1
|
Wang J, Zhang M, Li C, Liu M, Qi Y, Xie X, Zhou C, Ma L. A novel cathelicidin TS-CATH derived from Thamnophis sirtalis combats drug-resistant gram-negative bacteria in vitro and in vivo. Comput Struct Biotechnol J 2024; 23:2388-2406. [PMID: 38882682 PMCID: PMC11176561 DOI: 10.1016/j.csbj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Antimicrobial peptides are promising therapeutic agents for treating drug-resistant bacterial disease due to their broad-spectrum antimicrobial activity and decreased susceptibility to evolutionary resistance. In this study, three novel cathelicidin antimicrobial peptides were identified from Thamnophis sirtalis, Balaenoptera musculus, and Lipotes vexillifer by protein database mining and sequence alignment and were subsequently named TS-CATH, BM-CATH, and LV-CATH, respectively. All three peptides exhibited satisfactory antibacterial activity and broad antibacterial spectra against clinically isolated E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in vitro. Among them, TS-CATH displayed the best antimicrobial/bactericidal activity, with a rapid elimination efficiency against the tested drug-resistant gram-negative bacteria within 20 min, and exhibited the lowest cytotoxicity toward mammalian cells. Furthermore, TS-CATH effectively enhanced the survival rate of mice with ceftazidime-resistant E. coli bacteremia and promoted wound healing in meropenem-resistant P. aeruginosa infection. These results were achieved through the eradication of bacterial growth in target organs and wounds, further inhibiting the systemic dissemination of bacteria and the inflammatory response. TS-CATH exhibited direct antimicrobial activity by damaging the inner and outer membranes, resulting in leakage of the bacterial contents at super-MICs. Moreover, TS-CATH disrupted the bacterial respiratory chain, which inhibited ATP synthesis and induced ROS formation, significantly contributing to its antibacterial efficacy at sub-MICs. Overall, TS-CATH has potential for use as an antibacterial agent.
Collapse
Affiliation(s)
- Jian Wang
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Meina Zhang
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chao Li
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Mengyuan Liu
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yixin Qi
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaolin Xie
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Changlin Zhou
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingman Ma
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
2
|
Shariati A, Kashi M, Chegini Z, Hosseini SM. Antibiotics-free compounds for managing carbapenem-resistant bacteria; a narrative review. Front Pharmacol 2024; 15:1467086. [PMID: 39355778 PMCID: PMC11442292 DOI: 10.3389/fphar.2024.1467086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Carbapenem-resistant (CR) Gram-negative bacteria have become a significant public health problem in the last decade. In recent years, the prevalence of CR bacteria has increased. The resistance to carbapenems could result from different mechanisms such as loss of porin, penicillin-binding protein alteration, carbapenemase, efflux pump, and biofilm community. Additionally, genetic variations like insertion, deletion, mutation, and post-transcriptional modification of corresponding coding genes could decrease the susceptibility of bacteria to carbapenems. In this regard, scientists are looking for new approaches to inhibit CR bacteria. Using bacteriophages, natural products, nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed promising inhibitory effects against CR bacteria. Additionally, the mentioned compounds could destroy the biofilm community of CR bacteria. Using them in combination with conventional antibiotics increases the efficacy of antibiotics, decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics. Therefore, in the present review article, we have discussed different aspects of non-antibiotic approaches for managing and inhibiting the CR bacteria and various methods and procedures used as an alternative for carbapenems against these bacteria.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Kashi
- Student research committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Taheri-Araghi S. Synergistic action of antimicrobial peptides and antibiotics: current understanding and future directions. Front Microbiol 2024; 15:1390765. [PMID: 39144233 PMCID: PMC11322369 DOI: 10.3389/fmicb.2024.1390765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024] Open
Abstract
Antibiotic resistance is a growing global problem that requires innovative therapeutic approaches and strategies for administering antibiotics. One promising approach is combination therapy, in which two or more drugs are combined to combat an infection. Along this line, the combination of antimicrobial peptides (AMPs) with conventional antibiotics has gained attention mainly due to the complementary mechanisms of action of AMPs and conventional antibiotics. In this article, we review both in vitro and in vivo studies that explore the synergy between AMPs and antibiotics. We highlight several mechanisms through which synergy is observed in in vitro experiments, including increasing membrane permeability, disrupting biofilms, directly potentiating antibiotic efficacy, and inhibiting resistance development. Moreover, in vivo studies reveal additional mechanisms such as enhanced/modulated immune responses, reduced inflammation, and improved tissue regeneration. Together, the current literature demonstrates that AMP-antibiotic combinations can substantially enhance efficacy of antibiotic therapies, including therapies against resistant bacteria, which represents a valuable enhancement to current antimicrobial strategies.
Collapse
Affiliation(s)
- Sattar Taheri-Araghi
- Department of Physics and Astronomy, California State University, Northridge, CA, United States
| |
Collapse
|
4
|
Wei L, Tu W, Xu Y, Xu C, Dou Y, Ge Y, Sun S, Wei Y, Yang K, Yuan B. Assembly-Induced Membrane Selectivity of Artificial Model Peptides through Entropy-Enthalpy Competition. ACS NANO 2024; 18:18650-18662. [PMID: 38959157 DOI: 10.1021/acsnano.4c05265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Peptide design and drug development offer a promising solution for combating serious diseases or infections. In this study, using an AI-human negotiation approach, we have designed a class of minimal model peptides against tuberculosis (TB), among which K7W6 exhibits potent efficacy attributed to its assembly-induced function. Comprising lysine and tryptophan with an amphiphilic α-helical structure, the K7W6 sequence exhibits robust activity against various infectious bacteria causing TB (including clinically isolated and drug-resistant strains) both in vitro and in vivo. Moreover, it synergistically enhances the effectiveness of the first-line antibiotic rifampicin while displaying low potential for inducing drug resistance and minimal toxicity toward mammalian cells. Biophysical experiments and simulations elucidate that K7W6's exceptional performance can be ascribed to its highly selective and efficient membrane permeabilization activity induced by its distinctive self-assembly behavior. Additionally, these assemblies regulate the interplay between enthalpy and entropy during K7W6-membrane interaction, leading to the peptide's two-step mechanism of membrane interaction. These findings provide valuable insights into rational design principles for developing advanced peptide-based drugs while uncovering the functional role played by assembly.
Collapse
Affiliation(s)
- Lin Wei
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenqiang Tu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yiwei Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yujiang Dou
- School of Electronic Information, Dongguan Polytechnic, Dongguan, Guangdong 523808, China
| | - Yuke Ge
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Shuqing Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
5
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
6
|
Yu Z, Ma W, Ji H, Fan Y, Zhao W. Interaction mechanism of egg derived peptides RVPSL and QIGLF with dipalmitoyl phosphatidylcholine membrane: microcalorimetric and molecular dynamics simulation studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6383-6393. [PMID: 37205773 DOI: 10.1002/jsfa.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Egg-derived peptides are becoming increasingly popular due to their biological activity and non-toxic effects. The egg-derived peptides Arg-Val-Pro-Ser-Leu (RVPSL) and Gln-Ile-Gly-Leu-Phe (QIGLF) display strong angiotensin-converting enzyme inhibitory activity and they can be taken up by intestinal epithelial cells. The interaction of the egg-derived peptides RVPSL and QIGLF with the membrane remains unclear. RESULTS The position and structure of the peptides in the membrane were calculated. The maximum density values of RVPSL and QIGLF were 2.27 and 1.22 nm from the center of the 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membrane, respectively, indicating that peptides penetrated the membrane-water interface and were embedded in the membrane. The interaction of RVPSL and QIGLF with the DPPC membrane did not affect the average area per lipid or the lipid sequence parameters. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between the peptide RVPSL with the DPPC membrane were 17.91 kJ mol-1 , -17.63 kJ mol-1 , 187.5 J mol-1 ·k-1 , respectively. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between peptide QIGLF with DPPC membrane were 17.10 kJ mol-1 , -17.12 kJ mol-1 , 114.8 J mol-1 ·k-1 , respectively. CONCLUSION The results indicated that the binding of peptides RVPSL and QIGLF to DPPC is an endothermic, spontaneous, and entropy-driven reaction. The results of the study are relevant to the problem of the low bioavailability of bioactive peptides (BP). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Wenhao Ma
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Huizhuo Ji
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Yue Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian, P. R. China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| |
Collapse
|
7
|
Galeane MC, Gomes PC, Singulani JL, Mendes-Giannini MJ, Fusco-Almeida AM. Study of IsCT analogue peptide against Candida albicans and toxicity/teratogenicity in zebrafish embryos ( Danio rerio). Future Microbiol 2023; 18:939-947. [PMID: 37702001 DOI: 10.2217/fmb-2022-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Aim: An IsCT analogue peptide (PepM3) was designed based on structural studies of wasp mastoparans and tested against Candida albicans. Its effects on fungal cell membranes and toxicity were evaluated. Materials & methods: Antifungal activity was analyzed using a microdilution susceptibility test. Toxicity was assessed using human skin keratinocytes (HaCaT) and zebrafish embryos. Results: PepM3 demonstrated activity against C. albicans and a synergistic effect with amphotericin B. The peptide presented fungicidal action with damage to the fungal cell membrane, low toxicity in HaCat cells and was nonteratogenic in zebrafish embryos. Conclusion: Evaluating structural modifications is essential for the development of new agents with potential activity against fungal pathogens and for the reduction of toxic and teratogenic effects.
Collapse
Affiliation(s)
- Mariana C Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Paulo C Gomes
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Junya L Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Maria Js Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Ana M Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| |
Collapse
|
8
|
Mhlongo JT, Waddad AY, Albericio F, de la Torre BG. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300472. [PMID: 37407512 PMCID: PMC10502873 DOI: 10.1002/advs.202300472] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/28/2023] [Indexed: 07/07/2023]
Abstract
Antimicrobial peptides (AMPs) are essential elements of thehost defense system. Characterized by heterogenous structures and broad-spectrumaction, they are promising candidates for combating multidrug resistance. Thecombined use of AMPs with other antimicrobial agents provides a new arsenal ofdrugs with synergistic action, thereby overcoming the drawback of monotherapiesduring infections. AMPs kill microbes via pore formation, thus inhibitingintracellular functions. This mechanism of action by AMPs is an advantage overantibiotics as it hinders the development of drug resistance. The synergisticeffect of AMPs will allow the repurposing of conventional antimicrobials andenhance their clinical outcomes, reduce toxicity, and, most significantly,prevent the development of resistance. In this review, various synergies ofAMPs with antimicrobials and miscellaneous agents are discussed. The effect ofstructural diversity and chemical modification on AMP properties is firstaddressed and then different combinations that can lead to synergistic action,whether this combination is between AMPs and antimicrobials, or AMPs andmiscellaneous compounds, are attended. This review can serve as guidance whenredesigning and repurposing the use of AMPs in combination with other antimicrobialagents for enhanced clinical outcomes.
Collapse
Affiliation(s)
- Jessica T. Mhlongo
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Ayman Y. Waddad
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| | - Beatriz G. de la Torre
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
9
|
Wang X, Feng L, Li M, Dong W, Luo X, Shang D. Membrane-active and DNA binding related double-action antimycobacterial mechanism of antimicrobial peptide W3R6 and its synthetic analogs. Biochim Biophys Acta Gen Subj 2023:130415. [PMID: 37336295 DOI: 10.1016/j.bbagen.2023.130415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
The emergence of multidrug- or extremely drug-resistant M. tuberculosis strains has made very few drugs available for current tuberculosis treatment. Antimicrobial peptides can be employed as a promising alternative strategy for TB treatment. Here, we designed and synthesized a series of peptide sequences based on the structure-activity relationships of natural sequences of antimicrobial peptides. The peptide W3R6 and its analogs were screened and found to have potent antimycobacterial activity against M. smegmatis, and no hemolytic activity against human erythrocytes. The evidence from the mechanism of action study indicated that W3R6 and its analogs can interact with the mycobacterial membrane in a lytic manner and form pores on the outer membrane of M. smegmatis. Significant colocalization of D-W3R6 with mycobacterial DNA was observed by confocal laser scanning microscopy and DNA retardation assays, which suggested that the antimycobacterial mechanism of action of the peptide was associated with the unprotected genomic DNA of M. smegmatis. In general, W3R6 and its analogs act on not only the mycobacterial membrane but also the genomic DNA in the cytoplasm, which makes it difficult for mycobacteria to generate resistance due to the peptides having two targets. In addition, the peptides can effectively eliminate M. smegmatis cells from infected macrophages. Our findings indicated that the antimicrobial peptide W3R6 could be a novel lead compound to overcome the threat from drug-resistant M. tuberculosis strains in the development of potent AMPs for TB therapeutic applications.
Collapse
Affiliation(s)
- Xiaorui Wang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Liubin Feng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mengmiao Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| | - Xueyue Luo
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
10
|
Hadianamrei R, Tomeh MA, Wang J, Brown S, Zhao X. Surfactant like peptides for targeted gene delivery to cancer cells. Biochem Biophys Res Commun 2023; 652:35-45. [PMID: 36809703 DOI: 10.1016/j.bbrc.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 02/12/2023] [Indexed: 02/15/2023]
Abstract
Surfactant like peptides (SLPs) are a class of amphiphilic peptides widely used for drug delivery and tissue engineering. However, there are very few reports on their application for gene delivery. The current study was aimed at development of two new SLPs, named (IA)4K and (IG)4K, for selective delivery of antisense oligodeoxynucleotides (ODNs) and small interfering RNA (siRNA) to cancer cells. The peptides were synthesized by Fmoc solid phase synthesis. Their complexation with nucleic acids was studied by gel electrophoresis and DLS. The transfection efficiency of the peptides was assessed in HCT 116 colorectal cancer cells and human dermal fibroblasts (HDFs) using high content microscopy. The cytotoxicity of the peptides was assessed by standard MTT test. The interaction of the peptides with model membranes was studied using CD spectroscopy. Both SLPs delivered siRNA and ODNs to HCT 116 colorectal cancer cells with high transfection efficiency which was comparable to the commercial lipid-based transfection reagents, but with higher selectivity for HCT 116 compared to HDFs. Moreover, both peptides exhibited very low cytotoxicity even at high concentrations and long exposure time. The current study provides more insights into the structural features of SLPs required for nucleic acid complexation and delivery and can therefore serve as a guide for the rational design of new SLPs for selective gene delivery to cancer cells to minimize the adverse effects in healthy tissues.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy and Biomedical Science, University of Portsmouth, PO1 2UP, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266555, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
11
|
Li G, Lai Z, Shan A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206602. [PMID: 36722732 PMCID: PMC10104676 DOI: 10.1002/advs.202206602] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Indexed: 05/10/2023]
Abstract
Owing to the increase in multidrug-resistant bacterial isolates in hospitals globally and the lack of truly effective antimicrobial agents, antibiotic resistant bacterial infections have increased substantially. There is thus an urgent need to develop new antimicrobial drugs and their related formulations. In recent years, natural antimicrobial peptides (AMPs), AMP optimization, self-assembled AMPs, AMP hydrogels, and biomaterial-assisted delivery of AMPs have shown great potential in the treatment of bacterial infections. In this review, it is focused on the development prospects and shortcomings of various AMP-based biomaterials for treating animal model infections, such as abdominal, skin, and eye infections. It is hoped that this review will inspire further innovations in the design of AMP-based biomaterials for the treatment of bacterial infections and accelerate their commercialization.
Collapse
Affiliation(s)
- Guoyu Li
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhenheng Lai
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Anshan Shan
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| |
Collapse
|
12
|
Yao Y, Zhang W, Li S, Xie H, Zhang Z, Jia B, Huang S, Li W, Ma L, Gao Y, Song J, Wang R. Development of Neuropeptide Hemokinin-1 Analogues with Antimicrobial and Wound-Healing Activity. J Med Chem 2023; 66:6617-6630. [PMID: 36893465 DOI: 10.1021/acs.jmedchem.2c02021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Wound healing is a complex process that can be delayed in some pathological conditions, such as infection and diabetes. Following skin injury, the neuropeptide substance P (SP) is released from peripheral neurons to promote wound healing by multiple mechanisms. Human hemokinin-1 (hHK-1) has been identified as an SP-like tachykinin peptide. Surprisingly, hHK-1 shares similar structural features with antimicrobial peptides (AMPs), but it does not display efficient antimicrobial activity. Therefore, a series of hHK-1 analogues were designed and synthesized. Among these analogues, AH-4 was found to display the greatest antimicrobial activity against a broad spectrum of bacteria. Furthermore, AH-4 rapidly killed bacteria by membrane disruption, similar to most AMPs. More importantly, AH-4 showed favorable healing activity in all tested mouse full-thickness excisional wound models. Overall, this study suggests that the neuropeptide hHK-1 can be used as a desirable template for developing promising therapeutics with multiple functions for wound healing.
Collapse
Affiliation(s)
- Yufan Yao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sisi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhengzheng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sujie Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenyuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuxuan Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
14
|
Jiang M, Chen R, Zhang J, Chen F, Wang KJ. A Novel Antimicrobial Peptide Spampcin 56-86 from Scylla paramamosain Exerting Rapid Bactericidal and Anti-Biofilm Activity In Vitro and Anti-Infection In Vivo. Int J Mol Sci 2022; 23:ijms232113316. [PMID: 36362111 PMCID: PMC9653689 DOI: 10.3390/ijms232113316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The abuse of antibiotics leads to the increase of bacterial resistance, which seriously threatens human health. Therefore, there is an urgent need to find effective alternatives to antibiotics, and antimicrobial peptides (AMPs) are the most promising antibacterial agents and have received extensive attention. In this study, a novel potential AMP was identified from the marine invertebrate Scylla paramamosain and named Spampcin. After bioinformatics analysis and AMP database prediction, four truncated peptides (Spa31, Spa22, Spa20 and Spa14) derived from Spampcin were screened, all of which showed potent antimicrobial activity with different antibacterial spectrum. Among them, Spampcin56-86 (Spa31 for short) exhibited strong bactericidal activity against a variety of clinical pathogens and could rapidly kill the tested bacteria within minutes. Further analysis of the antibacterial mechanism revealed that Spa31 disrupted the integrity of the bacterial membrane (as confirmed by scanning electron microscopy observation, NPN, and PI staining assays), leading to bacterial rupture, leakage of cellular contents (such as elevated extracellular ATP), increased ROS production, and ultimately cell death. Furthermore, Spa31 was found to interact with LPS and effectively inhibit bacterial biofilms. The antibacterial activity of Spa31 had good thermal stability, certain ion tolerance, and no obvious cytotoxicity. It is worth noting that Spa31 could significantly improve the survival rate of zebrafish Danio rerio infected with Pseudomonas aeruginosa, indicating that Spa31 played an important role in anti-infection in vivo. This study will enrich the database of marine animal AMPs and provide theoretical reference and scientific basis for the application of marine AMPs in medical fields.
Collapse
Affiliation(s)
- Manyu Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Roushi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jingrong Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| |
Collapse
|
15
|
Arenas NE, Pieffet G, Rocha-Roa C, Guerrero MI. Design of a specific peptide against phenolic glycolipid-1 from Mycobacterium leprae and its implications in leprosy bacilli entry. Mem Inst Oswaldo Cruz 2022; 117:e220025. [PMID: 35857971 PMCID: PMC9296141 DOI: 10.1590/0074-02760220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mycobacterium leprae, the causative agent of Hansen’s
disease, causes neural damage through the specific interaction between the
external phenolic glycolipid-1 (PGL-1) and laminin subunit alpha-2 (LAMA2)
from Schwann cells. OBJECTIVE To design a LAMA2-based peptide that targets PGL-1 from M.
leprae. METHODS We retrieved the protein sequence of human LAMA2 and designed a specific
peptide using the Antimicrobial Peptide Database and physicochemical
parameters for antimycobacterial peptide-lipid interactions. We used the
AlphaFold2 server to predict its three-dimensional structure, AUTODOCK-VINA
for docking, and GROMACS programs for molecular dynamics simulations. FINDINGS We analysed 52 candidate peptides from LAMA2, and subsequent screening
resulted in a single 60-mer peptide. The mapped peptide comprises four
β-sheets and a random coiled region. This peptide exhibits a 45% hydrophobic
ratio, in which one-third covers the same surface. Molecular dynamics
simulations show that our predicted peptide is stable in aqueous solution
and remains stable upon interaction with PGL-1 binding. In addition, we
found that PGL-1 has a preference for one of the two faces of the predicted
peptide, which could act as the preferential binding site of PGL-1. MAIN CONCLUSIONS Our LAMA2-based peptide targeting PGL-1 might have the potential to
specifically block this key molecule, suggesting that the preferential
region of the peptide is involved in the initial contact during the
attachment of leprosy bacilli to Schwann cells.
Collapse
Affiliation(s)
- Nelson Enrique Arenas
- Hospital Universitario, Centro Dermatológico Federico Lleras Acosta, Bogotá, Colombia
| | - Gilles Pieffet
- Universidad de los Andes, Departamento de Química, Bogotá, Colombia
| | - Cristian Rocha-Roa
- Universidad del Quindío, Facultad de Ciencias de la Salud, Grupo de Estudio en Parasitología y Micología Molecular-GEPAMOL, Armenia, Quindío, Colombia
| | | |
Collapse
|
16
|
Masadeh M, Ayyad A, Haddad R, Alsagar M, Alzoubi K, Alrabadi N. Functional and toxicological evaluation of the MAA-41: a novel rationally designed antimicrobial peptide using hybridization and modification methods from LL-37 and BMAP-28. Curr Pharm Des 2022; 28:2177-2188. [DOI: 10.2174/1381612828666220705150817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
Background:
Managing bacterial infections caused by multidrug-resistant (MDR) and biofilm-forming bacteria is a global health concern. Therefore, enormous efforts were directed toward finding potential alternative antimicrobial agents such as antimicrobial peptides (AMPs).
Aim:
We aimed to synthesize a novel modified hybrid peptide designed from natural parents’ peptides with enhanced activity and reduced toxicity profile.
Method:
Rational design was used to hybridize the two antimicrobial peptides, in which the alpha-helical parts of BMAP-28 and LL-37 were combined. Then, several amino acid modifications were applied to generate a modified hybrid peptide named MAA-41. The physicochemical properties were checked using in silico methods. The MAA-41 was evaluated for its antimicrobial and anti-biofilm activities. Synergistic studies were performed with five conventional antibiotics. Finally, the cytotoxicity on mammalian cells and the hemolytic activity were assessed.
Results:
The MAA-41 revealed a broad-spectrum activity against both Gram-positive and Gram-negative bacteria including standard and MDR bacterial strains. The concentration against planktonic cells ranged between 10 and 20 μM with higher potency against Gram-negative bacteria. Additionally, the MAA-41 displayed potent activity in eradicating biofilm-forming cells, and the reported MBECs were equal to the MIC values reported for planktonic cells. This new peptide exhibited reduced toxicity profiles against erythrocyte cells but not against Vero cells. Combining MAA-41 peptides with conventional antibiotics improved the antimicrobial activity of the combined agents. Either synergistic or additive effects were shown as a significant decrease in MIC to 0.25 μM.
Conclusion:
This study proposes the validity of a novel peptide (MAA-41) with enhanced antimicrobial activity and reduced toxicity, especially when used as conventional antibiotic combinations.
Collapse
Affiliation(s)
- Majed Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Afnan Ayyad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Razan Haddad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Mohammad Alsagar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Karem Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE.
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| |
Collapse
|
17
|
Shen C, Lin Y, Mohammadi TN, Masuda Y, Honjoh KI, Miyamoto T. Characterization of novel antimicrobial peptides designed on the basis of amino acid sequence of peptides from egg white hydrolysate. Int J Food Microbiol 2022; 378:109802. [PMID: 35752018 DOI: 10.1016/j.ijfoodmicro.2022.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Salmonella enterica subsp. enterica serotype Typhimurium (S. Typhimurium) is one of the most prevalent foodborne pathogens responsible for food poisoning and is spread through the consumption of contaminated poultry products. In this study, four antimicrobial peptides (AMPs) with varying hydrophobicity and helical structure-forming tendencies were designed and synthesized based on the amino acid sequences of peptides from egg white hydrolysate. Two of these AMPs, P1R3 (KSWKKHVVSGFFLR) and P1C (KSWKKHVVSGFFLRLWVHKK), exhibited inhibitory activity against S. Typhimurium and compromised its biofilm-forming ability. Investigation of their modes of action revealed that P1R3 and P1C interact with and permeabilize the cytoplasmic membrane of bacteria, leading to membrane potential dissipation, damage to membrane integrity, and consequent bacterial death. P1R3 also bound to S. Typhimurium DNA, resulting in DNA aggregation or precipitation. Moreover, both peptides showed negligible cytotoxicity to Vero cells, and P1C displayed significant antimicrobial activity in chicken meat. Peptides P1R3 and P1C, therefore, have the potential to be developed as promising food preservatives, especially against pathogenic S. Typhimurium.
Collapse
Affiliation(s)
- Cunkuan Shen
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tahir Noor Mohammadi
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
18
|
Hadianamrei R, Wang J, Brown S, Zhao X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int J Pharm 2022; 617:121619. [PMID: 35218898 DOI: 10.1016/j.ijpharm.2022.121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Gene therapy has gained increasing attention as an alternative to pharmacotherapy for treatment of various diseases. The extracellular and intracellular barriers to gene delivery necessitate the use of gene vectors which has led to the development of myriads of gene delivery systems. However, many of these gene delivery systems have pitfalls such as low biocompatibility, low loading efficiency, low transfection efficiency, lack of tissue selectivity and high production costs. Herein, we report the development of a new series of short cationic amphiphilic peptides with anticancer activity for selective delivery of small interfering RNA (siRNA) and antisense oligodeoxynucleotides (ODNs) to cancer cells. The peptides consist of alternating dyads of hydrophobic (isoleucine (I) or leucine (L)) and hydrophilic (arginine (R) or lysine (L)) amino acids. The peptides exhibited higher preference for transfection of HCT 116 colorectal cancer cells compared to human dermal fibroblasts (HDFs) and induced higher level of gene silencing in the cancer cells. The nucleic acid complexation and transfection efficiency of the peptides was a function of their secondary structure, their hydrophobicity and their C-terminal amino acid. The peptides containing L in their hydrophobic domain formed stronger complexes with siRNA and successfully delivered it to the cancer cells but were unable to release their cargo inside the cells and therefore could not induce any gene silencing. On the contrary, the peptides containing I in their hydrophobic domain were able to release their associated siRNA and induce considerable gene silencing in cancer cells. The peptides exhibited higher selectivity for colorectal cancer cells and induced less gene silencing in fibroblasts compared to the lipid-based commercial transfection reagent DharmaFECT™ 1. The results from this study can serve as a tool for rational design of new peptide-based gene vectors for high selective gene delivery to cancer cells.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
19
|
Xu Z, Yang Q, Zhu Y. Transcriptome analysis reveals the molecular mechanisms of the novel Lactobacillus pentosus pentocin against Bacillus cereus. Food Res Int 2022; 151:110840. [PMID: 34980379 DOI: 10.1016/j.foodres.2021.110840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
The objective of this study was to investigate the antibacterial effect and mechanism of Lactobacillus pentosus pentocin against Bacillus cereus. The dynamic growth of B. cereus showed that the pentocin had strong antibacterial activity against the strain. The antibacterial mechanism focused on cytomembrane destruction, biofilms formation, DNA replication and protein synthesis of B. cereus. The scanning electron microscopy, transmission electron microscopy and flow cytometry analysis illustrated that the cytomembranes were destroyed, causing the leakage of internal cellular components. Transcriptome sequencing indicated that the genes (KinB, KinC and Spo0B) in two component systems signal pathway were down-regulated, which resulted in the inhibition of the spores and biofilms formation of B. cereus. The phosphorylation and autoinducer-2 import were inhibited by down-regulating the expression levels of LuxS and LsrB genes in quorum sensing signal pathway, which also suppressed biofilms formation of B. cereus. The K+ leakage activated the K+ transport channels by up-relating the genes (KdpA, KdpB and KdpC), promoting the entry of K+ from the extracellular. In addition, the pentocin interfered DNA replication and protein synthesis by regulating the genes associated with DNA replication (dnaX and holB), RNA degradation (cshA, rho, rnj, deaD, rny, dnaK, groEL and hfq) and ribosome function (rpsA, rpsO and rplS). In this article, we provide some novel insights into the molecular mechanism responsible for high antibacterial activity of the L. pentosus pentocin against B. cereus. And the pentocin might be a very promising natural preservative for controlling the B. cereus contaminations in foods.
Collapse
Affiliation(s)
- Zhiqiang Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yinglian Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
20
|
Exploration of the Structure-Function Relationships of a Novel Frog Skin Secretion-Derived Bioactive Peptide, t-DPH1, through Use of Rational Design, Cationicity Enhancement and In Vitro Studies. Antibiotics (Basel) 2021; 10:antibiotics10121529. [PMID: 34943741 PMCID: PMC8698721 DOI: 10.3390/antibiotics10121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 01/11/2023] Open
Abstract
Amphibian skin-derived antimicrobial peptides (AMPs) have attracted increasing attention from scientists because of their excellent bioactivity and low drug resistance. In addition to being the alternative choice of antibiotics or anticancer agents, natural AMPs can also be modified as templates to optimise their bioactivities further. Here, a novel dermaseptin peptide, t-DPH1, with extensive antimicrobial activity and antiproliferative activity, was isolated from the skin secretion of Phyllomedusa hypochondrialis through 'shotgun' cloning. A series of cationicity-enhanced analogues of t-DPH1 were designed to further improve its bioactivities and explore the charge threshold of enhancing the bioactivity of t-DPH1. The present data suggest that improving the net charge can enhance the bioactivities to some extent. However, when the charge exceeds a specific limit, the bioactivities decrease or remain the same. When the net charge achieves the limit, improving the hydrophobicity makes no sense to enhance bioactivity. For t-DPH1, the upper limit of the net charge was +7. All the designed cationicity-enhanced analogues produced no drug resistance in the Gram-negative bacterium, Escherichia coli. These findings provide creative insights into the role of natural drug discovery in providing templates for structural modification for activity enhancement.
Collapse
|
21
|
Tram NDT, Selvarajan V, Boags A, Mukherjee D, Marzinek JK, Cheng B, Jiang ZC, Goh P, Koh JJ, Teo JWP, Bond PJ, Ee PLR. Manipulating turn residues on de novo designed β-hairpin peptides for selectivity against drug-resistant bacteria. Acta Biomater 2021; 135:214-224. [PMID: 34506975 DOI: 10.1016/j.actbio.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Synthetic β-hairpin antimicrobial peptides (AMPs) offer a useful source for the development of novel antimicrobial agents. β-hairpin peptides generally consist of two side strands bridged by a reverse turn. In literature, most studies focused on the modifications of the side strands to manipulate the stability and activity of β-hairpin peptides, and much less is known about the impact of the turn region. By designing a series of de novo β-hairpin peptides with identical side strands but varied turns, we demonstrated that mutations of only 2 to 4 amino acids at the turn region could impart a wide range of antimicrobial profiles among synthetic β-hairpin AMPs. BTT2-4 and BTT6 displayed selective potency against Gram-negative bacteria, with minimum inhibitory concentrations (MICs) of 4-8 µM. In contrast, BTT1 exhibited broad-spectrum activity, with MICs of 4-8 µM against both Gram-positive and Gram-negative strains. Additionally, BTT1 was potent against methicillin-resistant Staphylococcus aureus (MRSA) and colistin-resistant Enterobacterales. The antimicrobial potency of BTT1 persisted after 14 days of serial passage. Mechanistic studies revealed that interactions between lipopolysaccharide (LPS) and the peptides were critical to their membranolytic activity against the bacterial inner membrane. Aside from folding stability, we observed that a degree of conformational flexibility was required for disruptive membrane interactions. STATEMENT OF SIGNIFICANCE: By examining the significance of the turn region of β-hairpin peptides, we present valuable knowledge to the design toolkit of novel antimicrobial peptides as alternative therapeutics to overcome antibiotic resistance. Our de novo designed synthetic peptides displayed selective activity against Gram-negative bacteria and potent activity against clinically relevant antibiotic-resistant strains (e.g. colistin-resistant Enterobacterales and methicillin-resistant Staphylococcus aureus). The bactericidal activity of our peptides was shown to be robust in the presence of proteolytic trypsin and saline, conditions that could suppress peptide activity. Our peptides were also determined to be non-cytotoxic against a human cell line.
Collapse
Affiliation(s)
- Nhan D T Tram
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Vanitha Selvarajan
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Alister Boags
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), 138671, Singapore, Singapore; School of Chemistry, University of Southampton, SO17 1BJ, Southampton, United Kingdom
| | - Devika Mukherjee
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), 138671, Singapore, Singapore
| | - Bernadette Cheng
- Department of Laboratory Medicine, Microbiology Unit, National University Hospital, 119074, Singapore , Singapore
| | - Zi-Chen Jiang
- Department of Pharmacology and Toxicology, University of Toronto, M5S 1A1, Ontario, Canada
| | - Pascal Goh
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Jun-Jie Koh
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Jeanette W P Teo
- Department of Laboratory Medicine, Microbiology Unit, National University Hospital, 119074, Singapore , Singapore
| | - Peter J Bond
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), 138671, Singapore, Singapore; National University of Singapore, Department of Biological Sciences, 117558, Singapore, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, 119077, Singapore, Singapore.
| |
Collapse
|
22
|
Zhu D, Chen F, Chen YC, Peng H, Wang KJ. The Long-Term Effect of a Nine Amino-Acid Antimicrobial Peptide AS-hepc3 (48-56) Against Pseudomonas aeruginosa With No Detectable Resistance. Front Cell Infect Microbiol 2021; 11:752637. [PMID: 34676176 PMCID: PMC8523948 DOI: 10.3389/fcimb.2021.752637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens has become a global public health crisis. Among them, MDR Pseudomonas aeruginosa is the main cause of nosocomial infections and deaths. Antimicrobial peptides (AMPs) are considered as competitive drug candidates to address this threat. In the study, we characterized two AMPs (AS-hepc3(41-71) and AS-hepc3(48-56)) that had potent activity against 5 new clinical isolates of MDR P. aeruginosa. Both AMPs destroyed the integrity of the cell membrane, induced leakage of intracellular components, and ultimately led to cell death. A long-term comparative study on the bacterial resistance treated with AS-hepc3(41-71), AS-hepc3(48-56) and 12 commonly used antibiotics showed that P. aeruginosa quickly developed resistance to the nine antibiotics tested (including aztreonam, ceftazidime, cefepime, imipenem, meropenem, ciprofloxacin, levofloxacin, gentamicin, and piperacillin) as early as 12 days after 150 days of successive culture generations. The initial effective concentration of 9 antibiotics against P. aeruginosa was greatly increased to a different high level at 150 days, however, both AS-hepc3(41-71) and AS-hepc3(48-56) maintained their initial MIC unchangeable through 150 days, indicating that P. aeruginosa did not produce any significant resistance to both AMPs. Furthermore, AS-hepc3(48-56) did not show any toxic effect on mammalian cells in vitro and mice in vivo. AS-hepc3(48-56) had a therapeutic effect on MDR P. aeruginosa infection using a mouse lung infection model and could effectively increase the survival rate of mice by inhibiting bacterial proliferation and attenuating lung inflammation. Taken together, the short peptide AS-hepc3(48-56) would be a promising agent for clinical treatment of MDR P. aeruginosa infections.
Collapse
Affiliation(s)
- Depeng Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yan-Chao Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Hadianamrei R, Tomeh MA, Brown S, Wang J, Zhao X. Correlation between the secondary structure and surface activity of β-sheet forming cationic amphiphilic peptides and their anticancer activity. Colloids Surf B Biointerfaces 2021; 209:112165. [PMID: 34715505 DOI: 10.1016/j.colsurfb.2021.112165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023]
Abstract
Cancer is one of the main causes of death worldwide. The current cancer treatment strategies often lack selectivity for cancer cells resulting in dose-limiting adverse effects and reduced quality of life. Recently, anticancer peptides (ACPs) have emerged as an alternative treatment with higher selectivity, less adverse effects, and lower propensity for drug resistance. However, most of the current studies on the ACPs are focused on α-helical ACPs and there is lack of systematic studies on β-sheet forming ACPs. Herein we report the development of a new series of rationally designed short cationic amphiphilic β-sheet forming ACPs and their structure activity relationship. The peptides had the general formula (XY1XY2)3, with X representing hydrophobic amino acids (isoleucine (I) or leucine (L)), Y1 and Y2 representing cationic amino acids (arginine (R) or lysine (K)). The cytotoxicity of the designed ACPs in HCT 116 colorectal cancer, HeLa cervical cancer and human dermal fibroblast (HDF) cells was assessed by MTT test. The physicochemical properties of the peptides were characterized by various techniques including RP-HPLC, LC-MS, and Circular Dichroism (CD) spectroscopy. The surface activity of the peptides at the air-water interface and their interaction with the lipid monolayers as models for cell membranes were studied by Langmuir trough. The peptides consisting of I with R and K had selective anticancer activity while the combination of L and R diminished the anticancer activity of the peptides but rendered them more toxic to HDFs. The anticancer activity of the peptides was directed by their surface activity (amphiphilicity) and their secondary structure in hydrophobic surfaces including cancer cell membranes. The selectivity of the peptides for cancer cells was a result of their higher penetration into cancer cell membranes compared to normal cell membranes. The peptides exerted their anticancer activity by disrupting the mitochondrial membranes and eventually apoptosis. The results presented in this study provide an insight into the structure-activity relationship of this class of ACPs which can be employed as guidance to design new ACPs with improved anticancer activity and lower toxicity against normal cells.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
24
|
Hadianamrei R, Tomeh MA, Brown S, Wang J, Zhao X. Rationally designed short cationic α-helical peptides with selective anticancer activity. J Colloid Interface Sci 2021; 607:488-501. [PMID: 34509120 DOI: 10.1016/j.jcis.2021.08.200] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS Naturally derived or synthetic anticancer peptides (ACPs) have emerged as a new generation of anticancer agents with higher selectivity for cancer cells and less propensity for drug resistance. Despite the structural diversity of ACPs, α-helix is the most common secondary structure among them. Herein we report the development of a new library of short cationic amphiphilic α-helical ACPs with selective cytotoxicity against colorectal and cervical cancer. EXPERIMENTS The peptides had a general formula C(XXYY)3 with C representing amino acid cysteine (providing a -SH group for molecular conjugation), X representing hydrophobic amino acids (isoleucine (I) or leucine (L)), and Y representing cationic amino acids (arginine (R) or lysine (K)). Two variants of the peptides were synthesized by adding additional Isoleucine residues to the C-terminal and replacing the N-terminal cysteine with LC-propargylglycine (LC-G) to investigate the effect of N-terminal and C-terminal variation on the anticancer activity. The structure and physicochemical properties of the peptides were determined by RP-HPLC, LC-MS and CD spectroscopy. The cytotoxicity of the peptides in different cell lines was assessed by MTT test, cell proliferation assay and mitochondrial damage assay. The mechanism of cell selectivity of the peptides was investigated by studying their interfacial behaviour at the air/water and lipid/water interface using Langmuir trough. FINDINGS The peptides consisting of K residues in their hydrophilic domains exhibited more selective anticancer activity whereas the peptides containing R exhibited strong toxicity in normal cells. The anticancer activity of the peptides was a function of their helical content and their hydrophobicity. Therefore, the addition of two I residues at C-terminal enhanced the anticancer activity of the peptides by increasing their hydrophobicity and their helical content. These two variants also exhibited strong anticancer activity against colorectal cancer multicellular tumour spheroids (MCTS). The higher toxicity of the peptides in cancer cells compared to normal cells was the result of higher penetration into the negatively charged cancer cell membranes, leading to higher cellular uptake, and their cytotoxic effect was mainly exerted by damaging the mitochondrial membranes leading to apoptosis. The results from this study provide a basis for rational design of new α-helical ACPs with enhanced anticancer activity and selectivity.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
25
|
He J, Liang D, Liang Y, Zuo S, Zhao W. [Design, screening and antibacterial activity evaluation of the novel antibacterial peptide KR-1]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:923-930. [PMID: 34238746 DOI: 10.12122/j.issn.1673-4254.2021.06.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To design novel antimicrobial peptides with high activity and low toxicity and evaluate their effect against Streptococcus mutans and other oral bacteria for prevention and treatment of dental caries. OBJECTIVE We synthesized two antimicrobial peptides (KR-1 and KR-2) using Dhvar4 (a histatins5 mimic) as the template. The antimicrobial peptides with high activity and low toxicity were screened using minimal inhibitory concentration (MIC) test, hemolysis test, and CCK-8 assay. Streptococcus mutans biofilms cultured in 96-well plates were divided into experimental group (KR-1) and positive control group (CHX) and treated with concentration gradients (0.6×, 0.8×, 1× and 2× MICs) of KR-1 and CHX, respectively. Crystal violet staining was used for quantitative analysis of the changes of the biofilms after the treatments. The structural changes of the biofilms were observed with laser confocal microscopy after KR-1 treatment at 10 × MIC. The antimicrobial activity of KR-1 against oral Streptococcus was analyzed based on the time required for sterilization after KR-1 treatment. OBJECTIVE The MIC of KR-1 and KR-2 for S. mutans was 3.2 μmol/L and 12.8 μmol/L, respectively. Under the effective concentration, KR-1 and KR-2 resulted in hemolysis rates of 0.35% and 48.8% in rabbit red blood cells and lowered the survival rates of gingival fibroblasts to 88.7% and 21.94%, respectively. KR-1 treatment significantly reduced biofilm formation with a minimum biofilm inhibition concentration (MBIC50) lower than 1.92 μmol/L, and showed an even stronger antimicrobial than CHX at the concentration of 2.56 μmol/L (P=0.001). Confocal laser scanning microscopy revealed that the biofilm structure became loosened after KR-1 treatment, which was capable of killing about 90% of the bacteria within 5 min. OBJECTIVE The antimicrobial peptide KR-1 has a stronger antibacterial activity and a low toxicity with a good inhibitory effect against S. mutans biofilm.
Collapse
Affiliation(s)
- J He
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - D Liang
- Department of Stomatology, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan 528400, China
| | - Y Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - S Zuo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - W Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Synergistic effect and antibiofilm activity of an antimicrobial peptide with traditional antibiotics against multi-drug resistant bacteria. Microb Pathog 2021; 158:105056. [PMID: 34153416 DOI: 10.1016/j.micpath.2021.105056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023]
Abstract
Combined treatment of AMPs with classical antibiotics has gained interest because it often results in a synergistic antibacterial effect. We demonstrated here that Pt5-1c, an AMP derived from phosvitin, had antibacterial activity against the MDR bacteria (S. aureus USA500, E. coli 577 and K. pneumoniae 2182) in the presence of serum. On this basis, we showed that Pt5-1c was synergistically active with traditional antibiotics (oxacillin, vancomycin, streptomycin and azithromycin) against the three MDR bacteria growing as biofilms in vitro and in vivo. Moreover, Pt5-1c restored sensitivity of S. aureus USA500 to oxacillin and vancomycin, E. coli 577 to streptomycin and K. pneumoniae 2182 to azithromycin. Importantly, long-term exposure to Pt5-1c did not give rise to antimicrobial resistance. Collectively, these data not only suggest a promising combinatorial therapy strategy to combat antibiotics-tolerant infections but also present a possibility of Pt5-1c being used to prolong the application of antibiotics including oxacillin, vancomycin, streptomycin and azithromycin, that are under threat of becoming ineffective due to antibiotic resistance.
Collapse
|
27
|
Zhong C, Zhang F, Yao J, Zhu Y, Zhu N, Zhang J, Ouyang X, Zhang T, Li B, Xie J, Ni J. New Antimicrobial Peptides with Repeating Unit against Multidrug-Resistant Bacteria. ACS Infect Dis 2021; 7:1619-1637. [PMID: 33829758 DOI: 10.1021/acsinfecdis.0c00797] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the aim of tackling the increasingly serious antimicrobial resistance and improving the clinical potential of AMPs, a facile de novo strategy was adopted in this study, and a series of new peptides comprising repeating unit (WRX)n (X represents I, L, F, W, and K; n = 2, 3, 4, or 5) and amidation at C-terminus were designed. Most of the newly designed peptides exhibited a broad range of excellent antimicrobial activities against various bacteria, especially difficult-to-kill multidrug-resistant bacteria clinical isolates. Among (WRK)4 and (WRK)5, with n = 4 and n = 5 of repeating unit WRK, the highest selectivity for anionic bacterial membranes over a zwitterionic mammalian cell membrane is presented with strong antimicrobial potential and low toxicity. Additionally, both (WRK)4 and (WRK)5 emerged with fast killing speed and low tendency of resistance in sharp contrast to the conventional antibiotics ciprofloxacin, gentamicin, and imipenem, as well as having antimicrobial activity through multiple mechanisms including a membrane-disruptive mechanism and an intramolecular mechanism (nucleic acid leakage, DNA binding and ROS generation) characterized by a series of assays. Furthermore, (WRK)4 exerted impressive therapeutic effects in vivo similarly to polymyxin B but displayed much lower toxicity in vivo than polymyxin B. Taken together, the newly designed peptides (WRK)4 and (WRK)5 presented tremendous potential as novel antimicrobial candidates in response to the growing antimicrobial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Ouyang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tianyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| |
Collapse
|
28
|
Wu H, Xu P, Huang Y, Wang L, Ye X, Huang X, Ma L, Zhou C. PCL-1, a Trypsin-Resistant Peptide, Exerts Potent Activity Against Drug-Resistant Bacteria. Probiotics Antimicrob Proteins 2021; 13:1467-1480. [PMID: 34037941 DOI: 10.1007/s12602-021-09801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Antimicrobial peptides (AMPs), which hold tremendous promise in overcoming the emergence of drug resistance, are limited in wide clinical applications due to their instability, especially against trypsin. Herein, we designed six peptide mutants based on the cathelicidin CATHPb2, followed by screening. Pb2-1, which showed the best activity against drug-resistant bacteria among these mutants, was selected to be combined with the trypsin inhibitory loop ORB-C to obtain two hybrid peptides: PCL-1 and Pb2-1TI. Notably, both of the hybrid peptides exhibited a remarkable enhancement in trypsin resistance compared with Pb2-1. The tests showed that PCL-1 displayed broad-spectrum antimicrobial activity that was superior to that of Pb2-1TI. In addition, PCL-1 had relatively lower cytotoxicity than Pb2-1TI towards the L02 and HaCaT cell lines and negligible hemolysis, as well as tolerance to high concentrations of salt, extreme pH, and temperature variations. In vivo, PCL-1 effectively improved the survival rate of mice that were systemically infected with drug-resistant Escherichia coli through efficient bacterial clearance from the blood and organs. With regard to mode of action, PCL-1 damaged the integrity of the bacterial cell membrane and attached to the membrane surface while bound to bacterial genomic DNA to eventually kill the bacteria. Altogether, the trypsin-resistant peptide PCL-1 is expected to be a candidate for the clinical treatment of bacterial infections.
Collapse
Affiliation(s)
- Haomin Wu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China
| | - Pengfei Xu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China
| | - Ya Huang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China
| | - Liping Wang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China
| | - Xiaowei Huang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China.
| | - ChangLin Zhou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
29
|
Luo X, Ding L, Ye X, Zhu W, Zhang K, Li F, Jiang H, Zhao Z, Chen Z. An Smp43-Derived Short-Chain α-Helical Peptide Displays a Unique Sequence and Possesses Antimicrobial Activity against Both Gram-Positive and Gram-Negative Bacteria. Toxins (Basel) 2021; 13:toxins13050343. [PMID: 34064808 PMCID: PMC8150835 DOI: 10.3390/toxins13050343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Scorpion venoms are rich resources of antimicrobial peptides (AMPs). While the short-chain noncysteine-containing AMPs have attracted much attention as templates for drug development, the antimicrobial potential of long-chain noncysteine-containing AMPs has been largely overlooked. Here, by using the online HeliQuest server, we designed and analyzed a series of 14-residue fragments of Smp43, a 43-residue long-chain noncysteine-containing AMP identified from the venom of Scorpio maurus palmatus. We found that Smp43(1-14) shows high antimicrobial activity against both Gram-positive and Gram-negative bacteria and is nontoxic to mammalian cells at the antimicrobial dosage. Sequence alignments showed that the designed Smp43(1-14) displays a unique primary structure that is different from other natural short-chain noncysteine-containing AMPs from scorpions, such as Uy17, Uy192 and IsCT. Moreover, the peptide Smp43(1-14) caused concentration-dependent fluorescence increases in the bacteria for all of the tested dyes, propidium iodide, SYTOXTM Green and DiSC3-5, suggesting that the peptide may kill the bacteria through the formation of pore structures in the plasma membrane. Taken together, our work sheds light on a new avenue for the design of novel short-chain noncysteine-containing AMPs and provides a good peptide template with a unique sequence for the development of novel drugs for use against bacterial infectious diseases.
Collapse
Affiliation(s)
- Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Kaiyue Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Fangyan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Huiwen Jiang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Zhiwen Zhao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: ; Tel.: +86-(0)-719-8469073
| |
Collapse
|
30
|
Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Liu J, Chen F, Wang X, Peng H, Zhang H, Wang KJ. The Synergistic Effect of Mud Crab Antimicrobial Peptides Sphistin and Sph 12-38 With Antibiotics Azithromycin and Rifampicin Enhances Bactericidal Activity Against Pseudomonas Aeruginosa. Front Cell Infect Microbiol 2020; 10:572849. [PMID: 33194811 PMCID: PMC7645104 DOI: 10.3389/fcimb.2020.572849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
Overuse or abuse of antibiotics has undoubtedly accelerated the increasing prevalence of global antibiotic resistance crisis, and thus, people have been trying to explore approaches to decrease dosage of antibiotics or find new antibacterial agents for many years. Antimicrobial peptides (AMPs) are the ideal candidates that could kill pathogens and multidrug-resistant bacteria either alone or in combination with conventional antibiotics. In the study, the antimicrobial efficacy of mud crab Scylla paramamosain AMPs Sphistin and Sph12−38 in combination with eight selected antibiotics was evaluated using a clinical pathogen, Pseudomonas aeruginosa. It was interesting to note that the in vitro combination of rifampicin and azithromycin with Sphistin and Sph12−38 showed significant synergistic activity against P. aeruginosa. Moreover, an in vivo study was carried out using a mouse model challenged with P. aeruginosa, and the result showed that the combination of Sph12−38 with either rifampicin or azithromycin could significantly promote the healing of wounds and had the healing time shortened to 4–5 days compared with 7–8 days in control. The underlying mechanism might be due to the binding of Sphistin and Sph12−38 with P. aeruginosa lipopolysaccharides (LPS) and subsequent promotion of the intracellular uptake of rifampicin and azithromycin. Taken together, the significant synergistic antibacterial effect on P. aeruginosa in vitro and in vivo conferred by the combination of low dose of Sphistin and Sph12−38 with low dose of rifampicin and azithromycin would be beneficial for the control of antibiotic resistance and effective treatment of P. aeruginosa-infected diseases in the future.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaofei Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Hua Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
32
|
Nam HY, Choi J, Kumar SD, Nielsen JE, Kyeong M, Wang S, Kang D, Lee Y, Lee J, Yoon MH, Hong S, Lund R, Jenssen H, Shin SY, Seo J. Helicity Modulation Improves the Selectivity of Antimicrobial Peptoids. ACS Infect Dis 2020; 6:2732-2744. [PMID: 32865961 DOI: 10.1021/acsinfecdis.0c00356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modulation of conformational flexibility in antimicrobial peptides (AMPs) has been investigated as a strategy to improve their efficacy against bacterial pathogens while reducing their toxicity. Here, we synthesized a library of helicity-modulated antimicrobial peptoids by the position-specific incorporation of helix-inducing monomers. The peptoids displayed minimal variations in hydrophobicity, which permitted the specific assessment of the effect of conformational differences on antimicrobial activity and selectivity. Among the moderately helical peptoids, the most dramatic increase in selectivity was observed in peptoid 17, providing more than a 20-fold increase compared to fully helical peptoid 1. Peptoid 17 had potent broad-spectrum antimicrobial activity that included clinically isolated multi-drug-resistant pathogens. Compared to pexiganan AMP, 17 showed superior metabolic stability, which could potentially reduce the dosage needed, alleviating toxicity. Dye-uptake assays and high-resolution imaging revealed that the antimicrobial activity of 17 was, as with many AMPs, mainly due to membrane disruption. However, the high selectivity of 17 reflected its unique conformational characteristics, with differential interactions between bacterial and erythrocyte membranes. Our results suggest a way to distinguish different membrane compositions solely by helicity modulation, thereby improving the selectivity toward bacterial cells with the maintenance of potent and broad-spectrum activity.
Collapse
Affiliation(s)
| | | | - S. Dinesh Kumar
- Department of Biomedical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | | | | | | | | | | | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| | | | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde DK-4000, Denmark
| | - Song Yub Shin
- Department of Biomedical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | | |
Collapse
|
33
|
Müller AT, Posselt G, Gabernet G, Neuhaus C, Bachler S, Blatter M, Pfeiffer B, Hiss JA, Dittrich PS, Altmann KH, Wessler S, Schneider G. Morphing of Amphipathic Helices to Explore the Activity and Selectivity of Membranolytic Antimicrobial Peptides. Biochemistry 2020; 59:3772-3781. [PMID: 32936629 PMCID: PMC7547863 DOI: 10.1021/acs.biochem.0c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Indexed: 01/17/2023]
Abstract
Naturally occurring membranolytic antimicrobial peptides (AMPs) are rarely cell-type selective and highly potent at the same time. Template-based peptide design can be used to generate AMPs with improved properties de novo. Following this approach, 18 linear peptides were obtained by computationally morphing the natural AMP Aurein 2.2d2 GLFDIVKKVVGALG into the synthetic model AMP KLLKLLKKLLKLLK. Eleven of the 18 chimeric designs inhibited the growth of Staphylococcus aureus, and six peptides were tested and found to be active against one resistant pathogenic strain or more. One of the peptides was broadly active against bacterial and fungal pathogens without exhibiting toxicity to certain human cell lines. Solution nuclear magnetic resonance and molecular dynamics simulation suggested an oblique-oriented membrane insertion mechanism of this helical de novo peptide. Temperature-resolved circular dichroism spectroscopy pointed to conformational flexibility as an essential feature of cell-type selective AMPs.
Collapse
Affiliation(s)
- Alex T. Müller
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Gernot Posselt
- Department
of Biosciences, Division of Microbiology, Paris Lodron University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Gisela Gabernet
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Claudia Neuhaus
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Simon Bachler
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, 4058 Basel, Switzerland
| | - Markus Blatter
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4002 Basel, Switzerland
| | - Bernhard Pfeiffer
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Jan A. Hiss
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Petra S. Dittrich
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, 4058 Basel, Switzerland
| | - Karl-Heinz Altmann
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Silja Wessler
- Department
of Biosciences, Division of Microbiology, Paris Lodron University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Gisbert Schneider
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
34
|
Ya’u Sabo Ajingi, Nujarin Jongruja. Antimicrobial Peptide Engineering: Rational Design, Synthesis, and Synergistic Effect. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Selvarajan V, Obuobi S, Ee PLR. Silica Nanoparticles-A Versatile Tool for the Treatment of Bacterial Infections. Front Chem 2020; 8:602. [PMID: 32760699 PMCID: PMC7374024 DOI: 10.3389/fchem.2020.00602] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
The rapid emergence of drug resistance continues to outpace the development of new antibiotics in the treatment of infectious diseases. Conventional therapy is currently limited by drug access issues such as low intracellular drug accumulations, drug efflux by efflux pumps and/or enzymatic degradation. To improve access, targeted delivery using nanocarriers could provide the quantum leap in intracellular drug transport and retention. Silica nanoparticles (SiNPs) with crucial advantages such as large surface area, ease-of-functionalization, and biocompatibility, are one of the most commonly used nanoparticles in drug delivery applications. A porous variant, called the mesoporous silica nanoparticles (MSN), also confers additional amenities such as tunable pore size and volume, leading to high drug loading capacity. In the context of bacterial infections, SiNPs and its variants can act as a powerful tool for the targeted delivery of antimicrobials, potentially reducing the impact of high drug dosage and its side effects. In this review, we will provide an overview of SiNPs synthesis, its structural proficiency which is critical in loading and conjugation of antimicrobials and its role in different antimicrobial applications with emphasis on intracellular drug targeting in anti-tuberculosis therapy, nitric oxide delivery, and metal nanocomposites. The role of SiNPs in antibiofilm coatings will also be covered in the context of nosocomial infections and surgical implants.
Collapse
Affiliation(s)
- Vanitha Selvarajan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| |
Collapse
|
36
|
Synthesis and anti-pseudomonal activity of new ß-Ala modified analogues of the antimicrobial peptide anoplin. Int J Med Microbiol 2020; 310:151433. [PMID: 32654770 DOI: 10.1016/j.ijmm.2020.151433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022] Open
Abstract
Due to the rise of antibiotic-resistant bacteria around the world, AMPs (antimicrobial peptides), depending on non-specific membrane mechanism and low tendency to develop bacterial resistance, attract widespread attentions as novel antimicrobial alternatives for treating bacterial infections. In this study, a series of new β-Ala modified-antimicrobial peptide analogues of anoplin were designed and synthesized, and their biological activities were described. Most of the new peptides showed perfect antimicrobial activities against two antibiotic-sensitive Pseudomonas aeruginosa strains and three clinical isolates of multidrug-resistant P. aeruginosa strains without significant hemolysis or cytotoxicity. More significantly, Ano-1β and Ano-8β (substituting positions 1 and 8 of anoplin with β-Ala, respectively) exhibited the best antimicrobial potency. Additionally, the two new peptides were stable under physiological conditions and displayed preferable in vivo antimicrobial activity with less acute toxicity. Notably, Ano-1β and Ano-8β hardly generated resistance in contrast to conventional antibiotics rifampicin and gentamicin, and they exhibited better anti-biofilm activity and synergistic or additive effects in combination with conventional antibiotics. What's more, Ano-1β and Ano-8β had strong membrane disruption as evidenced by outer membrane permeabilization and cytoplasmic membrane depolarization assays. Confocal laser scanning microscopy and scanning electron microscopy further demonstrated that the two new peptides could destroy the bacterial membrane integrity. Collectively, the incorporation of β-Ala was a reasonable approach for new antimicrobial peptides design, and the new peptides Ano-1β and Ano-8β might be promising antimicrobial candidates in combating the increasing antibiotic-resistant bacteria.
Collapse
|
37
|
Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN, Cândido ES, Franco OL. Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? Front Microbiol 2020; 10:3097. [PMID: 32038544 PMCID: PMC6987251 DOI: 10.3389/fmicb.2019.03097] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs), especially antibacterial peptides, have been widely investigated as potential alternatives to antibiotic-based therapies. Indeed, naturally occurring and synthetic AMPs have shown promising results against a series of clinically relevant bacteria. Even so, this class of antimicrobials has continuously failed clinical trials at some point, highlighting the importance of AMP optimization. In this context, the computer-aided design of AMPs has put together crucial information on chemical parameters and bioactivities in AMP sequences, thus providing modes of prediction to evaluate the antibacterial potential of a candidate sequence before synthesis. Quantitative structure-activity relationship (QSAR) computational models, for instance, have greatly contributed to AMP sequence optimization aimed at improved biological activities. In addition to machine-learning methods, the de novo design, linguistic model, pattern insertion methods, and genetic algorithms, have shown the potential to boost the automated design of AMPs. However, how successful have these approaches been in generating effective antibacterial drug candidates? Bearing this in mind, this review will focus on the main computational strategies that have generated AMPs with promising activities against pathogenic bacteria, as well as anti-infective potential in different animal models, including sepsis and cutaneous infections. Moreover, we will point out recent studies on the computer-aided design of antibiofilm peptides. As expected from automated design strategies, diverse candidate sequences with different structural arrangements have been generated and deposited in databases. We will, therefore, also discuss the structural diversity that has been engendered.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Raquel Q Orozco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Instituto de Ciências Biológicas, Departamento de Biologia, Programa de Pós-Graduação em Ciências Biológicas (Imunologia/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Elizabete S Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Instituto de Ciências Biológicas, Departamento de Biologia, Programa de Pós-Graduação em Ciências Biológicas (Imunologia/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
38
|
Miao X, Zhou T, Zhang J, Xu J, Guo X, Hu H, Zhang X, Hu M, Li J, Yang W, Xie J, Xu Z, Mou L. Enhanced cell selectivity of hybrid peptides with potential antimicrobial activity and immunomodulatory effect. Biochim Biophys Acta Gen Subj 2020; 1864:129532. [PMID: 31953126 DOI: 10.1016/j.bbagen.2020.129532] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hybridization is a useful strategy to bond the advantages of different peptides into novel constructions. We designed a series of AMPs based on the structures of a synthetic AMP KFA3 and a naturally-occurred host defense peptide substance P (SP) to obtain peptides retaining the high antibacterial activity of KFA3 and the immunomodulatory activity and low cytotoxicity of SP. METHODS Two repeats of KFA and different C terminal fragments of SP were hybridized, generating a series of novel AMPs (KFSP1-8). The antibacterial activities, host cell toxicity and immunomodulation were measured. The antibacterial mechanisms were investigated. RESULTS Hybrid peptides KFSP1-4 exerted substantial antibacterial activities against Gram-negative bacteria of standard strains and clinical drug-resistant isolates including E.coli, A.baumannii and P.aeruginosa, while showing little toxicity towards host cells. Compared with KFA3, moderate reduction in α-helix content and the interruption in α-helix continuality were indicated in CD spectra analysis and secondary-structure simulation in these peptides. Membrane permeabilization combined with time-kill studies and FITC-labeled imaging, indicated a selective membrane interaction of KFSP1 with bacteria cell membranes. By specially activating NK1 receptor, the hybrid peptides kept the ability of SP to induce intracellular calcium release and ERK1/2 phosphorylation, but unable to stimulate NF-κB phosphorylation. KFSP1 facilitated the survival of mouse macrophage RAW264.7, directly interacting with LPS and inhibiting the LPS-induced NF-κB phosphorylation and TNF-α expression. CONCLUSION Hybridization is a useful strategy to bond the advantages of different peptides. KFSP1 and its analogs are worth of advanced efforts to explore their potential applications as novel antimicrobial agents.
Collapse
Affiliation(s)
- Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Tianxiong Zhou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Jingjie Xu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Xiaomin Guo
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Hui Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Xiaowei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Mingning Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China
| | - Jingyi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Lingyun Mou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
39
|
Antimicrobial Activity of Protein Fraction from Naja ashei Venom Against Staphylococcus epidermidis. Molecules 2020; 25:molecules25020293. [PMID: 31936872 PMCID: PMC7024148 DOI: 10.3390/molecules25020293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023] Open
Abstract
One of the key problems of modern infectious disease medicine is the growing number of drug-resistant and multi-drug-resistant bacterial strains. For this reason, many studies are devoted to the search for highly active antimicrobial substances that could be used in therapy against bacterial infections. As it turns out, snake venoms are a rich source of proteins that exert a strong antibacterial effect, and therefore they have become an interesting research material. We analyzed Naja ashei venom for such antibacterial properties, and we found that a specific composition of proteins can act to eliminate individual bacterial cells, as well as the entire biofilm of Staphylococcus epidermidis. In general, we used ion exchange chromatography (IEX) to obtain 10 protein fractions with different levels of complexity, which were then tested against certified and clinical strains of S. epidermidis. One of the fractions (F2) showed exceptional antimicrobial effects both alone and in combination with antibiotics. The protein composition of the obtained fractions was determined using mass spectrometry techniques, indicating a high proportion of phospholipases A2, three-finger toxins, and L-amino acids oxidases in F2 fraction, which are most likely responsible for the unique properties of this fraction. Moreover, we were able to identify a new group of low abundant proteins containing the Ig-like domain that have not been previously described in snake venoms.
Collapse
|
40
|
Zhong C, Liu T, Gou S, He Y, Zhu N, Zhu Y, Wang L, Liu H, Zhang Y, Yao J, Ni J. Design and synthesis of new N-terminal fatty acid modified-antimicrobial peptide analogues with potent in vitro biological activity. Eur J Med Chem 2019; 182:111636. [PMID: 31466017 DOI: 10.1016/j.ejmech.2019.111636] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022]
Abstract
Developing novel antimicrobial agents is a top priority in fighting against bacterial resistance. Thus, a series of new monomer and dimer peptides were designed and synthesized by conjugating fatty acids at the N-terminus of partial d-amino acid substitution analogues of anoplin and dimerization. The new peptides exhibited more efficient killing of gram-negative and gram-positive bacteria, including methicillin-resistant Staphylococcus aureus compared with the parent peptide anoplin, and the dimer peptides were superior to the monomer peptides. It was important that the new peptides displayed low impact on bacterial resistance development. In addition, the antimicrobial activities were not significantly influenced by a physiological salt environment. They also presented high stability in the presence of protease or serum. Almost all of the new peptides had better selectivity towards anionic bacterial membranes over zwitterionic mammalian cell membranes. Moreover, the new peptides displayed synergistic or additive effects when used together with the antibiotics rifampicin and polymyxin B. These results showed that the new peptides could also prevent the formation of bacterial biofilms. Furthermore, outer/inner membrane permeabilization and cytoplasmic membrane depolarization experiments revealed that the new peptides had strong membrane permeabilization and depolarization. Confocal laser scanning microscopy, flow cytometry analysis and scanning electron microscopy further demonstrated that the new peptides could damage the integrity of the bacterial membrane. Finally, a DNA-binding affinity assay showed that the new peptides could bind to bacterial DNA. In summary, the conjugation of fatty acids at the N-terminus of peptides and dimerization are promising strategies for obtaining potent antimicrobial agents.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tianqi Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yongtao He
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Li Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
41
|
Torres MD, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide Design Principles for Antimicrobial Applications. J Mol Biol 2019; 431:3547-3567. [DOI: 10.1016/j.jmb.2018.12.015] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 02/08/2023]
|
42
|
Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM, Shamova OV. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance? Front Cell Infect Microbiol 2019; 9:128. [PMID: 31114762 PMCID: PMC6503114 DOI: 10.3389/fcimb.2019.00128] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Rapidly growing resistance of pathogenic bacteria to conventional antibiotics leads to inefficiency of traditional approaches of countering infections and determines the urgent need for a search of fundamentally new anti-infective drugs. Antimicrobial peptides (AMPs) of the innate immune system are promising candidates for a role of such novel antibiotics. However, some cytotoxicity of AMPs toward host cells limits their active implementation in medicine and forces attempts to design numerous structural analogs of the peptides with optimized properties. An alternative route for the successful AMPs introduction may be their usage in combination with conventional antibiotics. Synergistic antibacterial effects have been reported for a number of such combinations, however, the molecular mechanisms of the synergy remain poorly understood and little is known whether AMPs cytotoxicy for the host cells increases upon their application with antibiotics. Our study is directed to examination of a combined action of natural AMPs with different structure and mode of action (porcine protegrin 1, caprine bactenecin ChBac3.4, human alpha- and beta-defensins (HNP-1, HNP-4, hBD-2, hBD-3), human cathelicidin LL-37), and egg white lysozyme with varied antibiotic agents (gentamicin, ofloxacin, oxacillin, rifampicin, polymyxin B, silver nanoparticles) toward selected bacteria, including drug-sensitive and drug-resistant strains, as well as toward some mammalian cells (human erythrocytes, PBMC, neutrophils, murine peritoneal macrophages and Ehrlich ascites carcinoma cells). Using “checkerboard titrations” for fractional inhibitory concentration indexes evaluation, it was found that synergy in antibacterial action mainly occurs between highly membrane-active AMPs (e.g., protegrin 1, hBD-3) and antibiotics with intracellular targets (e.g., gentamicin, rifampcin), suggesting bioavailability increase as the main model of such interaction. In some combinations modulation of dynamics of AMP-bacterial membrane interaction in presence of the antibiotic was also shown. Cytotoxic effects of the same combinations toward normal eukaryotic cells were rarely synergistic. The obtained data approve that combined application of antimicrobial peptides with antibiotics or other antimicrobials is a promising strategy for further development of new approach for combating antibiotic-resistant bacteria by usage of AMP-based therapeutics. Revealing the conventional antibiotics that increase the activity of human endogenous AMPs against particular pathogens is also important for cure strategies elaboration.
Collapse
Affiliation(s)
- Maria S Zharkova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Dmitriy S Orlov
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Olga Yu Golubeva
- Laboratory of Nanostructures Research, Institute of Silicate Chemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Oleg B Chakchir
- Nanobiotechnology Laboratory, Saint Petersburg National Research Academic University of the Russian Academy of Science, Saint Petersburg, Russia
| | - Igor E Eliseev
- Nanobiotechnology Laboratory, Saint Petersburg National Research Academic University of the Russian Academy of Science, Saint Petersburg, Russia
| | - Tatyana M Grinchuk
- Laboratory of Intracellular Signaling, Institute of Cytology of the Russian Academy of Science, Saint Petersburg, Russia
| | - Olga V Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
43
|
Yang Y, Liu Z, He X, Yang J, Wu J, Yang H, Li M, Qian Q, Lai R, Xu W, Wei L. A small mycobacteriophage-derived peptide and its improved isomer restrict mycobacterial infection via dual mycobactericidal-immunoregulatory activities. J Biol Chem 2019; 294:7615-7631. [PMID: 30894414 DOI: 10.1074/jbc.ra118.006968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Mycobacteriophages express various peptides/proteins to infect Mycobacterium tuberculosis (M. tb). Particular attention has been paid to mycobacteriophage-derived endolysin proteins. We herein characterized a small mycobacteriophage-derived peptide designated AK15 with potent anti-M. tb activity. AK15 adopted cationic amphiphilic α-helical structure, and on the basis of this structure, we designed six isomers with increased hydrophobic moment by rearranging amino acid residues of the helix. We found that one of these isomers, AK15-6, exhibits enhanced anti-mycobacterial efficiency. Both AK15 and AK15-6 directly inhibited M. tb by trehalose 6,6'-dimycolate (TDM) binding and membrane disruption. They both exhibited bactericidal activity, cell selectivity, and synergistic effects with rifampicin, and neither induced drug resistance to M. tb They efficiently attenuated mycobacterial load in the lungs of M. tb-infected mice. We observed that lysine, arginine, tryptophan, and an α-helix are key structural requirements for their direct anti-mycobacterial action. Of note, they also exhibited immunomodulatory effects, including inhibition of proinflammatory response in TDM-stimulated or M. tb-infected murine bone marrow-derived macrophages (BMDMs) and M.tb-infected mice and induction of only a modest level of cytokine (tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6)) production in murine BMDMs and a T-cell cytokine (interferin-γ (IFN-γ) and TNF-α) response in murine lung and spleen. In summary, characterization of a small mycobacteriophage-derived peptide and its improved isomer revealed that both efficiently restrain M. tb infection via dual mycobactericidal-immunoregulatory activities. Our work provides clues for identifying small mycobacteriophage-derived anti-mycobacterial peptides and improving those that have cationic amphiphilic α-helices.
Collapse
Affiliation(s)
- Yang Yang
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu
| | - Zhen Liu
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu
| | - Xiaoqin He
- the Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan.,the National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, Jiangsu Province
| | - Juanjuan Yang
- the Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, and
| | - Jing Wu
- the School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Hailong Yang
- the School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Min Li
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu
| | - Qian Qian
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu
| | - Ren Lai
- the Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan,
| | - Wei Xu
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu,
| | - Lin Wei
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu,
| |
Collapse
|
44
|
Liu B, Yao T, Ren L, Zhao Y, Yuan X. Antibacterial PCL electrospun membranes containing synthetic polypeptides for biomedical purposes. Colloids Surf B Biointerfaces 2018; 172:330-337. [DOI: 10.1016/j.colsurfb.2018.08.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/15/2022]
|
45
|
Milosavljevic V, Haddad Y, Moulick A, Buchtelova H, Guran R, Pospisil T, Stokowa-Sołtys K, Heger Z, Richtera L, Kopel P, Adam V. Functional Analysis of Novicidin Peptide: Coordinated Delivery System for Zinc via Schiff Base Ligand. Bioconjug Chem 2018; 29:2954-2969. [PMID: 30086240 DOI: 10.1021/acs.bioconjchem.8b00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novicidin (NVC), is a membrane-penetrating peptide, which forms a stable complex with Zn-Schiff base with interesting antitumor selectivity. We studied NVC derivatives to determine functional roles of key amino acids in toxicity, helicity, and binding of the Zn-Schiff base complex. Trimmed derivatives highlighted the role of peptide length and helicity in toxicity and membrane penetration. The removal of Lys from position 1 and 2 strongly increases the ability to disrupt the membranes. The trimming of the N-terminal residues significantly increases the stability of peptide helicity enhancing penetrating properties. Gly residue derivatives undermined a role of peptide bending in membrane penetration and toxicity. After the substitution of the central Gly derivatives with Ile or Lys, the peptides retained toxicity. These results illustrate the minor role of central helix bending in NVC toxicity. Binding-site-peptide derivatives identified His residue as the sole Zn-Schiff base binding site and eliminated the role of other aromatic residues.
Collapse
Affiliation(s)
- Vedran Milosavljevic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.,Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic
| | - Yazan Haddad
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.,Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic
| | - Amitava Moulick
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.,Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic
| | - Hana Buchtelova
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.,Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic
| | - Roman Guran
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.,Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic
| | - Tomas Pospisil
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research , Faculty of Science, Palacky University , Slechtitelu 241/27 , 783 71 , Olomouc , Czech Republic
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry , University of Wrocław , Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Zbynek Heger
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.,Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic
| | - Lukas Richtera
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.,Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic
| | - Pavel Kopel
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.,Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.,Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic
| |
Collapse
|
46
|
Lou W, Venkataraman S, Zhong G, Ding B, Tan JP, Xu L, Fan W, Yang YY. Antimicrobial polymers as therapeutics for treatment of multidrug-resistant Klebsiella pneumoniae lung infection. Acta Biomater 2018; 78:78-88. [PMID: 30031912 DOI: 10.1016/j.actbio.2018.07.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/26/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is one of the most common pathogens in hospital-acquired infections. It is often resistant to multiple antibiotics (including carbapenems), and can cause severe pneumonia. In search of effective antimicrobials, we recently developed polyionenes that were demonstrated to be potent against a broad-spectrum of microbes in vitro. In this study, polyionenes containing rigid amide bonds were synthesized to treat multidrug-resistant (MDR) K. pneumoniae lung infection. The polyionene exhibited broad-spectrum activity against clinically-isolated MDR bacteria with low minimum inhibitory concentrations (MICs). It also demonstrated stronger antimicrobial activity against 20 clinical strains of K. pneumoniae and more rapid killing kinetics than imipenem and other commonly used antibiotics. Multiple treatments with imipenem and gentamycin led to drug resistance in K. pneumoniae, while repeated use of the polymer did not cause resistance development due to its membrane-disruption antimicrobial mechanism. Additionally, the polymer showed potent anti-biofilm activity. In a MDR K. pneumoniae lung infection mouse model, the polymer demonstrated lower effective dose than imipenem with negligible systemic toxicity. The polymer treatment significantly alleviated lung injury, markedly reduced K. pneumoniae counts in the blood and major organs, and decreased mortality. Given its potent in vivo antimicrobial activity, negligible toxicity and ability of mitigating resistance development, the polyionene may be used to treat MDR K. pneumoniae lung infection. STATEMENT OF SIGNIFICANCE Klebsiella pneumoniae (K. pneumoniae) is one of the most common pathogens in hospital-acquired infections, is often resistant to multiple antibiotics including carbapenems and can cause severe pneumonia. In this study, we report synthesis of antimicrobial polymers (polyionenes) and their use as antimicrobial agents for treatment of K. pneumoniae-caused pneumonia. The polymers have broad spectrum antibacterial activity against clinically isolated MDR bacteria, and eliminate MDR K. pneumoniae more effectively and rapidly than clinically used antibiotics. The polymer treatment also provides higher survival rate and faster bacterial removal from the major organs and the blood than the antibiotics. Repeated use of the polymer does not lead to resistance development. More importantly, at the therapeutic dose, the polymer treatment does not cause acute toxicity. Given its in vivo efficacy and negligible toxicity, the polymer is a promising candidate for the treatment of MDR K. pneumoniae-caused pneumonia.
Collapse
|
47
|
Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino Acids 2018; 50:995-1005. [PMID: 29728914 PMCID: PMC6060862 DOI: 10.1007/s00726-018-2575-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Hemocyanin, the multifunctional glycoprotein in the hemolymph of invertebrates, can generate various antimicrobial peptides (AMPs). Given the rising interest in the use of natural therapeutic agents such as AMPs, alternative and more efficient methods for their generation are being explored. In this work, free online software was first applied to predict the generation of antimicrobial peptides from the large subunit of Litopenaeus vannamei hemocyanin. Twenty potential antimicrobial peptides ranging from 1.5 to 1.9 kDa were predicted, five of which had α-helical structures and were selected for antibacterial activity testing. The results indicated that these five peptides had antibacterial activity against seven different bacteria. Of the five peptides, one peptide, designated L1, had the strongest antibacterial activity against both Gram-negative and Gram-positive bacteria. Moreover, CD and NMR data showed that L1 had both α-helical and β-turns structural composition, and that these structures were essential for L1’s antibacterial activity. Furthermore, SEM analysis revealed that peptide L1 had broad-spectrum activity against both Gram-positive and Gram-negative bacteria, as it could destroy the bacterial cell walls and kill the bacteria. Thus, L1 is a very potent antimicrobial peptide that can be exploited and used in antibacterial therapeutics.
Collapse
|
48
|
Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front Immunol 2017; 8:1499. [PMID: 29163551 PMCID: PMC5681943 DOI: 10.3389/fimmu.2017.01499] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a global health emergency due to an alarming rise of antimicrobial resistance to its treatment. Despite of the serious effort that has been applied to develop effective antitubercular chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. A large amount of literature is now accessible on the AMP mechanisms of action against a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still scarce. In particular, there is an urgent need to integrate all available interdisciplinary strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In this context, we should not underestimate our endogenous antimicrobial proteins and peptides as ancient players of the human host defense system. We are confident that novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, with reduced toxicity, should significantly contribute to reverse the tide of antimycobacterial drug resistance. In this review, we have provided an up to date perspective of the current research on AMPs to be applied in the fight against TB. A better understanding on the mechanisms of action of human endogenous peptides should ensure the basis for the best guided design of novel antitubercular chemotherapeutics.
Collapse
Affiliation(s)
- Javier Arranz-Trullén
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Lu Lu
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Ester Boix
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
49
|
AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res 2017; 128:288-305. [PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü) Çukurova University, Adana, Turkey.
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Gülfer Yakıcı
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Çukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
50
|
The synergistic antimicrobial effects of novel bombinin and bombinin H peptides from the skin secretion of Bombina orientalis. Biosci Rep 2017; 37:BSR20170967. [PMID: 28894024 PMCID: PMC5634238 DOI: 10.1042/bsr20170967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023] Open
Abstract
Bombinin and bombinin H are two antimicrobial peptide (AMP) families initially discovered from the skin secretion of Bombina that share the same biosynthetic precursor-encoding cDNAs, but have different structures and physicochemical properties. Insight into their possible existing relationship lead us to perform the combination investigations into their anti-infectious activities. In this work, we report the molecular cloning and functional characterization of two novel AMPs belonging to bombinin and bombinin H families from secretions of Bombina orientalis Their mature peptides (BHL-bombinin and bombinin HL), coded by single ORF, were chemically synthesized along with an analogue peptide that replaced L-leucine with D-leucine from the second position of the N-terminus (bombinin HD). CD analysis revealed that all of them displayed well-defined α-helical structures in membrane mimicking environments. Furthermore, BHL-bombinin displayed broad-spectrum bactericidal activities on a wide range of microorganisms, while bombinin H only exhibited a mildly bacteriostatic effect on the Gram-positive bacteria Staphylococcus aureus The combination potency of BHL-bombinin with either bombinin HL or bombinin HD showed the synergistic inhibition activities against S. aureus (fractional inhibitory concentration index (FICI): 0.375). A synergistic effect has also been observed between bombinin H and ampicillin, which was further systematically evaluated and confirmed by in vitro time-killing investigations. Haemolytic and cytotoxic examinations exhibited a highly synergistic selectivity and low cytotoxicity on mammalian cells of these three peptides. Taken together, the discovery of the potent synergistic effect of AMPs in a single biosynthetic precursor with superior functional selectivity provides a promising strategy to combat multidrug-resistant pathogens in clinical therapy.
Collapse
|