitin sulfate-modified antiangiogenic peptide CS-ES2-AF (CS-EA), which exhibited better antiangiogenic activity, longer half-life, and more robust targeting. In this work, we further evaluated the stability in vitro, cellular uptake mechanism, cell apoptosis mechanism, antitumor activity in vivo, and safety of CS-EA. The stability of CS-EA was consistently superior to that of EA at different temperatures and in different pH ranges. Furthermore, CS-EA mainly entered EAhy926 cells through the clathrin-mediated endocytosis pathway. CS-EA inhibited endothelial cell proliferation, and induced cell apoptosis through downregulating the Bcl-2, reducing mitochondria membrane potential, upregulating cytochrome c, Caspase 3, and reactive oxygen species levels. CS-EA showed better antitumor activity in the B16 xenografted tumor model, with a tumor inhibition rate 1.92 times higher than EA. Simultaneously, it was observed that CS-EA did not cause any harmful effects on the vital organs of the mice. These findings indicate that CS-EA holds significant promise for the treatment of tumors.
Collapse
Affiliation(s)
- Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - XinQing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China.
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Antoniraj MG, Dhayanandamoorthy Y, Ponnuchamy K, Kandasamy R, Pandima Devi K. Study the anticancer efficacy of doxorubicin-loaded redox-responsive chitosan-derived nanoparticles in the MDA-MB-231 cell line. Carbohydr Res 2024; 536:109049. [PMID: 38346357 DOI: 10.1016/j.carres.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
This study focuses on the design and evaluation of redox-responsive nanoparticles (NPs) by synthesizing disulfide-containing N-phthaloyl chitosan-SS-methoxy poly(ethylene glycol) (NPC-SS-mPEG) and incorporating the anti-cancer drug doxorubicin into the NPs. The structural features of NPC-SS-mPEG were investigated using FTIR, NMR, XRD, and TGA/DTA analysis. DLS and TEM analysis confirmed the particle size and morphology of the NPs. The stability of the NPs was measured with the presence and absence of glutathione (GSH) in buffers pH 5 and 7.4. Furthermore, the release of DOX from the NPs was studied in GSH (10 mM) containing/absent medium at pH 5 and pH 7.4 which mimics the intracellular environment with redox potential. The results indicated a significantly increased release of DOX in the GSH containing medium pH 5 (82.9 ± 2.1 %) and pH 7.4 (67.37 ± 0.88 %) compared to the GSH free pH 7.4 (29.99 ± 1.01 %) and pH 5 medium (56.56 ± 1.7 %) at 60 h. The cytotoxicity study in the MDA-MB-231 breast cancer cell line by MTT assay indicated higher toxicity of redox-responsive NPs to cancer cells than free DOX. In concurrence with the cytotoxicity assay, in-vitro fluorescence staining assays (AO/EB, Hoechst, ROS generation) also confirmed that NPs loaded with DOX induce higher toxicity to cancer cells than free DOX. Taken together, the overall results confirmed the superiority of the redox response-mediated release of DOX in effectively controlling cancer progression.
Collapse
Affiliation(s)
- Mariya Gover Antoniraj
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, Tamil Nadu, India.
| | - Yamini Dhayanandamoorthy
- Laboratory of Pulmonary Research, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE), University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Laboratory of Pulmonary Research, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE), University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
8
|
Zhu Y, Wu M, Miao X, Wang B, He J, Qiu X. Delivery of paclitaxel by carboxymethyl chitosan-functionalized dendritic fibrous nano-silica: Fabrication, characterization, controlled release performance and pharmacokinetics. Int J Biol Macromol 2024; 256:128431. [PMID: 38029896 DOI: 10.1016/j.ijbiomac.2023.128431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
In this study, carboxymethyl chitosan (CMCS) with excellent biocompatibility was used as the "gatekeeper" to design and fabricate a pH-responsive drug delivery system (CMCS-DFNS) as paclitaxel carriers. Characterization results showed that CMCS-DFNS was successfully prepared and the nanocarriers displayed excellent drug loading efficiency of 19.8 %, and the results of the adsorption mechanism revealed that the adsorption of PTX was consistent with the Freundlich isotherm and pseudo-second-order kinetic model. Furthermore, the pH-responsive controlled release behavior at different pH (pH = 7.4, 6.5, and 5.0) was evaluated, and the results demonstrated that the cumulative release at pH 5.0 was 58.8 %, which was 2.7 times higher than that at pH 7.4, suggesting that the carrier exhibited a good pH sensitivity. The results of in vitro cellular experiments further indicated that CMCS-DFNS significantly improved the drug uptake efficiency in breast cancer MCF-7 cells. Importantly, the results of in vivo and cellular pharmacokinetic revealed that CMCS-DFNS can improve the circulation time and enhance the relative bioavailability of paclitaxel. Therefore, the fabricated pH-responsive drug delivery system has potential applications in the delivery of anti-tumor drugs, and provides a new delivery pathway for other compounds with low bioavailability.
Collapse
Affiliation(s)
- Yameng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengxuan Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinxin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boyao Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xilong Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Li Y, Hou H, Liu Z, Tang W, Wang J, Lu L, Fu J, Gao D, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. CD44 targeting nanodrug based on chondroitin sulfate for melanoma therapy by inducing mitochondrial apoptosis pathways. Carbohydr Polym 2023; 320:121255. [PMID: 37659829 DOI: 10.1016/j.carbpol.2023.121255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Neovascularization is crucial to the occurrence and progression of tumors, and the development of antiangiogenic drugs has essential theoretical value and clinical significance. However, antiangiogenesis therapy alone cannot meet the needs of tumor therapy. Meanwhile, polysaccharides are ideal drug carriers with promising applications in drug modification and delivery. In this research, we developed a novel redox and acid sensitive nanodrug (CDDP-CS-Cys-EA, CCEA) composed of chondroitin sulfate (CS), antiangiogenic peptide (endostatin2-alft1, EA) and chemotherapeutic drug (cisplatin, CDDP). CCEA exhibited redox and acid responsiveness, better blood hemocompatibility (hemolysis rate < 5 %), the ability to target tumors (CD44-mediated endocytosis), and strong antiangiogenesis and antitumor characteristics in vitro. Moreover, CCEA showed excellent antitumor activity and low toxicity in B16 xenograft mice. It also has been confirmed that CCEA induced tumor cell apoptosis through promoting the expression of Bax, suppressing the expression of Bcl-2, decreasing mitochondrial membrane potential, releasing cytochrome C (Cyto C), and enhancing the activities of Caspase 9 and Caspase 3. The results of this paper provided a theoretical basis and insight for the development of antitumor drugs.
Collapse
Affiliation(s)
- Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - XinQing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China.
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
10
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
11
|
Liu Z, Chen X, Jin Q, Li M, Zhu S, Zhang Y, Zhi D, Zhao Y, Li L, Zhang S. Dual functionalized hyaluronic acid micelles loading paclitaxel for the therapy of breast cancer. Front Bioeng Biotechnol 2023; 11:1230585. [PMID: 37600308 PMCID: PMC10436080 DOI: 10.3389/fbioe.2023.1230585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Although many carriers for the delivery of chemotherapeutic drugs have been investigated, the disadvantages of passive targeting and uncontrolled drug release limit their utility. Herein, hyaluronic acid (HA) was hydrophobically modified to serve as a carrier for binding to cluster determinant 44 (CD44) overexpressed on tumor cell surfaces. Specifically, after deacetylation, HA was grafted to dodecylamine or tetradecylamine to afford amphiphilic zwitterionic polymer micelles, designated dHAD and dHAT, respectively, for the delivery of paclitaxel (PTX). The micelles were negatively charged at pH 7.4 and positively charged at pH 5.6, and this pH sensitivity facilitated PTX release under acidic conditions. The cell uptake efficiencies of the dHAD-PTX and dHAT-PTX micelles by MCF-7 cells after 4 h of incubation were 96.9% and 95.4%, respectively, and their affinities for CD44 were twice that of HA. Furthermore, the micelles markedly inhibited tumor growth both in vitro and in vivo, with IC50 values of 1.943 μg/mL for dHAD-PTX and 1.874 μg/mL for dHAT-PTX for MCF-7 cells; the tumor inhibition rate of dHAD-PTX (92.96%) was higher than that of dHAT-PTX (78.65%). Importantly, dHAD and dHAT micelles showed negligible systemic toxicity. Our findings suggest that these micelles are promising delivery vehicles for antitumor drugs.
Collapse
Affiliation(s)
- Zhanbiao Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Min Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| |
Collapse
|
12
|
Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:315-339. [PMID: 37501794 PMCID: PMC10369497 DOI: 10.1021/cbmi.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 07/29/2023]
Abstract
Iron oxide nanoparticles (IONPs) possess unique magnetism and good biocompatibility, and they have been widely applied as contrast agents (CAs) for magnetic resonance imaging (MRI). Traditional CAs typically show a fixed enhanced signal, thus exhibiting the limitations of low sensitivity and a lack of specificity. Nowadays, the progress of stimulus-responsive IONPs allows alteration of the relaxation signal in response to internal stimuli of the tumor, or external stimuli, thus providing an opportunity to overcome those limitations. This review summarizes the current status of smart IONPs as tumor imaging MRI CAs that exhibit responsiveness to endogenous stimuli, such as pH, hypoxia, glutathione, and enzymes, or exogenous stimuli, such as magnets, light, and so on. We discuss the challenges and future opportunities for IONPs as MRI CAs and comprehensively illustrate the applications of these stimuli-responsive IONPs. This review will help provide guidance for designing IONPs as MRI CAs and further promote the reasonable design of magnetic nanoparticles and achieve early and accurate tumor detection.
Collapse
Affiliation(s)
- Zhenzhen Li
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ru Bai
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Jia Yi
- Guangdong
Provincial Development and Reform Commission, Guangzhou 510031, China
| | - Huige Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Junfang Xian
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
13
|
Xiao P, Tao X, Wang H, Liu H, Feng Y, Zhu Y, Jiang Z, Yin T, Zhang Y, He H, Gou J, Tang X. Enzyme/pH dual stimuli-responsive nanoplatform co-deliver disulfiram and doxorubicin for effective treatment of breast cancer lung metastasis. Expert Opin Drug Deliv 2023; 20:1015-1031. [PMID: 37452715 DOI: 10.1080/17425247.2023.2237888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES Metastasis is still one of the main obstacles in the treatment of breast cancer. This study aimed to develop disulfiram (DSF) and doxorubicin (DOX) co-loaded nanoparticles (DSF-DOX NPs) with enzyme/pH dual stimuli-responsive characteristics to inhibit breast cancer metastasis. METHODS DSF-DOX NPs were prepared using the amphiphilic poly(ε-caprolactone)-b-poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) (PCL-b-PGlu-g-mPEG) copolymer by a classical dialysis method. In vitro release tests, in vitro cytotoxicity assay, and anti-metastasis studies were conducted to evaluate pH/enzyme sensitivity and therapeutic effect of DSF-DOX NPs. RESULTS The specific pH and enzyme stimuli-responsiveness of DSF-DO NPs can be attributed to the transformation of secondary structure and the degradation of amide bonds in the PGlu segment, respectively. This accelerated drug release significantly increased the cytotoxicity to 4T1 cells. Compared with the control group, the DSF-DOX NPs showed a strong inhibition of in vitro metastasis with a wound healing rate of 36.50% and a migration rate of 18.39%. Impressively, in vivo anti-metastasis results indicated that the metastasis of 4T1 cells was almost completely suppressed by DSF-DOX NPs. CONCLUSION DSF-DOX NPs with controllable tumor site delivery of DOX and DSF were a prospectively potential strategy for metastatic breast cancer treatment.
Collapse
Affiliation(s)
- Peifu Xiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoguang Tao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongbing Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yueqi Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhengzhen Jiang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
14
|
Sun T, Jiang C. Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Adv Drug Deliv Rev 2023; 196:114773. [PMID: 36906230 DOI: 10.1016/j.addr.2023.114773] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Drug delivery systems (DDS) triggered by local microenvironment represents the state-of-art of nanomedicine design, where the triggering hallmarks at intracellular and subcellular levels could be employed to exquisitely recognize the diseased sites, reduce side effects, and expand the therapeutic window by precisely tailoring the drug-release kinetics. Though with impressive progress, the DDS design functioning at microcosmic levels is fully challenging and underexploited. Here, we provide an overview describing the recent advances on stimuli-responsive DDSs triggered by intracellular or subcellular microenvironments. Instead of focusing on the targeting strategies as listed in previous reviews, we herein mainly highlight the concept, design, preparation and applications of stimuli-responsive systems in intracellular models. Hopefully, this review could give useful hints in developing nanoplatforms proceeding at a cellular level.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
15
|
Abbasi YF, Bera H, Cun D, Yang M. Recent advances in pH/enzyme-responsive polysaccharide-small-molecule drug conjugates as nanotherapeutics. Carbohydr Polym 2023; 312:120797. [PMID: 37059536 DOI: 10.1016/j.carbpol.2023.120797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Now-a-days, the polysaccharides are extensively employed for the delivery of small-molecule drugs ascribed to their excellent biocompatibility, biodegradability and modifiability. An array of drug molecules is often chemically conjugated with different polysaccharides to augment their bio-performances. As compared to their therapeutic precursors, these conjugates could typically demonstrate an improved intrinsic solubility, stability, bioavailability and pharmacokinetic profiles of the drugs. In current years, various stimuli-responsive particularly pH and enzyme-sensitive linkers or pendants are also exploited to integrate the drug molecules into the polysaccharide backbone. The resulting conjugates could experience a rapid molecular conformational change upon exposure to the microenvironmental pH and enzyme changes of the diseased states, triggering the release of the bioactive cargos at the targeted sites and eventually minimize the systemic side effects. Herein, the recent advances in pH and enzyme -responsive polysaccharide-drug conjugates and their therapeutic benefits are systematically reviewed, following a brief description on the conjugation chemistry of the polysaccharides and drug molecules. The challenges and future perspectives of these conjugates are also precisely discussed.
Collapse
|
16
|
Zhang M, Ma H, Wang X, Yu B, Cong H, Shen Y. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J Control Release 2023; 354:167-187. [PMID: 36581260 DOI: 10.1016/j.jconrel.2022.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Polysaccharide-based nanocarriers (PBNs) are the focus of extensive investigation because of their biocompatibility, low cost, wide availability, and chemical versatility, which allow a wide range of anticancer agents to be loaded within the nanocarriers. Similar to other nanocarriers, most PBNs are designed to extravasate out of tumor vessels, depending on the enhanced permeability and retention (EPR) effect. However, the EPR effect is compromised in some tumors due to the heterogeneity of tumor structures. Transvascular transport efficacy is decreased by complex blood vessels and condensed tumor stroma. The limited extravasation impedes efficient drug delivery into tumor parenchyma, and thus affects the subsequent tumor accumulation, which hinders the therapeutic effect of PBNs. Therefore, overcoming the biological barriers that restrict extravasation from tumor vessels is of great importance in PBN design. Many strategies have been developed to enhance the EPR effect that involve nanocarrier property regulation and tumor structure remodeling. Moreover, some researchers have proposed active transcytosis pathways that are complementary to the paracellular EPR effect to increase the transvascular extravasation efficiency of PBNs. In this review, we summarize the recent advances in the design of PBNs with enhanced transvascular transport to enable optimization of PBNs in the extravasation of the drug delivery process. We also discuss the obstacles and challenges that need to be addressed to clarify the transendothemial mechanism of PBNs and the potential interactions between extravasation and other drug delivery steps.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - He Ma
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xijie Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart" drug delivery: A window to future of translational medicine. Front Chem 2023; 10:1095598. [PMID: 36688039 PMCID: PMC9846181 DOI: 10.3389/fchem.2022.1095598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy is the mainstay of cancer treatment today. Chemotherapeutic drugs are non-selective and can harm both cancer and healthy cells, causing a variety of adverse effects such as lack of specificity, cytotoxicity, short half-life, poor solubility, multidrug resistance, and acquiring cancer stem-like characteristics. There is a paradigm shift in drug delivery systems (DDS) with the advent of smarter ways of targeted cancer treatment. Smart Drug Delivery Systems (SDDSs) are stimuli responsive and can be modified in chemical structure in response to light, pH, redox, magnetic fields, and enzyme degradation can be future of translational medicine. Therefore, SDDSs have the potential to be used as a viable cancer treatment alternative to traditional chemotherapy. This review focuses mostly on stimuli responsive drug delivery, inorganic nanocarriers (Carbon nanotubes, gold nanoparticles, Meso-porous silica nanoparticles, quantum dots etc.), organic nanocarriers (Dendrimers, liposomes, micelles), antibody-drug conjugates (ADC) and small molecule drug conjugates (SMDC) based SDDSs for targeted cancer therapy and strategies of targeted drug delivery systems in cancer cells.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meheli Adhikary
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Praveen Kumar Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C. Das
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Seema Bhatnagar,
| |
Collapse
|
18
|
Arellano-Galindo L, Villar-Alvarez E, Varela A, Figueroa V, Fernandez-Vega J, Cambón A, Prieto G, Barbosa S, Taboada P. Hybrid Gold Nanorod-Based Nanoplatform with Chemo and Photothermal Activities for Bimodal Cancer Therapy. Int J Mol Sci 2022; 23:13109. [PMID: 36361892 PMCID: PMC9659131 DOI: 10.3390/ijms232113109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2023] Open
Abstract
Metal nanoparticles (NPs), particularly gold nanorods (AuNRs), appear as excellent platforms not only to transport and deliver bioactive cargoes but also to provide additional therapeutic responses for diseased cells and tissues and/or to complement the action of the carried molecules. In this manner, here, we optimized a previous developed metal-based nanoplatform composed of an AuNR core surrounded by a polymeric shell constructed by means of the layer-by-layer approach, and in which very large amounts of the antineoplasic drug doxorubicin (DOXO) in a single loading step and targeting capability thanks to an outer hyaluronic acid layer were incorporated by means of an optimized fabrication process (PSS/DOXO/PLL/HA-coated AuNRs). The platform retained its nanometer size with a negative surface charge and was colloidally stable in a range of physiological conditions, in which only in some of them some particle clustering was noted with no precipitation. In addition, the dual stimuli-responsiveness of the designed nanoplatform to both endogenous proteases and external applied light stimuli allows to perfectly manipulate the chemodrug release rates and profiles to achieve suitable pharmacodynamics. It was observed that the inherent active targeting abilities of the nanoplatfom allow the achievement of specific cell toxicity in tumoral cervical HeLa cells, whilst healthy ones such as 3T3-Balb fibroblast remain safe and alive in agreement with the detected levels of internalization in each cell line. In addition, the bimodal action of simultaneous chemo- and photothermal bioactivity provided by the platform largely enhances the therapeutic outcomes. Finally, it was observed that our PSS/DOXO/PLL/HA-coated AuNRs induced cell mortality mainly through apoptosis in HeLa cells even in the presence of NIR light irradiation, which agrees with the idea of the chemo-activity of DOXO predominating over the photothermal effect to induce cell death, favoring an apoptotic pathway over necrosis for cell death.
Collapse
Affiliation(s)
- Lilia Arellano-Galindo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Villar-Alvarez
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Nanostructured Funtional Group, Catalonian Institute of Nanotechnology (ICN2), Universidad Autónoma de Barcelona Campus, Av. Serragalliners s/n, 08193 Barcelona, Spain
| | - Alejandro Varela
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valeria Figueroa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Ingeniería Química, CUCEI, Universidad de Guadalajara, Guadalajara 44100, Mexico
| | - Javier Fernandez-Vega
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gerardo Prieto
- Grupo de Biofísica e Interfases, Departamento de Física Aplicada, Facultad de Física, Instituto de Materiales (IMATUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B 2022; 12:4098-4121. [DOI: 10.1016/j.apsb.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
|
20
|
Li M, Zhao Y, Sun J, Chen H, Liu Z, Lin K, Ma P, Zhang W, Zhen Y, Zhang S, Zhang S. pH/reduction dual-responsive hyaluronic acid-podophyllotoxin prodrug micelles for tumor targeted delivery. Carbohydr Polym 2022; 288:119402. [PMID: 35450654 DOI: 10.1016/j.carbpol.2022.119402] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/15/2022]
Abstract
Polymer-based prodrug nanocarriers with tumor-targeting and controlled-release properties are in great demand for enhanced cancer treatment. Hyaluronic acid (HA), which has excellent biocompatibility and targeting ability for cluster determinant 44 (CD44), has been proposed for delivering drugs that have poor solubility and high toxicity. Herein, podophyllotoxin (PPT) was conjugated to HA via ester and disulfide linkages to construct a pH- and reduction-responsive prodrug (HA-S-S-PPT). The micelles self-assembled from HA-S-S-PPT prodrug efficiently accumulated at tumor site due to HA receptor-mediated endocytosis. HA-S-S-PPT micelles exhibited 33.1% higher cumulative release than HA-NH-CO-PPT micelles (sensitive only to pH) owing to their dual responsiveness to pH and reduction. HA-S-S-PPT micelles achieved excellent antitumor activity in vivo, with the tumor inhibition rate reaching 92%, significantly higher than that of HA-NH-CO-PPT micelles (65%), and negligible systemic toxicity. This controllable-targeting nanoparticle system provides a potential platform for clinical application of PPT.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Zhanbiao Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Kexin Lin
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
21
|
Behl A, Sarwalia P, Kumar S, Behera C, Mintoo MJ, Datta TK, Gupta PN, Chhillar AK. Codelivery of Gemcitabine and MUC1 Inhibitor Using PEG-PCL Nanoparticles for Breast Cancer Therapy. Mol Pharm 2022; 19:2429-2440. [PMID: 35639628 DOI: 10.1021/acs.molpharmaceut.2c00175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In breast cancer therapy, Gemcitabine (Gem) is an antineoplastic antimetabolite with greater anticancer efficacy and tolerability. However, effectiveness of Gem is limited by its off-target effects. The synergistic potential of MUC1 (mucin 1) inhibitors and Gem-loaded polymeric nanoparticles (NPs) was discussed in this work in order to reduce dose-related toxicities and enhance the therapeutic efficacy. The double emulsion solvent evaporation method was used to prepare poly(ethylene glycol) methyl ether-block-poly-caprolactone (PEG-PCL)-loaded Gem and MUC 1 inhibitor NPs. The average size of Gem and MUC 1 inhibitor-loaded NPs was 128 nm, with a spherical shape. Twin-loaded NPs containing Gem and the MUC1 inhibitor decreased IC50 and behaved synergistically. Furthermore, in vitro mechanistic studies, that is, loss of MMP, clonogenic assay, Annexin V FITC assay, and Western blotting to confirm apoptosis with simultaneous induction of autophagy using acridine orange (AO) staining were performed in this study. Furthermore, the investigated NPs upon combination exhibited greater loss of MMP and decreased clonogenic potential with simultaneous induction of autophagy in MCF-7 cells. Annexin V FITC clearly showed the percentage of apoptosis while Western blotting protein expression analysis revealed an increase in caspase-3 activity with simultaneous decrease in Bcl-2 protein expression, a hallmark of apoptosis. The effectiveness of the Ehrlich ascites solid (EAT) mice treated with Gem-MUC1 inhibitor NPs was higher than that of the animals treated alone. Overall, the combined administration of Gem and MUC1 inhibitor-loaded NPs was found to be more efficacious than Gem and MUC1 inhibitor delivered separately.
Collapse
Affiliation(s)
- Akanksha Behl
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sushil Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Chittaranjan Behera
- PK-PD Tox and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Mubashir Javed Mintoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Prem N Gupta
- PK-PD Tox and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Anil K Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| |
Collapse
|
22
|
pH-sensitive hyaluronic acid-targeted prodrug micelles constructed via a one-step reaction for enhanced chemotherapy. Int J Biol Macromol 2022; 206:489-500. [PMID: 35240214 DOI: 10.1016/j.ijbiomac.2022.02.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Although many chemotherapy prodrugs have been developed for tumor therapy, non-targeted delivery, uncontrolled release and tedious construction procedure of prodrugs still limit their clinical application in tumor treatment. In this work, hyaluronic acid (HA) which has tumor-targeting ability was used to conjugate to antitumor drug podophyllotoxin (PPT) to construct a pH-sensitive prodrug named HA-CO-O-PPT just via a one-step esterification reaction. The HA-CO-O-PPT spontaneously assembled into nano spherical micelles in aqueous medium, which had outstanding serum stability and blood compatibility. The obtained prodrug micelles (named HP micelles) exhibited a pH-responsive drug release mode with cumulative release reaching 81.2% due to their dissociation in response to acid stimulus, and had a high cellular uptake efficiency beyond 97% owing to HA receptor-mediated targeting. Furthermore, it was found that the prodrug micelles showed excellent antitumor activities in vivo with the tumor inhibition ratio up to 85% and negligible systemic toxicity. Accordingly, the pH-responsive HP micelles constructed by a simple one-step reaction, could be a promising candidate as a chemotherapeutic agent for cancer therapy.
Collapse
|
23
|
Collyer SE, Stack GD, Walsh JJ. Selective delivery of clinically approved tubulin binding agents through covalent conjugation to an active targeting moiety. Curr Med Chem 2022; 29:5179-5211. [DOI: 10.2174/0929867329666220401105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
The efficacy and tolerability of tubulin binding agents are hampered by their low specificity for cancer cells, like most clinically used anticancer agents. To improve specificity, tubulin binding agents have been covalently conjugated to agents which target cancer cells to give actively targeted drug conjugates. These conjugates are designed to increase uptake of the drug by cancer cells, while having limited uptake by normal cells thereby improving efficacy and tolerability.
Approaches used include attachment to small molecules, polysaccharides, peptides, proteins and antibodies that exploit the overexpression of receptors for these substances. Antibody targeted strategies have been the most successful to date with six such examples having gained clinical approval. Many other conjugate types, especially those targeting the folate receptor, have shown promising efficacy and toxicity profiles in pre-clinical models and in early-stage clinical studies. Presented herein is a discussion of the success or otherwise of the recent strategies used to form these actively targeted conjugates.
Collapse
Affiliation(s)
- Samuel E. Collyer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Gary D. Stack
- Department of Nursing and Healthcare, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - John J. Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Du J, Zong L, Li M, Yu K, Qiao Y, Yuan Q, Pu X. Two-Pronged Anti-Tumor Therapy by a New Polymer-Paclitaxel Conjugate Micelle with an Anti-Multidrug Resistance Effect. Int J Nanomedicine 2022; 17:1323-1341. [PMID: 35345783 PMCID: PMC8957348 DOI: 10.2147/ijn.s348598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cancerous tumors are still a major disease that threatens human life, with tumor multidrug resistance (MDR) being one of the main reasons for the failure of chemotherapy. Thus, reversing tumor MDR has become a research focus of medical scientists. Methods Here, a reduction-sensitive polymer prodrug micelle, mPEG-DCA-SS-PTX (PDSP), was manufactured with a new polymer inhibitor of drug resistance as a carrier to overcome MDR and improve the anti-tumor effect of PTX. Results The PDSP micelles display good stability, double-responsive drug release, and excellent biocompatibility. The PDSP micelles reduced the cytotoxicity of PTX to normal HL-7702 cells and enhanced that to SMMC-7721 and MCF-7 cells in vitro. Improved sensitivity of A549/ADR to PDSP was also observed in vitro. Furthermore, in vivo experiments show reduced systemic toxicity and enhanced therapeutic efficacy of PTX to H22 subcutaneous tumor-bearing mice. Conclusion This work proves that the reduction-sensitive polymer prodrug micelles carried by the new polymer inhibitor can be used as an alternative delivery system to target tumors and reverse MDR for paclitaxel and other tumor-resistant drugs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Lanlan Zong
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Mengmeng Li
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Keke Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yonghui Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Qi Yuan
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
25
|
Yadav N, Francis AP, Priya VV, Patil S, Mustaq S, Khan SS, Alzahrani KJ, Banjer HJ, Mohan SK, Mony U, Rajagopalan R. Polysaccharide-Drug Conjugates: A Tool for Enhanced Cancer Therapy. Polymers (Basel) 2022; 14:polym14050950. [PMID: 35267773 PMCID: PMC8912870 DOI: 10.3390/polym14050950] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most widespread deadly diseases, following cardiovascular disease, worldwide. Chemotherapy is widely used in combination with surgery, hormone and radiation therapy to treat various cancers. However, chemotherapeutic drugs can cause severe side effects due to non-specific targeting, poor bioavailability, low therapeutic indices, and high dose requirements. Several drug carriers successfully overcome these issues and deliver drugs to the desired sites, reducing the side effects. Among various drug delivery systems, polysaccharide-based carriers that target only the cancer cells have been developed to overcome the toxicity of chemotherapeutics. Polysaccharides are non-toxic, biodegradable, hydrophilic biopolymers that can be easily modified chemically to improve the bioavailability and stability for delivering therapeutics into cancer tissues. Different polysaccharides, such as chitosan, alginates, cyclodextrin, pullulan, hyaluronic acid, dextran, guar gum, pectin, and cellulose, have been used in anti-cancer drug delivery systems. This review highlights the recent progress made in polysaccharides-based drug carriers in anti-cancer therapy.
Collapse
Affiliation(s)
- Neena Yadav
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
| | - Arul Prakash Francis
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Veeraraghavan Vishnu Priya
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.P.); (S.S.K.)
| | - Shazia Mustaq
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sameer Saeed Khan
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.P.); (S.S.K.)
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Research Institute & Simulation, Panimalar Medical College Hospital, Varadharajapuram, Poonamallee, Chennai 600123, India;
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
- Correspondence: ; Tel.: +91-(96)-7784-7337
| |
Collapse
|
26
|
Gupta N, Malviya R. Role of Polysaccharides Mimetic Components in Targeted Cancer Treatment. Curr Drug Targets 2022; 23:856-868. [PMID: 35156570 DOI: 10.2174/1389450123666220214121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Organic or inorganic compounds are synthesized or formulated in a manner that they completely show their therapeutic actions like as a natural polysaccharide in the body. Polysaccharides, the major type of natural polymers, are efficiently biologically active, non-toxic, hydrophilic, and biodegradable and show various properties. In this manuscript, the main focus is on delivering anticancer drugs with the help of mimetic components of polysaccharides. All data collected for this manuscript was from PubMed, Elsevier, Taylor, and Francis Bentham science journals. Most chemotherapeutics are therapeutically toxin to the human body, have a narrow therapeutic index, sluggish pharmaceutical delivery mechanisms, and are poorly soluble in water. The use of mimetic components of polysaccharides leads to the enhancement of the solubility of drugs in the biological environment. The manuscript summarizes the use of mimetic components of polysaccharides along with anticancer agents which are capable to inhibit the growth of cancerous cells in the body which shows lesser adverse effects in the biological system compared to other therapies.
Collapse
Affiliation(s)
- Nandan Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| |
Collapse
|
27
|
Bao J, Zhao Y, Xu J, Guo Y. Design and construction of IR780- and EGCG-based and mitochondrial targeting nanoparticles and their application in tumor chemo-phototherapy. J Mater Chem B 2021; 9:9932-9945. [PMID: 34842269 DOI: 10.1039/d1tb01899j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An integration combination of phototherapy and chemotherapy to treat carcinoma, solving the inner limitation of individual-modal chemical agent-based therapy or phototherapy, emerges to be a strategy with high prospects for achieving synergistic curative effects. The dye IR780-iodide (IR780) close to infrared radiation is a phototherapy agent with high prospects. However, it is limited in its clinical applications due to poor solubility in water. While epigallocatechin-3-gallate (EGCG), naturally resourced green tea polyphenol, has been extensively proven with intrinsic antitumor activity, but it is largely restricted by its low bioavailability in vivo. Hence, novel multiple-function nanoparticles comprising hyaluronic acid (HA) and IR780 were proposed to deliver EGCG, defined as EGCG@THSI nano-scale particles (EGCG@THSI NPs), thereby rapidly solving limitations of EGCG and IR780. Amphiphilic nano-scale carrier was prepared by triphenylphosphine (TPP), hyaluronic acid (HA), cystamine, and IR780, termed as TPP-HA-SS-IR780, and EGCG was loaded into the amphiphilic copolymer by self-assembly. TPP-HA-SS-IR780 endowed the as-synthesized EGCG@THSI NPs with excellent TPP-mediated mitochondrial-targeted and glutathione-triggered rapid drug release properties. As impacted by the integration of phototherapy and chemotherapy, the EGCG@THSI NPs under NIR laser irradiation showed a prominent anti-tumor effect. Taken together, this study presented a multiple-function nano-scale carrier platform with high prospects in improving the therapeutic efficacy of anti-carcinoma drugs.
Collapse
Affiliation(s)
- Jiahe Bao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
28
|
Luo K, Gao Y, Yin S, Yao Y, Yu H, Wang G, Li J. Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. Acta Biomater 2021; 134:649-663. [PMID: 34289420 DOI: 10.1016/j.actbio.2021.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. Herein, a multifunctional nanocomplex was developed to simultaneously deliver paclitaxel (PTX) and STAT3 siRNA (siSTAT3) to inhibit tumor growth and prevent metastasis of breast cancer cells. PTX was encapsulated into the synthesized polyethyleneimine-polylactic acid-lipoic acid (PPL) micelle through hydrophobic interaction, while siSTAT3 was condensed onto polyethyleneimine through electrostatic interaction. The surface charge of the drug-loaded nanocomplex (siSTAT3PPLPTX) was then converted to negative by coating with hyaluronic acid (HA). The multifunctional nanocomplex (HA/siSTAT3PPLPTX) effectively entered CD44-overexpressed 4T1 cells via an active targeting mechanism. HA shell was degraded by the concentrated hyaluronidase in the endo/lysosome and the rapid drug release was triggered by the redox micro-environment of cytoplasm. Moreover, HA/siSTAT3PPLPTX showed enhanced cytotoxicity against tumor cells due to a synergistic effect of PTX and siSTAT3. The effective inhibition of tumor metastasis was confirmed by in vitro cell migration and invasion in 4T1 cells. More importantly, a superior antitumor efficacy was observed in orthotopic 4T1 tumor-bearing mice, with no side effects in major organs, and the lung metastasis was strongly inhibited in 4T1 metastasis model. In conclusion, the multifunctional nanocomplex provides a versatile platform for efficient treatment of metastatic cancer through tumor-targeted chemo-gene combined therapy. STATEMENT OF SIGNIFICANCE: Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. In this study, a multifunctional nanocomplex co-loaded with paclitaxel (PTX) and STAT3 siRNA was constructed and characterized. The co-delivery system exhibited active tumor targeting, effective endo/lysosomal escape, and rapid intracellular drug release. Both in vitro and in vivo studies indicated that the nanocomplex could lead to superior tumor growth inhibition, as well as metastasis suppression by silencing expression of STAT3 and p-STAT3. This present study implies that the nanocomplex could be a potential platform for targeted treatment of metastatic cancer through chemo-gene combined therapy.
Collapse
Affiliation(s)
- Kaipei Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Gao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Shaoping Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yawen Yao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
| | - Guangji Wang
- Center of Pharmacokinetics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
29
|
Wang C, Liu S, Xu J, Gao M, Qu Y, Liu Y, Yang Y, Cui X. Dissolvable microneedles based on Panax notoginseng polysaccharide for transdermal drug delivery and skin dendritic cell activation. Carbohydr Polym 2021; 268:118211. [PMID: 34127215 DOI: 10.1016/j.carbpol.2021.118211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
This work explored the feasibility of using biological polysaccharide to fabricate dissolvable microneedles (MNs) for the purpose of transdermal drug delivery and skin dendritic cell (DC) activation. Panax notoginseng polysaccharide (PNPS), a naturally derived immunoactive macromolecule, was used to fabricate dissolvable MNs. The prepared PNPS MNs showed a satisfactory mechanical strength and a skin penetration depth. By Franz diffusion cell assay, the PNPS MNs demonstrated a high transdermal delivery amount of model drugs. Furthermore, with the assistance of MNs, PNPS easily penetrated across the stratum corneum and target ear skin DCs, activating the maturation and migration of immunocytes by increasing the expressions of CD40, CD80, CD86, and MHC II of skin DCs. Consequently, the matured DCs migrated to the auricular draining lymph nodes and increased the proportions of CD4+ T and CD8+ T cells. Thus, PNPS might be a promising biomaterial for transdermal drug delivery, with adjuvant potential.
Collapse
Affiliation(s)
- Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Shengnan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Junwei Xu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Yunnan Province, Wenshan 663000, China
| | - Yuan Qu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
30
|
Hyaluronic acid-based drug nanocarriers as a novel drug delivery system for cancer chemotherapy: A systematic review. ACTA ACUST UNITED AC 2021; 29:439-447. [PMID: 34499323 DOI: 10.1007/s40199-021-00416-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/28/2021] [Indexed: 01/04/2023]
Abstract
Chemotherapy is the most common treatment strategy for cancer patients. Nevertheless, limited drug delivery to cancer cells, intolerable toxicity, and multiple drug resistance are constant challenges of chemotherapy. Novel targeted drug delivery strategies by using nanoparticles have attracted much attention due to reducing side effects and increasing drug efficacy. Therefore, the most important outcome of this study is to answer the question of whether active targeted HA-based drug nanocarriers have a significant effect on improving drug delivery to cancer cells.This study aimed to systematically review studies on the use of hyaluronic acid (HA)-based nanocarriers for chemotherapy drugs. The two databases MagIran and SID from Persian databases as well as international databases PubMed, WoS, Scopus, Science Direct, Embase, as well as Google Scholar were searched for human studies and cell lines and/or xenograft mice published without time limit until 2020. Keywords used to search included Nanoparticle, chemotherapy, HA, Hyaluronic acid, traditional medicine, natural medicine, chemotherapeutic drugs, natural compound, cancer treatment, and cancer. The quality of the studies was assessed by the STROBE checklist. Finally, studies consistent with inclusion criteria and with medium- to high-quality were included in the systematic review.According to the findings of studies, active targeted HA-based drug nanocarriers showed a significant effect on improving drug delivery to cancer cells. Also, the use of lipid nanoparticles with a suitable coating of HA have been introduced as biocompatible drug carriers with high potential for targeted drug delivery to the target tissue without affecting other tissues and reducing side effects. Enhanced drug delivery, increased therapeutic efficacy, increased cytotoxicity and significant inhibition of tumor growth, as well as high potential for targeted chemotherapy are also reported to be benefits of using HA-based nanocarriers for tumors with increased expression of CD44 receptor.
Collapse
|
31
|
Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Chen D, Ge S, Zuo L, Wang S, Liu M, Li S. Adjudin-loaded redox-sensitive paclitaxel-prodrug micelles for overcoming multidrug resistance with efficient targeted Colon cancer therapy. Drug Deliv 2021; 27:1094-1105. [PMID: 32706289 PMCID: PMC7470106 DOI: 10.1080/10717544.2020.1797245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR) is the primary cause for the failure of chemotherapy in the treatment of colon cancer. Recent research has indicated that the combination of a chemotherapeutic agent and a mitochondrial inhibitor might represent a promising strategy to help overcome MDR. However, for this approach to be clinically effective, it is important that the two drugs can be actively and simultaneously delivered into tumor cells at an optimal ratio and completely released drug within cells. To address these challenges, we designed and prepared a folate receptor-targeted and redox-responsive drug delivery system (FA-ss-P/A) that was able to co-deliver paclitaxel (PTX) and adjudin (ADD) to reverse colon cancer MDR. The PTX prodrug was obtained by conjugating PTX to dextrin via a disulfide-linkage. Then, folic acid (FA) was modified on the PTX prodrug. Finally, ADD, a mitochondrial inhibitor, was encapsulated in the PTX prodrug-formed micelles. A series of in vitro and in vivo experiments subsequently demonstrated that FA-ss-P/A can effectively reverse MDR by increasing cell uptake, inhibiting PTX efflux, and improving drug release.
Collapse
Affiliation(s)
- Deli Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiqing Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
33
|
Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
35
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021; 9:626910. [PMID: 33855017 PMCID: PMC8039396 DOI: 10.3389/fcell.2021.626910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
36
|
Yi X, Hu JJ, Dai J, Lou X, Zhao Z, Xia F, Tang BZ. Self-Guiding Polymeric Prodrug Micelles with Two Aggregation-Induced Emission Photosensitizers for Enhanced Chemo-Photodynamic Therapy. ACS NANO 2021; 15:3026-3037. [PMID: 33449627 DOI: 10.1021/acsnano.0c09407] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nowadays, aggregation-induced emission luminogens (AIEgens) with reactive oxygen species (ROS) generating ability have been used as photosensitizers for imaging guided photodynamic therapy (PDT). To achieve enhanced antitumor outcomes, combining AIEgens-based PDT with chemotherapy is an efficient strategy. However, the therapeutic efficiency is hampered by the limited cellular uptake efficiency and the appropriate light irradiation occasion. In this paper, a self-guiding polymeric micelle (TB@PMPT) composed of two AIE photosensitizers and a reduction-sensitive paclitaxel prodrug (PTX-SS-N3) was established for enhanced chemo-photodynamic therapy by a dual-stage light irradiation strategy. When the micelles were accumulated in tumor tissues, the first light irradiation (L1, 6 min) was utilized to facilitate cellular uptake by "photochemical internalization" (PCI). Then, the intracellular glutathione (GSH) would induce the PTX release, micelles disassembly and the aggregation state change of AIEgens. The fluorescence signal change of two AIEgens-based ratiometric fluorescent probe could not only precisely guide the second light irradiation (L2, 18 min) for sufficient ROS production, but also monitor the nonfluorescent drug PTX release in turn. Both in vivo and in vitro studies demonstrated that the dual-stage light irradiation strategy employed for TB@PMPT micelles exhibited a superior therapeutic effect over only 24 min continuous light irradiation.
Collapse
Affiliation(s)
- Xiaoqing Yi
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Jing-Jing Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
37
|
Gote V, Sharma AD, Pal D. Hyaluronic Acid-Targeted Stimuli-Sensitive Nanomicelles Co-Encapsulating Paclitaxel and Ritonavir to Overcome Multi-Drug Resistance in Metastatic Breast Cancer and Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22031257. [PMID: 33513992 PMCID: PMC7865449 DOI: 10.3390/ijms22031257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Active targeting and overcoming multi-drug resistance (MDR) can be some of the important attributes of targeted therapy for metastatic breast cancer (MBC) and triple-negative breast cancer (TNBC) treatment. In this study, we constructed a hyaluronic acid (HA)-decorated mixed nanomicelles-encapsulating chemotherapeutic agent paclitaxel (PTX) and P-glycoprotein inhibitor ritonavir (RTV). HA was conjugated to poly (lactide) co-(glycolide) (PLGA) polymer by disulfide bonds (HA-ss-PLGA). HA is a natural ligand for CD44 receptors overexpressed in breast cancer cells. Disulfide bonds undergo rapid reduction in the presence of glutathione, present in breast cancer cells. The addition of RTV can inhibit the P-gp and CYP3A4-mediated metabolism of PTX, thus aiding in reversing MDR and sensitizing the cells toward PTX. An in vitro uptake and cytotoxicity study in MBC MCF-7 and TNBC MDA-MB-231 cell lines demonstrated the effective uptake of the nanomicelles and drug PTX compared to non-neoplastic breast epithelium MCF-12A cells. Interestingly, in vitro potency determination showed a reduction in mitochondrial membrane potential and reactive oxygen species in breast cancer cell lines, indicating effective apoptosis of cancer cells. Thus, stimuli-sensitive nanomicelles along with HA targeting and RTV addition can effectively serve as a chemotherapeutic drug delivery agent for MBC and TNBC.
Collapse
|
38
|
Liu D, Zhang Q, Wang J, Guan S, Cai D, Liu J. Inhibition of growth and metastasis of breast cancer by targeted delivery of 17-hydroxy-jolkinolide B via hyaluronic acid-coated liposomes. Carbohydr Polym 2021; 257:117572. [PMID: 33541631 DOI: 10.1016/j.carbpol.2020.117572] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 01/01/2023]
Abstract
Hyaluronic acid (HA)-coated liposomes were designed for the targeted delivery of 17-hydroxy-jolkinolide B (HA-Lip-HJB). HA-Lip-HJB had a particle size of 130.8 ± 1.9 nm, zeta potential of -52.36 ± 1.91 mV, and encapsulation efficiency of 89.2 ± 1.5 %. In vitro cell experiments indicated that modification of HA-Lip-HJB increased its cytotoxicity and cellular uptake via CD44 receptor-mediated endocytosis pathway. Of particular importance is that HA-Lip-HJB suppressed cell migration and invasion by inhibiting epithelial-mesenchymal transition (EMT) process. Moreover, the HA-Lip-HJB displayed notable growth inhibition on tumor spheroids. Furthermore, in vivo tissue distribution and anti-tumor experiments carried on BALB/C mice bearing 4T1 tumor indicated that HA-Lip-HJB had strong tumor targeting and tumor suppression abilities. The results also demonstrated that HA-Lip-HJB inhibited tumor cells migration and colonization on the lung. Therefore, HA-Lip-HJB is a promising formulation for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Jing Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Shuang Guan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Jicheng Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| |
Collapse
|
39
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021. [PMID: 33855017 DOI: 10.3389/fcell.2021.626910/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
40
|
Luo K, Yin S, Zhang R, Yu H, Wang G, Li J. Multifunctional composite nanoparticles based on hyaluronic acid-paclitaxel conjugates for enhanced cancer therapy. Int J Pharm 2020; 589:119870. [DOI: 10.1016/j.ijpharm.2020.119870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/22/2022]
|
41
|
Akhter MH, Beg S, Tarique M, Malik A, Afaq S, Choudhry H, Hosawi S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim Biophys Acta Gen Subj 2020; 1865:129777. [PMID: 33130062 DOI: 10.1016/j.bbagen.2020.129777] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
Collapse
Affiliation(s)
- Md Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
42
|
Oshiro-Júnior JA, Rodero C, Hanck-Silva G, Sato MR, Alves RC, Eloy JO, Chorilli M. Stimuli-responsive Drug Delivery Nanocarriers in the Treatment of Breast Cancer. Curr Med Chem 2020; 27:2494-2513. [PMID: 30306849 DOI: 10.2174/0929867325666181009120610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/16/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023]
Abstract
Stimuli-responsive drug-delivery nanocarriers (DDNs) have been increasingly reported in the literature as an alternative for breast cancer therapy. Stimuli-responsive DDNs are developed with materials that present a drastic change in response to intrinsic/chemical stimuli (pH, redox and enzyme) and extrinsic/physical stimuli (ultrasound, Near-infrared (NIR) light, magnetic field and electric current). In addition, they can be developed using different strategies, such as functionalization with signaling molecules, leading to several advantages, such as (a) improved pharmaceutical properties of liposoluble drugs, (b) selectivity with the tumor tissue decreasing systemic toxic effects, (c) controlled release upon different stimuli, which are all fundamental to improving the therapeutic effectiveness of breast cancer treatment. Therefore, this review summarizes the use of stimuli-responsive DDNs in the treatment of breast cancer. We have divided the discussions into intrinsic and extrinsic stimuli and have separately detailed them regarding their definitions and applications. Finally, we aim to address the ability of these stimuli-responsive DDNs to control the drug release in vitro and the influence on breast cancer therapy, evaluated in vivo in breast cancer models.
Collapse
Affiliation(s)
- João A Oshiro-Júnior
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil.,Graduation Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, PB, Brazil
| | - Camila Rodero
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Gilmar Hanck-Silva
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Mariana R Sato
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Renata Carolina Alves
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Josimar O Eloy
- College of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| |
Collapse
|
43
|
Liu L, Xu Y, Zhang P, You J, Li W, Chen Y, Li R, Rui B, Dou H. High-Order Assembly toward Polysaccharide-Based Complex Coacervate Nanodroplets Capable of Targeting Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8580-8588. [PMID: 32598156 DOI: 10.1021/acs.langmuir.0c01458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-order assembly plays a significant role in the formation of living organisms containing a large number of biomacromolecules and, thus, enlightens the construction of nanomaterials that can load macromolecular payloads at a high efficiency. Herein, by choosing anionic hyaluronic acid (HA) as a model payload, we demonstrated how the electrostatic-interaction-induced high-order assembly can be used to load efficiently biomacromolecules into complex coacervate nanodroplets. The resultant assemblies were primarily composed of HA and cationic chitosan oligosaccharide/dextran (COS/Dex) nanogels and had a controllable structure while also exhibiting biological functionality. HA in the assemblies is capable of targeting CD44-overexpressed tumor cells through CD44-mediated endocytic pathways, which are elucidated herein. Therefore, this study provides a reliable approach for the efficient loading of macromolecular payloads into complex coacervate nanodroplets via electrostatic-attraction-induced high-order assembly.
Collapse
Affiliation(s)
- Lingshan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuan Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiayi You
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Wei Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Rong Li
- Department of Pulmonary Medicine, Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, People's Republic of China
| | - Biyu Rui
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
44
|
Sims K, He B, Koo H, Benoit DS. Electrostatic Interactions Enable Nanoparticle Delivery of the Flavonoid Myricetin. ACS OMEGA 2020; 5:12649-12659. [PMID: 32548448 PMCID: PMC7288370 DOI: 10.1021/acsomega.9b04101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/15/2020] [Indexed: 05/18/2023]
Abstract
Flavonoids are natural polyphenolic compounds with myriad biological activities and potential as prophylactic and therapeutic agents. However, poor aqueous solubility and low bioavailability have limited the clinical utility of flavonoids, suggesting that drug delivery systems (DDSs) may improve their clinical relevance. Therefore, loading of a representative flavonoid (i.e., myricetin) into a diblock, polymeric nanoparticle carrier (NPC) DDS with a cationic corona and hydrophobic core was investigated. Absorbance and fluorescence spectroscopy results revealed association constants and standard Gibbs free energy values that align with previously reported values (K a = ∼1-3 × 104 M-1; ΔG° = -5.4 to -6.0 kcal mol-1), suggesting that NPCs load myricetin via electrostatic interactions. The zeta potential and gel electrophoresis analysis confirmed this loading mechanism and indicated that NPCs improve myricetin solubility >25-fold compared to myricetin alone. Finally, the dual-drug loading of NPCs was tested using a combination of myricetin and a hydrophobic drug (i.e., farnesol). Electrostatic loading of NPCs with myricetin at concentrations ≤1.2 mM did not affect NPC core loading and release of farnesol, thus demonstrating a novel formulation strategy for the dual-drug-loaded NPC. These findings offer key insights into the NPC DDS design that may enhance the clinical relevance of flavonoid-based therapeutic approaches.
Collapse
Affiliation(s)
- Kenneth
R. Sims
- Translational
Biomedical Science, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
- Department
of Biomedical Engineering, University of
Rochester, Rochester, New York 14642, United
States
| | - Brian He
- Department
of Statistics, University of Rochester, Rochester, New York 14642, United States
| | - Hyun Koo
- Department
of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Danielle S.W. Benoit
- Department
of Biomedical Engineering, University of
Rochester, Rochester, New York 14642, United
States
- Materials
Science Program, University of Rochester, Rochester, New York 14642, United States
- Department
of Orthopaedics and Center for Musculoskeletal Research, School of
Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
- Center
for Oral Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
- Department
of Chemical Engineering, University of Rochester, Rochester, New York 14642, United States
- . Phone: 585
273 2698. Fax: 585 276 1999
| |
Collapse
|
45
|
Tumor-targeted and self-assembled mixed micelles as carriers for enhanced anticancer efficacy of gemcitabine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Yang H, He Y, Wang Y, Yang R, Wang N, Zhang LM, Gao M, Jiang X. Theranostic Nanoparticles with Aggregation-Induced Emission and MRI Contrast Enhancement Characteristics as a Dual-Modal Imaging Platform for Image-Guided Tumor Photodynamic Therapy. Int J Nanomedicine 2020; 15:3023-3038. [PMID: 32431499 PMCID: PMC7200263 DOI: 10.2147/ijn.s244541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Advanced tumor-targeted theranostic nanoparticles play a key role in tumor diagnosis and treatment research. In this study, we developed a multifunctional theranostic platform based on an amphiphilic hyaluronan/poly-(N-ε-carbobenzyloxy-L-lysine) derivative (HA-g-PZLL), superparamagnetic iron oxide (SPIO) and aggregation-induced emission (AIE) nanoparticles for tumor-targeted magnetic resonance (MR) and fluorescence (FL) dual-modal image-guided photodynamic therapy (PDT). Materials and Methods The amphiphilic hyaluronan acid (HA) derivative HA-g-PZLL was synthesized by grafting hydrophobic poly-(N-ε-carbobenzyloxy-L-lysine) (PZLL) blocks onto hyaluronic acid by a click conjugation reaction. The obtained HA-g-PZLLs self-assembled into nanoparticles in the presence of AIE molecules and SPIO nanoparticles to produce tumor-targeted theranostic nanoparticles (SPIO/AIE@HA-g-PZLLs) with MR/FL dual-modal imaging ability. Cellular uptake of the theranostic nanoparticles was traced by confocal laser scanning microscopy (CLSM), flow cytometry and Prussian blue staining. The intracellular reactive oxygen species (ROS) generation characteristics of the theranostic nanoparticles were evaluated with CLSM and flow cytometry. The effect of PDT was evaluated by cytotoxicity assay. The dual-mode imaging ability of the nanoparticles was evaluated by a real-time near-infrared fluorescence imaging system and magnetic resonance imaging scanning. Results The resulting theranostic nanoparticles not only emit red fluorescence for high-quality intracellular tracing but also effectively produce singlet oxygen for photodynamic tumor therapy. In vitro cytotoxicity experiments showed that these theranostic nanoparticles can be efficiently taken up and are mainly present in the cytoplasm of HepG2 cells. After internalization, these theranostic nanoparticles showed serious cytotoxicity to the growth of HepG2 cells after white light irradiation. Discussion This work provides a simple method for the preparation of theranostic nanoparticles with AIE characteristics and MR contrast enhancement, and serves as a dual-modal imaging platform for image-guided tumor PDT.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Yufang He
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Yan Wang
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Nianhua Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province 510006, People's Republic of China
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| |
Collapse
|
47
|
Yin S, Gao Y, Zhang Y, Xu J, Zhu J, Zhou F, Gu X, Wang G, Li J. Reduction/Oxidation-Responsive Hierarchical Nanoparticles with Self-Driven Degradability for Enhanced Tumor Penetration and Precise Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18273-18291. [PMID: 32223148 DOI: 10.1021/acsami.0c00355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deep tumor penetration, long blood circulation, rapid drug release, and sufficient stability are the most concerning dilemmas of nano-drug-delivery systems for efficient chemotherapy. Herein, we develop reduction/oxidation-responsive hierarchical nanoparticles co-encapsulating paclitaxel (PTX) and pH-stimulated hyaluronidase (pSH) to surmount the sequential biological barriers for precise cancer therapy. Poly(ethylene glycol) diamine (PEG-dia) is applied to collaboratively cross-link the shell of nanoparticles self-assembled by a hyaluronic acid-stearic acid conjugate linked via a disulfide bond (HA-SS-SA, HSS) to fabricate the hierarchical nanoparticles (PHSS). The PTX and pSH coloaded hierarchical nanoparticles (PTX/pSH-PHSS) enhance the stability in normal physiological conditions and accelerate drug release at tumorous pH, and highly reductive or oxidative environments. Functionalized with PEG and HA, the hierarchical nanoparticles preferentially prolong the circulation time, accumulate at the tumor site, and enter MDA-MB-231 cells via CD44-mediated endocytosis. Within the acidic tumor micro-environment, pSH would be partially reactivated to decompose the dense tumor extracellular matrix for deep tumor penetration. Interestingly, PTX/pSH-PHSS could be degraded apace by the completely activated pSH within endo/lysosomes and the intracellular redox micro-environment to facilitate drug release to produce the highest tumor inhibition (93.71%) in breast cancer models.
Collapse
Affiliation(s)
- Shaoping Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yi Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianan Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianping Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fang Zhou
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaochen Gu
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Guangji Wang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 210009, PR China
| | - Juan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
48
|
Miao T, Little AC, Aronshtam A, Marquis T, Fenn SL, Hristova M, Krementsov DN, van der Vliet A, Spees JL, Oldinski RA. Internalized FGF-2-Loaded Nanoparticles Increase Nuclear ERK1/2 Content and Result in Lung Cancer Cell Death. NANOMATERIALS 2020; 10:nano10040612. [PMID: 32230722 PMCID: PMC7221911 DOI: 10.3390/nano10040612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
Innovative cancer treatments, which improve adjuvant therapy and reduce adverse events, are desperately needed. Nanoparticles provide controlled intracellular biomolecule delivery in the absence of activating external cell surface receptors. Prior reports suggest that intracrine signaling, following overexpression of basic fibroblast growth factor (FGF-2) after viral transduction, has a toxic effect on diseased cells. Herein, the research goals were to (1) encapsulate recombinant FGF-2 within stable, alginate-based nanoparticles (ABNs) for non-specific cellular uptake, and (2) determine the effects of ABN-mediated intracellular delivery of FGF-2 on cancer cell proliferation/survival. In culture, human alveolar adenocarcinoma basal epithelial cell line (A549s) and immortalized human bronchial epithelial cell line (HBE1s) internalized ABNs through non-selective endocytosis. Compared to A549s exposed to empty (i.e., blank) ABNs, the intracellular delivery of FGF-2 via ABNs significantly increased the levels of lactate dehydrogenase, indicating that FGF-2-ABN treatment decreased the transformed cell integrity. Noticeably, the nontransformed cells were not significantly affected by FGF-2-loaded ABN treatment. Furthermore, FGF-2-loaded ABNs significantly increased nuclear levels of activated-extracellular signal-regulated kinase ½ (ERK1/2) in A549s but had no significant effect on HBE1 nuclear ERK1/2 expression. Our novel intracellular delivery method of FGF-2 via nanoparticles resulted in increased cancer cell death via increased nuclear ERK1/2 activation.
Collapse
Affiliation(s)
- Tianxin Miao
- Bioengineering Program, College of Engineering and Mathematical Sciences, Larner College of Medicine, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA (S.L.F.)
| | - Andrew C. Little
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA; (A.C.L.); (A.v.d.V.)
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Alexander Aronshtam
- Department of Medicine, Stem Cell Core, Larner College of Medicine, University of Vermont, Colchester, VT 05446, USA; (A.A.); (T.M.)
| | - Taylor Marquis
- Department of Medicine, Stem Cell Core, Larner College of Medicine, University of Vermont, Colchester, VT 05446, USA; (A.A.); (T.M.)
| | - Spencer L. Fenn
- Bioengineering Program, College of Engineering and Mathematical Sciences, Larner College of Medicine, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA (S.L.F.)
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA;
| | - Albert van der Vliet
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA; (A.C.L.); (A.v.d.V.)
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Jeffrey L. Spees
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA; (A.C.L.); (A.v.d.V.)
- Department of Medicine, Stem Cell Core, Larner College of Medicine, University of Vermont, Colchester, VT 05446, USA; (A.A.); (T.M.)
- Correspondence: (J.L.S.); (R.A.O.); Tel.: +1-802-656-2388 (J.L.S.); +1-802-656-3338 (R.A.O.); Fax: +1-802-656-8932 (J.L.S.); +1-802-656-3358 (R.A.O.)
| | - Rachael A. Oldinski
- Bioengineering Program, College of Engineering and Mathematical Sciences, Larner College of Medicine, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA (S.L.F.)
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
- Materials Science Program, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
- Correspondence: (J.L.S.); (R.A.O.); Tel.: +1-802-656-2388 (J.L.S.); +1-802-656-3338 (R.A.O.); Fax: +1-802-656-8932 (J.L.S.); +1-802-656-3358 (R.A.O.)
| |
Collapse
|
49
|
Liu S, Li R, Qian J, Sun J, Li G, Shen J, Xie Y. Combination Therapy of Doxorubicin and Quercetin on Multidrug-Resistant Breast Cancer and Their Sequential Delivery by Reduction-Sensitive Hyaluronic Acid-Based Conjugate/d-α-Tocopheryl Poly(ethylene glycol) 1000 Succinate Mixed Micelles. Mol Pharm 2020; 17:1415-1427. [PMID: 32159961 DOI: 10.1021/acs.molpharmaceut.0c00138] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The therapeutic efficacy of chemotherapy in many types of hematological malignancies and solid tumors is dramatically hindered by multidrug resistance (MDR). This work presents a combination strategy of pretreatment of MDA-MB-231/MDR1 cells with quercetin (QU) followed by doxorubicin (DOX) to overcome MDR, which can be delivered by mixed micelles composed of the reduction-sensitive hyaluronic acid-based conjugate and d-α-tocopheryl poly(ethylene glycol) 1000 succinate. The combination strategy can enhance the cytotoxicity of DOX on MDA-MB-231/MDR1 cells by increasing intracellular DOX accumulation and facilitating DOX-induced apoptosis. The probable MDR reversal mechanisms are that the pretreatment cells with QU-loaded mixed micelles downregulate P-glycoprotein expression to decrease DOX efflux as well as initiate mitochondria-dependent apoptotic pathways to accelerate DOX-induced apoptosis. In addition, this combination strategy can not only potentiate in vivo tumor-targeting efficiency but also enhance the antitumor effect in MDA-MB-231/MDR1-bearing nude mice without toxicity or side effects. This research suggests that the co-administration of natural compounds and chemotherapeutic drugs could be an effective strategy to overcome tumor MDR, which deserves further exploration.
Collapse
Affiliation(s)
- Shuo Liu
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Rui Li
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jin Qian
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jiabin Sun
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
50
|
Liang Y, Zhang J, Tian B, Wu Z, Svirskis D, Han J. A NAG-Guided Nano-Delivery System for Redox- and pH-Triggered Intracellularly Sequential Drug Release in Cancer Cells. Int J Nanomedicine 2020; 15:841-855. [PMID: 32103941 PMCID: PMC7008180 DOI: 10.2147/ijn.s226249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Aim Sequential treatment with paclitaxel (PTXL) and gemcitabine (GEM) is considered clinically beneficial for non-small-cell lung cancer. This study aimed to investigate the effectiveness of a nano-system capable of sequential release of PTXL and GEM within cancer cells. Methods PTXL-ss-poly(6-O-methacryloyl-d-galactopyranose)-GEM (PTXL-ss-PMAGP-GEM) was designed by conjugating PMAGP with PTXL via disulfide bonds (-ss-), while GEM via succinic anhydride (PTXL:GEM=1:3). An amphiphilic block copolymer N-acetyl-d-glucosamine(NAG)-poly(styrene-alt-maleic anhydride)58-b-polystyrene130 acted as a targeting moiety and emulsifier in formation of nanostructures (NLCs). Results The PTXL-ss-PMAGP-GEM/NAG NLCs (119.6 nm) provided a sequential in vitro release of, first PTXL (redox-triggered), then GEM (pH-triggered). The redox- and pH-sensitive NLCs readily distributed homogenously in the cytoplasm. NAG augmented the uptake of NLCs by the cancer cells and tumor accumulation. PTXL-ss-PMAGP-GEM/NAG NLCs exhibited synergistic cytotoxicity in vitro and strongest antitumor effects in tumor-bearing mice compared to NLCs lacking pH/redox sensitivities or free drug combination. Conclusion This study demonstrated the abilities of PTXL-ss-PMAGP-GEM/NAG NLCs to achieve synergistic antitumor effect by targeted intracellularly sequential drug release.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Jing Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Jingtian Han
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| |
Collapse
|