1
|
Luo F, Yang Y, Li D, Mao R, Huang Y, Lu J, Zhu X, Wang K, Fan Y, Zhang X. Low-temperature plasma effect-induced enhancement of osteogenic activity in calcium phosphate ceramics. Acta Biomater 2025:S1742-7061(25)00301-0. [PMID: 40319990 DOI: 10.1016/j.actbio.2025.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Calcium phosphate (Ca-P) ceramics are promising bioactive material that can be used for the remodeling and regeneration of bone tissue. However, it's sintering temperature-dependent mechanical strength, which is negatively correlated with its bioactivity, causes difficulties in improving the comprehensive performance of Ca-P ceramics. Here, the femtosecond laser (FSL) with low-temperature plasma effect was adopted to modify the hydroxyapatite (HA) ceramics after high temperatures (1250 °C) sintering, pursuing higher mechanical strength along with better osteogenic activity. The changes in the physicochemical properties of the materials and the osteogenic activity were characterized and investigated. Cell evaluations and in vivo experiments were performed to assess and verify the effect of FSL processing on the osteogenic capability of HA ceramics. The results indicated that α- and β-tricalcium phosphate (TCP) multiphase components were formed on the HA ceramic surfaces after laser treatment, simultaneously bringing about surface micro-nano porous structure, accelerated release of calcium (Ca) and phosphate (Pi) ions, enhancement of roughness, hydrophilicity and surface energy. Their synergistic effect facilitated apatite precipitation on the HA surface, promoted osteogenic differentiation and osteogenic/angiogenic gene expression. In vivo results also confirmed the enhancement of HA ceramic osteogenic activity by FSL treatment. This study presents an effective strategy of introducing FSL etching to high-temperature sintered Ca-P ceramics to improve the bone regeneration of HA ceramics and attain satisfactory mechanical strength at the same time. It will further promote the clinical application of HA ceramics in the field of bone regenerative repair. STATEMENT OF SIGNIFICANCE: This study introduces a method that uses the low-temperature plasma effect of the femtosecond laser (FSL) to modify the surfaces of high-temperature sintered hydroxyapatite (HA) ceramics, enhancing their osteogenic activity while maintaining the original mechanical strength. FSL processing induces the formation of bioactive multiphase of tricalcium phosphate (α-TCP and β-TCP) on the surfaces, creates micro-nano topographies, improves hydrophilicity and surface energy, promoting osteoblast differentiation and osteogenic gene expression for faster bone regeneration. This method overcomes the issue that high-temperature sintered HA ceramics have high strength but low osteogenic activity. It provides a modification method for HA ceramics with well-characterized performance enhancements, offering a convenient and effective strategy for high quality bone regenerative repair.
Collapse
Affiliation(s)
- Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yu Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Dongxuan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Chengdu 610064, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Ximenes-Carballo C, Rey-Viñolas S, Blanco-Fernandez B, Pérez-Amodio S, Engel E, Castano O. Combining three-dimensionality and CaP glass-PLA composites: Towards an efficient vascularization in bone tissue healing. BIOMATERIALS ADVANCES 2024; 164:213985. [PMID: 39146606 DOI: 10.1016/j.bioadv.2024.213985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Bone regeneration often fails due to implants/grafts lacking vascular supply, causing necrotic tissue and poor integration. Microsurgical techniques are used to overcome this issue, allowing the graft to anastomose. These techniques have limitations, including severe patient morbidity and current research focuses on stimulating angiogenesis in situ using growth factors, presenting limitations, such as a lack of control and increased costs. Non-biological stimuli are necessary to promote angiogenesis for successful bone constructs. Recent studies have reported that bioactive glass dissolution products, such as calcium-releasing nanoparticles, stimulate hMSCs to promote angiogenesis and new vasculature. Moreover, the effect of 3D microporosity has also been reported to be important for vascularisation in vivo. Therefore, we used room-temperature extrusion 3D printing with polylactic acid (PLA) and calcium phosphate (CaP) based glass scaffolds, focusing on geometry and solvent displacement for scaffold recovery. Combining both methods enabled reproducible control of 3D structure, porosity, and surface topography. Scaffolds maintained calcium ion release at physiological levels and supported human mesenchymal stem cell proliferation. Scaffolds stimulated the secretion of vascular endothelial growth factor (VEGF) after 3 days of culture. Subcutaneous implantation in vivo indicated good scaffold integration and blood vessel infiltration as early as one week after. PLA-CaP scaffolds showed increased vessel maturation 4 weeks after implantation without vascular regression. Results show PLA/CaP-based glass scaffolds, made via controlled 3D printing, support angiogenesis and vessel maturation, promising improved vascularization for bone regeneration.
Collapse
Affiliation(s)
- Celia Ximenes-Carballo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sergi Rey-Viñolas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Barbara Blanco-Fernandez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; IMEM-BRT group, Materials Science and Engineering, Polytechnical University of Catalonia (UPC), Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; IMEM-BRT group, Materials Science and Engineering, Polytechnical University of Catalonia (UPC), Barcelona, Spain.
| | - Oscar Castano
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona, Spain; Nanobioengineering and Biomaterials, Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
| |
Collapse
|
3
|
Pan P, Wang J, Wang X, Yu X, Chen T, Jiang C, Liu W. Barrier Membrane with Janus Function and Structure for Guided Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47178-47191. [PMID: 39222394 DOI: 10.1021/acsami.4c08737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Guided bone regeneration (GBR) technology has been demonstrated to be an effective method for reconstructing bone defects. A membrane is used to cover the bone defect to stop soft tissue from growing into it. The biosurface design of the barrier membrane is key to the technology. In this work, an asymmetric functional gradient Janus membrane was designed to address the bidirectional environment of the bone and soft tissue during bone reconstruction. The Janus membrane was simply and efficiently prepared by the multilayer self-assembly technique, and it was divided into the polycaprolactone isolation layer (PCL layer, GBR-A) and the nanohydroxyapatite/polycaprolactone/polyethylene glycol osteogenic layer (HAn/PCL/PEG layer, GBR-B). The morphology, composition, roughness, hydrophilicity, biocompatibility, cell attachment, and osteogenic mineralization ability of the double surfaces of the Janus membrane were systematically evaluated. The GBR-A layer was smooth, dense, and hydrophobic, which could inhibit cell adhesion and resist soft tissue invasion. The GBR-B layer was rough, porous, hydrophilic, and bioactive, promoting cell adhesion, proliferation, matrix mineralization, and expression of alkaline phosphatase and RUNX2. In vitro and in vivo results showed that the membrane could bind tightly to bone, maintain long-term space stability, and significantly promote new bone formation. Moreover, the membrane could fix the bone filling material in the defect for a better healing effect. This work presents a straightforward and viable methodology for the fabrication of GBR membranes with Janus-based bioactive surfaces. This work may provide insights for the design of biomaterial surfaces and treatment of bone defects.
Collapse
Affiliation(s)
- Peng Pan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, P. R. China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tiantian Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chundong Jiang
- Chongqing Institute of Mesoscopic Medical Porous Materials, Chongqing 401120, P. R. China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Bosch-Rué È, Díez-Tercero L, Buitrago JO, Castro E, Pérez RA. Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomater 2023; 166:14-41. [PMID: 37302735 DOI: 10.1016/j.actbio.2023.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
It is widely known that bone has intrinsic capacity to self-regenerate after injury. However, the physiological regeneration process can be impaired when there is an extensive damage. One of the main reasons is due to the inability to establish a new vascular network that ensures oxygen and nutrient diffusion, leading to a necrotic core and non-junction of bone. Initially, bone tissue engineering (BTE) emerged to use inert biomaterials to just fill bone defects, but it eventually evolved to mimic bone extracellular matrix and even stimulate bone physiological regeneration process. In this regard, the stimulation of osteogenesis has gained a lot of attention especially in the proper stimulation of angiogenesis, being critical to achieve a successful osteogenesis for bone regeneration. Besides, the immunomodulation of a pro-inflammatory environment towards an anti-inflammatory one upon scaffold implantation has been considered another key process for a proper tissue restoration. To stimulate these phases, growth factors and cytokines have been extensively used. Nonetheless, they present some drawbacks such as low stability and safety concerns. Alternatively, the use of inorganic ions has attracted higher attention due to their higher stability and therapeutic effects with low side effects. This review will first focus in giving fundamental aspects of initial bone regeneration phases, focusing mainly on inflammatory and angiogenic ones. Then, it will describe the role of different inorganic ions in modulating the immune response upon biomaterial implantation towards a restorative environment and their ability to stimulate angiogenic response for a proper scaffold vascularization and successful bone tissue restoration. STATEMENT OF SIGNIFICANCE: The impairment of bone tissue regeneration when there is excessive damage has led to different tissue engineered strategies to promote bone healing. Significant importance has been given in the immunomodulation towards an anti-inflammatory environment together with proper angiogenesis stimulation in order to achieve successful bone regeneration rather than stimulating only the osteogenic differentiation. Ions have been considered potential candidates to stimulate these events due to their high stability and therapeutic effects with low side effects compared to growth factors. However, up to now, no review has been published assembling all this information together, describing individual effects of ions on immunomodulation and angiogenic stimulation, as well as their multifunctionality or synergistic effects when combined together.
Collapse
Affiliation(s)
- Èlia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Jenifer Olmos Buitrago
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Emilio Castro
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Roman A Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain.
| |
Collapse
|
5
|
Wang S, Neufurth M, Schepler H, Tan R, She Z, Al-Nawas B, Wang X, Schröder HC, Müller WEG. Acceleration of Wound Healing through Amorphous Calcium Carbonate, Stabilized with High-Energy Polyphosphate. Pharmaceutics 2023; 15:494. [PMID: 36839816 PMCID: PMC9961744 DOI: 10.3390/pharmaceutics15020494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Amorphous calcium carbonate (ACC), precipitated in the presence of inorganic polyphosphate (polyP), has shown promise as a material for bone regeneration due to its morphogenetic and metabolic energy (ATP)-delivering properties. The latter activity of the polyP-stabilized ACC ("ACC∙PP") particles is associated with the enzymatic degradation of polyP, resulting in the transformation of ACC into crystalline polymorphs. In a novel approach, stimulated by these results, it was examined whether "ACC∙PP" also promotes the healing of skin injuries, especially chronic wounds. In in vitro experiments, "ACC∙PP" significantly stimulated the migration of endothelial cells, both in tube formation and scratch assays (by 2- to 3-fold). Support came from ex vivo experiments showing increased cell outgrowth in human skin explants. The transformation of ACC into insoluble calcite was suppressed by protein/serum being present in wound fluid. The results were confirmed in vivo in studies on normal (C57BL/6) and diabetic (db/db) mice. Topical administration of "ACC∙PP" significantly accelerated the rate of re-epithelialization, particularly in delayed healing wounds in diabetic mice (day 7: 1.5-fold; and day 13: 1.9-fold), in parallel with increased formation/maturation of granulation tissue. The results suggest that administration of "ACC∙PP" opens a new strategy to improve ATP-dependent wound healing, particularly in chronic wounds.
Collapse
Affiliation(s)
- Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Rongwei Tan
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | - Zhending She
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | - Bilal Al-Nawas
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, D-55131 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
6
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Microfluidic 3D Platform to Evaluate Endothelial Progenitor Cell Recruitment by Bioactive Materials. Acta Biomater 2022; 151:264-277. [PMID: 35981686 DOI: 10.1016/j.actbio.2022.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Most of the conventional in vitro models to test biomaterial-driven vascularization are too simplistic to recapitulate the complex interactions taking place in the actual cell microenvironment, which results in a poor prediction of the in vivo performance of the material. However, during the last decade, cell culture models based on microfluidic technology have allowed attaining unprecedented levels of tissue biomimicry. In this work, we propose a microfluidic-based 3D model to evaluate the effect of bioactive biomaterials capable of releasing signalling cues (such as ions or proteins) in the recruitment of endogenous endothelial progenitor cells, a key step in the vascularization process. The usability of the platform is demonstrated using experimentally-validated finite element models and migration and proliferation studies with rat endothelial progenitor cells (rEPCs) and bone marrow-derived rat mesenchymal stromal cells (BM-rMSCs). As a proof of concept of biomaterial evaluation, the response of rEPCs to an electrospun composite made of polylactic acid with calcium phosphates nanoparticles (PLA+CaP) was compared in a co-culture microenvironment with BM-rMSC to a regular PLA control. Our results show a significantly higher rEPCs migration and the upregulation of several pro-inflammatory and proangiogenic proteins in the case of the PLA+CaP. The effects of osteopontin (OPN) on the rEPCs migratory response were also studied using this platform, suggesting its important role in mediating their recruitment to a calcium-rich microenvironment. This new tool could be applied to screen the capacity of a variety of bioactive scaffolds to induce vascularization and accelerate the preclinical testing of biomaterials. STATEMENT OF SIGNIFICANCE: : For many years researchers have used neovascularization models to evaluate bioactive biomaterials both in vitro, with low predictive results due to their poor biomimicry and minimal control over cell cues such as spatiotemporal biomolecule signaling, and in vivo models, presenting drawbacks such as being highly costly, time-consuming, poor human extrapolation, and ethically controversial. We describe a compact microphysiological platform designed for the evaluation of proangiogenesis in biomaterials through the quantification of the level of sprouting in a mimicked endothelium able to react to gradients of biomaterial-released signals in a fibrin-based extracellular matrix. This model is a useful tool to perform preclinical trustworthy studies in tissue regeneration and to better understand the different elements involved in the complex process of vascularization.
Collapse
|
8
|
Vrchovecká K, Pávková-Goldbergová M, Engqvist H, Pujari-Palmer M. Cytocompatibility and Bioactive Ion Release Profiles of Phosphoserine Bone Adhesive: Bridge from In Vitro to In Vivo. Biomedicines 2022; 10:biomedicines10040736. [PMID: 35453486 PMCID: PMC9044752 DOI: 10.3390/biomedicines10040736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
One major challenge when developing new biomaterials is translating in vitro testing to in vivo models. We have recently shown that a single formulation of a bone tissue adhesive, phosphoserine modified cement (PMC), is safe and resorbable in vivo. Herein, we screened many new adhesive formulations, for cytocompatibility and bioactive ion release, with three cell lines: MDPC23 odontoblasts, MC3T3 preosteoblasts, and L929 fibroblasts. Most formulations were cytocompatible by indirect contact testing (ISO 10993-12). Formulations with larger amounts of phosphoserine (>50%) had delayed setting times, greater ion release, and cytotoxicity in vitro. The trends in ion release from the adhesive that were cured for 24 h (standard for in vitro) were similar to release from the adhesives cured only for 5−10 min (standard for in vivo), suggesting that we may be able to predict the material behavior in vivo, using in vitro methods. Adhesives containing calcium phosphate and silicate were both cytocompatible for seven days in direct contact with cell monolayers, and ion release increased the alkaline phosphatase (ALP) activity in odontoblasts, but not pre-osteoblasts. This is the first study evaluating how PMC formulation affects osteogenic cell differentiation (ALP), cytocompatibility, and ion release, using in situ curing conditions similar to conditions in vivo.
Collapse
Affiliation(s)
- Kateřina Vrchovecká
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Monika Pávková-Goldbergová
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| | - Michael Pujari-Palmer
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| |
Collapse
|
9
|
López-Canosa A, Perez-Amodio S, Yanac-Huertas E, Ordoño J, Rodriguez-Trujillo R, Samitier J, Castaño O, Engel E. A microphysiological system combining electrospun fibers and electrical stimulation for the maturation of highly anisotropic cardiac tissue. Biofabrication 2021; 13. [PMID: 33962409 DOI: 10.1088/1758-5090/abff12] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/07/2021] [Indexed: 12/28/2022]
Abstract
The creation of cardiac tissue models for preclinical testing is still a non-solved problem in drug discovery, due to the limitations related to thein vitroreplication of cardiac tissue complexity. Among these limitations, the difficulty of mimicking the functional properties of the myocardium due to the immaturity of the used cells hampers the obtention of reliable results that could be translated into human patients.In vivomodels are the current gold standard to test new treatments, although it is widely acknowledged that the used animals are unable to fully recapitulate human physiology, which often leads to failures during clinical trials. In the present work, we present a microfluidic platform that aims to provide a range of signaling cues to immature cardiac cells to drive them towards an adult phenotype. The device combines topographical electrospun nanofibers with electrical stimulation in a microfabricated system. We validated our platform using a co-culture of neonatal mouse cardiomyocytes and cardiac fibroblasts, showing that it allows us to control the degree of anisotropy of the cardiac tissue inside the microdevice in a cost-effective way. Moreover, a 3D computational model of the electrical field was created and validated to demonstrate that our platform is able to closely match the distribution obtained with the gold standard (planar electrode technology) using inexpensive rod-shaped biocompatible stainless-steel electrodes. The functionality of the electrical stimulation was shown to induce a higher expression of the tight junction protein Cx-43, as well as the upregulation of several key genes involved in conductive and structural cardiac properties. These results validate our platform as a powerful tool for the tissue engineering community due to its low cost, high imaging compatibility, versatility, and high-throughput configuration capabilities.
Collapse
Affiliation(s)
- Adrián López-Canosa
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Soledad Perez-Amodio
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,IMEM-BRT Group, Department Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| | - Eduardo Yanac-Huertas
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jesús Ordoño
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Romen Rodriguez-Trujillo
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain.,Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri i Reixac 15-21, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Josep Samitier
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain.,Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri i Reixac 15-21, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Oscar Castaño
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,Electronics and Biomedical Engineering, Universitat de Barcelona (UB), 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.,IMEM-BRT Group, Department Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| |
Collapse
|
10
|
Perez-Amodio S, Rubio N, Vila OF, Navarro-Requena C, Castaño O, Sanchez-Ferrero A, Marti-Munoz J, Alsina-Giber M, Blanco J, Engel E. Polymeric Composite Dressings Containing Calcium-Releasing Nanoparticles Accelerate Wound Healing in Diabetic Mice. Adv Wound Care (New Rochelle) 2021; 10:301-316. [PMID: 32602814 DOI: 10.1089/wound.2020.1206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: Wound healing is a complex process that involves the interaction between different cell types and bioactive factors. Impaired wound healing is characterized by a loss in synchronization of these interactions, resulting in nonhealing chronic wounds. Chronic wounds are a socioeconomic burden, one of the most prominent clinical manifestations of diabetes, however, they lack satisfactory treatment options. The objective of this study was to develop polymeric composites that deliver ions having wound healing properties and evaluate its performance using a pressure ulcer model in diabetic mice. Approach: To develop a polymeric composite wound dressing containing ion-releasing nanoparticles for chronic wound healing. This composite was chemically and physically characterized and evaluated using a pressure ulcer wound model in diabetic (db/db) mice to explore their potential as novel wound dressing. Results: This dressing exhibits a controlled ion release and a good in vitro bioactivity. The polymeric composite dressing treatment stimulates angiogenesis, collagen synthesis, granulation tissue formation, and accelerates wound closure of ischemic wounds created in diabetic mice. In addition, the performance of the newly designed composite is remarkably better than a commercially available dressing frequently used for the treatment of low-exuding chronic wounds. Innovation: The developed nanoplatforms are cell- and growth factor free and control the host microenvironment resulting in enhanced wound healing. These nanoplatforms are available by cost-effective synthesis with a defined composition, offering an additional advantage in potential clinical application. Conclusion: Based on the obtained results, these polymeric composites offer an optimum approach for chronic wound healing without adding cells or external biological factors.
Collapse
Affiliation(s)
- Soledad Perez-Amodio
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| | - Nuria Rubio
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- Catalonian Institute for Advanced Chemistry (IQAC-CSIC), Barcelona, Spain
| | - Olaia F Vila
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- Catalonian Institute for Advanced Chemistry (IQAC-CSIC), Barcelona, Spain
| | - Claudia Navarro-Requena
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oscar Castaño
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona, Spain
- Bioelectronics Unit and Nanobioengineering Lab., Institute for Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Aitor Sanchez-Ferrero
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joan Marti-Munoz
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mercè Alsina-Giber
- Department of Dermatology, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Jeronimo Blanco
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- Catalonian Institute for Advanced Chemistry (IQAC-CSIC), Barcelona, Spain
| | - Elisabeth Engel
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| |
Collapse
|
11
|
Ciriza J, Rodríguez-Romano A, Nogueroles I, Gallego-Ferrer G, Cabezuelo RM, Pedraz JL, Rico P. Borax-loaded injectable alginate hydrogels promote muscle regeneration in vivo after an injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112003. [PMID: 33812623 PMCID: PMC8085734 DOI: 10.1016/j.msec.2021.112003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 11/25/2022]
Abstract
Muscle tissue possess an innate regenerative potential that involves an extremely complicated and synchronized process on which resident muscle stem cells play a major role: activate after an injury, differentiate and fuse originating new myofibers for muscle repair. Considerable efforts have been made to design new approaches based on material systems to potentiate muscle repair by engineering muscle extracellular matrix and/or including soluble factors/cells in the media, trying to recapitulate the key biophysical and biochemical cues present in the muscle niche. This work proposes a different and simple approach to potentiate muscle regeneration exploiting the interplay between specific cell membrane receptors. The simultaneous stimulation of borate transporter, NaBC1 (encoded by SLC4A11gene), and fibronectin-binding integrins induced higher number and size of focal adhesions, major cell spreading and actin stress fibers, strengthening myoblast attachment and providing an enhanced response in terms of myotube fusion and maturation. The stimulated NaBC1 generated an adhesion-driven state through a mechanism that involves simultaneous NaBC1/α5β1/αvβ3 co-localization. We engineered and characterized borax-loaded alginate hydrogels for an effective activation of NaBC1 in vivo. After inducing an acute injury with cardiotoxin in mice, active-NaBC1 accelerated the muscle regeneration process. Our results put forward a new biomaterial approach for muscle repair.
Collapse
Affiliation(s)
- Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, C/ Miguel de Unamuno, 3, 01006 Vitoria Gasteiz, Spain.
| | - Ana Rodríguez-Romano
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ignacio Nogueroles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Gloria Gallego-Ferrer
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Rubén Martín Cabezuelo
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - José Luis Pedraz
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, C/ Miguel de Unamuno, 3, 01006 Vitoria Gasteiz, Spain.
| | - Patricia Rico
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
12
|
Castaño O, López-Mengual A, Reginensi D, Matamoros-Angles A, Engel E, Del Rio JA. Chemotactic TEG3 Cells' Guiding Platforms Based on PLA Fibers Functionalized With the SDF-1α/CXCL12 Chemokine for Neural Regeneration Therapy. Front Bioeng Biotechnol 2021; 9:627805. [PMID: 33829009 PMCID: PMC8019790 DOI: 10.3389/fbioe.2021.627805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
(Following spinal cord injury, olfactory ensheathing cell (OEC) transplantation is a promising therapeutic approach in promoting functional improvement. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical concentration differences. Here we compare the attachment, morphology, and directionality of an OEC-derived cell line, TEG3 cells, seeded on functionalized nanoscale meshes of Poly(l/dl-lactic acid; PLA) nanofibers. The size of the nanofibers has a strong effect on TEG3 cell adhesion and migration, with the PLA nanofibers having a 950 nm diameter being the ones that show the best results. TEG3 cells are capable of adopting a bipolar morphology on 950 nm fiber surfaces, as well as a highly dynamic behavior in migratory terms. Finally, we observe that functionalized nanofibers, with a chemical concentration increment of SDF-1α/CXCL12, strongly enhance the migratory characteristics of TEG3 cells over inhibitory substrates.
Collapse
Affiliation(s)
- Oscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain.,Biomaterials for Regenerative Therapies, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.,Bioelectronics Unit and Nanobioeneering Laboratory, Institute for Nanoscience and Nanotechnology of the University of Barcelona, Barcelona, Spain
| | - Ana López-Mengual
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Diego Reginensi
- School of Medicine, Universidad de Panamá, Panama City, Panama.,Biomedical Engineering Program, Universidad Latina de Panamá, Panama City, Panama
| | - Andreu Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.,IMEM-BRT Group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Lepry WC, Nazhat SN. A Review of Phosphate and Borate Sol–Gel Glasses for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- William C. Lepry
- Department of Mining and Materials Engineering McGill University 3610 Rue University Montreal QC H3A 0C5 Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering McGill University 3610 Rue University Montreal QC H3A 0C5 Canada
| |
Collapse
|
14
|
Niu Y, Wang Z, Shi Y, Dong L, Wang C. Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioact Mater 2021; 6:244-261. [PMID: 32913932 PMCID: PMC7451865 DOI: 10.1016/j.bioactmat.2020.08.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023] Open
Abstract
A coordinated interaction between osteogenesis and osteoimmune microenvironment is essential for successful bone healing. In particular, macrophages play a central regulatory role in all stages of bone repair. Depending on the signals they sense, these highly plastic cells can mediate the host immune response against the exterior signals of molecular stimuli and implanted scaffolds, to exert regenerative potency to a varying extent. In this article, we first encapsulate the immunomodulatory functions of macrophages during bone regeneration into three aspects, as sweeper, mediator and instructor. We introduce the phagocytic role of macrophages in different bone healing periods ('sweeper') and overview a variety of paracrine cytokines released by macrophages either mediating cell mobilisation, vascularisation and matrix remodelling ('mediator'), or directly driving the osteogenic differentiation of bone progenitors and bone repair ('instructor'). Then, we systematically classify and discuss the emerging engineering strategies to recruit, activate and modulate the phenotype transition of macrophages, to exploit the power of endogenous macrophages to enhance the performance of engineered bone tissue.
Collapse
Affiliation(s)
- Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Zhenzhen Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Yuchen Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| |
Collapse
|
15
|
New injectable self-assembled hydrogels that promote angiogenesis through a bioactive degradation product. Acta Biomater 2020; 115:197-209. [PMID: 32814142 DOI: 10.1016/j.actbio.2020.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
Hydrogels used in regenerative medicine are often designed to allow cellular infiltration, degradation, and neovascularization. Low molecular weight hydrogels (LMWHs), formed by self-assembly via non-covalent interactions, are gaining significant interest because they are soft, easy to use and injectable. We propose LMWHs as suitable body implant materials that can stimulate tissue regeneration. We produced four new LMWHs with molecular entities containing nucleic acid and lipid building blocks and analyzed the foreign body response upon subcutaneous implantation into mice. Despite being infiltrated with macrophages, none of the hydrogels triggered detrimental inflammatory responses. Most macrophages present in the hydrogel-surrounding tissue acquired an immuno-modulatory rather than inflammatory phenotype. Concomitantly, no fibrotic capsule was formed after three weeks. Our glyconucleolipid LMWHs exhibited different degradation kinetics in vivo and in vitro. LMWHs with high angiogenic properties in vivo, were found to release glyconucleoside (glucose covalently linked to thymidine via a triazole moiety) as a common by-product of in vitro LMWH degradation. Chemically synthesized glyconucleoside exhibited angiogenic properties in vitro in scratch assays with monolayers of human endothelial cells and in vivo using the chick chorioallantoic membrane assay. Collectively, LMWHs hold promise as efficient scaffolds for various regenerative applications by displaying good biointegration without causing fibrosis, and by promoting angiogenesis through the release of a pro-angiogenic degradation product. STATEMENT OF SIGNIFICANCE: The main limitations of biomaterials developed in the field of tissue engineering remains their biocompatibility and vascularisation properties. In this context, we developed injectable Low Molecular Weight Hydrogels (LMWH) exhibiting thixotropic (reversible gelation) and thermal reversible properties. LMWH having injectability is of great advantage since it allows for their delivery without wounding the surrounding tissues. The resulting gels aim at forming scaffolds that the host cells colonize without major inflammation, and that won't be insulated by a strong fibrosis reaction. Importantly, their molecular degradation releases a product (a glycosyl-nucleoside conjugate) promoting angiogenesis. In this sense, these LMWH represent an important advance in the development of biomaterials promoting tissue regeneration.
Collapse
|
16
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
17
|
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019; 9:E750. [PMID: 31752393 PMCID: PMC6920773 DOI: 10.3390/biom9110750] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal;
| | | |
Collapse
|
18
|
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
|
19
|
Marti-Muñoz J, Xuriguera E, Layton JW, Planell JA, Rankin SE, Engel E, Castaño O. Feasible and pure P 2O 5-CaO nanoglasses: An in-depth NMR study of synthesis for the modulation of the bioactive ion release. Acta Biomater 2019; 94:574-584. [PMID: 31141734 DOI: 10.1016/j.actbio.2019.05.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
The use of bioactive glasses (e.g. silicates, phosphates, borates) has demonstrated to be an effective therapy for the restoration of bone fractures, wound healing and vascularization. Their partial dissolution towards the surrounding tissue has shown to trigger positive bioactive responses, without the necessity of using growth factors or cell therapy, which reduces money-costs, side effects and increases their translation to the clinics. However, bioactive glasses often need from stabilizers (e.g. SiO44-, Ti4+, Co2+, etc.) that are not highly abundant in the body and which metabolization is not fully understood. In this study, we were focused on synthesizing pure calcium phosphate glasses without the presence of such stabilizers. We combined a mixture of ethylphosphate and calcium 2-methoxyethoxide to synthesize nanoparticles with different compositions and degradability. Synthesis was followed by an in-depth nuclear magnetic resonance characterization, complemented with other techniques that helped us to correlate the chemical structure of the glasses with their physiochemical properties and reaction mechanism. After synthesis, the organically modified xerogel (i.e. calcium monoethylphosphate) was treated at 200 or 350 °C and its solubility was maintained and controlled due to the elimination of organics, increase of phosphate-calcium interactions and phosphate polycondensation. To the best of our knowledge, we are reporting the first sol-gel synthesis of binary (P2O5-CaO) calcium phosphate glass nanoparticles in terms of continuous polycondensated phosphate chains structure without the addition of extra ions. The main goal is to straightforward the synthesis, to get a safer metabolization and to modulate the bioactive ion release. Additionally, we shed light on the chemical structure, reaction mechanism and properties of calcium phosphate glasses with high calcium contents, which nowadays are poorly understood. STATEMENT OF SIGNIFICANCE: The use of bioactive inorganic materials (i.e. bioactive ceramics, glass-ceramics and glasses) for biomedical applications is attractive due to their good integration with the host tissue without the necessity of adding exogenous cells or growth factors. In particular, degradable calcium phosphate glasses are completely resorbable, avoiding the retention in the body of the highly stable silica network of silicate glasses, and inducing a more controllable degradability than bioactive ceramics. However, most calcium phosphate glasses include the presence of stabilizers (e.g. Ti4+, Na+, Co2+), which metabolization is not fully understood and complicates their synthesis. The development of binary calcium phosphate glasses with controlled degradability reduces these limitations, offering a simple and completely metabolizable material with higher transfer to the clinics.
Collapse
Affiliation(s)
- Joan Marti-Muñoz
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Elena Xuriguera
- Materials Science and Physical Chemistry Department, University of Barcelona (UB), 08028 Barcelona, Spain
| | - John W Layton
- Department of Chemistry, University of Kentucky (UKY), Lexington, KY 40506-0053, USA
| | - Josep A Planell
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Stephen E Rankin
- Chemical and Materials Engineering Department, University of Kentucky (UKY), Lexington, KY 40506-0053, USA
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Materials Science and Metallurgy Department (EEBE), Technical University of Catalonia (UPC), 08019 Barcelona, Spain.
| | - Oscar Castaño
- Serra Hunter Fellow, Electronics and Biomedical Engineering Department, University of Barcelona (UB), 08028 Barcelona, Spain; Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Institute of Nanoscience and Nanotechnology Department, University of Barcelona (UB), 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Fenelon M, Maurel DB, Siadous R, Gremare A, Delmond S, Durand M, Brun S, Catros S, Gindraux F, L'Heureux N, Fricain JC. Comparison of the impact of preservation methods on amniotic membrane properties for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109903. [PMID: 31500032 DOI: 10.1016/j.msec.2019.109903] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/02/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022]
Abstract
Human amniotic membrane (hAM) is considered as an attractive biological scaffold for tissue engineering. For this application, hAM has been mainly processed using cryopreservation, lyophilization and/or decellularization. However, no study has formally compared the influence of these treatments on hAM properties. The aim of this study was to develop a new decellularization-preservation process of hAM, and to compare it with other conventional treatments (fresh, cryopreserved and lyophilized). The hAM was decellularized (D-hAM) using an enzymatic method followed by a detergent decellularization method, and was then lyophilized and gamma-sterilized. Decellularization was assessed using DNA staining and quantification. D-hAM was compared to fresh (F-hAM), cryopreserved (C-hAM) and lyophilized/gamma-sterilized (L-hAM) hAM. Their cytotoxicity on human bone marrow mesenchymal stem cells (hBMSCs) and their biocompatibility in a rat subcutaneous model were also evaluated. The protocol was effective as judged by the absence of nuclei staining and the residual DNA lower than 50 ng/mg. Histological staining showed a disruption of the D-hAM architecture, and its thickness was 84% lower than fresh hAM (p < 0.001). Despite this, the labeling of type IV and type V collagen, elastin and laminin were preserved on D-hAM. Maximal force before rupture of D-hAM was 92% higher than C-hAM and L-hAM (p < 0.01), and D-hAM was 37% more stretchable than F-hAM (p < 0.05). None of the four hAM were cytotoxic, and D-hAM was the most suitable scaffold for hBMSCs proliferation. Finally, D-hAM was well integrated in vivo. In conclusion, this new hAM decellularization process appears promising for tissue engineering applications.
Collapse
Affiliation(s)
- Mathilde Fenelon
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France; CHU Bordeaux, Department of Oral Surgery, F-33076 Bordeaux, France.
| | - Delphine B Maurel
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France
| | - Robin Siadous
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France
| | - Agathe Gremare
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France
| | - Samantha Delmond
- CHU Bordeaux, CIC 1401, 33000 Bordeaux, France; Inserm, CIC 1401, 33000 Bordeaux, France
| | - Marlène Durand
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France; CHU Bordeaux, CIC 1401, 33000 Bordeaux, France; Inserm, CIC 1401, 33000 Bordeaux, France
| | - Stéphanie Brun
- University hospital, Gynecology-Obstetrics Service, F-33076 Bordeaux, France
| | - Sylvain Catros
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France; CHU Bordeaux, Department of Oral Surgery, F-33076 Bordeaux, France
| | - Florelle Gindraux
- Orthopedic, Traumatology & Plastic Surgery Department, University Hospital of Besançon, Besançon, France; Nanomedicine Lab, Imagery and Therapeutics (EA 4662), SFR FED 4234, University of Franche-Comté, Besançon, France
| | - Nicolas L'Heureux
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France; CHU Bordeaux, Department of Oral Surgery, F-33076 Bordeaux, France
| |
Collapse
|
21
|
Gritsch L, Conoscenti G, La Carrubba V, Nooeaid P, Boccaccini AR. Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1083-1101. [DOI: 10.1016/j.msec.2018.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/14/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023]
|
22
|
Navarro-Requena C, Pérez-Amodio S, Castaño O, Engel E. Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. NANOTECHNOLOGY 2018; 29:395102. [PMID: 30039802 DOI: 10.1088/1361-6528/aad01f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extracellular calcium has been proved to influence the healing process of injuries and could be used as a novel therapy for skin wound healing. However, a better understanding of its effect, together with a system to obtain a controlled release is needed. In this study, we examined whether the ionic dissolution of the calcium-phosphate-based ormoglass nanoparticles coded SG5 may produce a similar stimulating effect as extracellular calcium (from CaCl2) on rat dermal fibroblast in vitro. Cells were cultured in the presence of medium containing different calcium concentrations, normally ranging from 0.1 to 3.5 mM Ca2+. A concentration of 3.5 mM of CaCl2 increased metabolic activity, in vitro wound closure, matrix metalloproteinases (MMP) activity, collagen synthesis and cytokine expression, and reduced cell contraction capacity. Interestingly, the levels of migration and contraction capacity measured followed a dose-dependent behavior. In addition, media conditioned with SG5 stimulated the same activities as media conditioned with CaCl2, but undesired effects in chronic wound healing such as inflammatory factor expression and MMP activity were reduced compared to the equivalent CaCl2 concentration. In summary, calcium-releasing particles such as SG5 are potential biological-free biostimulators to be applied in dressings for chronic wound healing.
Collapse
Affiliation(s)
- Claudia Navarro-Requena
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona Spain. Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) E-28029 Madrid, Spain. Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | | | | | | |
Collapse
|
23
|
Romero-Sánchez LB, Marí-Beffa M, Carrillo P, Medina MÁ, Díaz-Cuenca A. Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model. Acta Biomater 2018; 68:272-285. [PMID: 29288822 DOI: 10.1016/j.actbio.2017.12.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
Abstract
The osteogenic and angiogenic responses of organisms to the ionic products of degradation of bioactive glasses (BGs) are being intensively investigated. The promotion of angiogenesis by copper (Cu) has been known for more than three decades. This element can be incorporated to delivery carriers, such as BGs, and the materials used in biological assays. In this work, Cu-containing mesoporous bioactive glass (MBG) in the SiO2-CaO-P2O5 compositional system was prepared incorporating 5% mol Cu (MBG-5Cu) by replacement of the corresponding amount of Ca. The biological effects of the ionic products of MBG biodegradation were evaluated on a well-known endothelial cell line, the bovine aorta endothelial cells (BAEC), as well as in an in vivo zebrafish (Danio rerio) embryo assay. The results suggest that ionic products of both MBG (Cu free) and MBG-5Cu materials promote angiogenesis. In vitro cell cultures show that the ionic dissolution products of these materials are not toxic and promote BAEC viability and migration. In addition, the in vivo assay indicates that both exposition and microinjection of zebrafish embryos with Cu free MBG material increase vessel number and thickness of the subintestinal venous plexus (SIVP), whereas assays using MBG-5Cu enhance this effect. STATEMENT OF SIGNIFICANCE Mesoporous bioactive glasses (MBGs) with high specific surface area, well-ordered pores, large pore volumes and controllable amount of ions are interesting to develop controlled drug delivery systems for bone tissue regeneration. Copper (Cu) incorporation to the basic SiO2-CaO-P2O5 composition has attracted high interest due to its multifunctional biological properties. Promotion of angiogenesis is one of these properties, which can be integrated to the biomaterial with lower cost and higher stability when compared with growth factors. This work reports the synthesis and characterization of Cu-containing MBG evaluating its angiogenic properties in the subintestinal vessel zebrafish assay. This transgenic in vivo assay is merging as an alternative model providing short-time consuming protocols and facilities during pro-angiogenic drug screenings. The report shows that the ionic products of this MBG material delivered to the zebrafish incubation media significantly enhance angiogenesis in comparison with control groups. Besides, results indicate Cu ions may exhibit a synergic effect with Si, Ca, and P ions in angiogenesis stimulation both in vitro and in vivo. To our knowledge, this is the first time that zebrafish in vivo assays are used to evaluate angiogenic activity of ionic dissolution products from MBG materials.
Collapse
|
24
|
Navarro-Requena C, Weaver JD, Clark AY, Clift DA, Pérez-Amodio S, Castaño Ó, Zhou DW, García AJ, Engel E. PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation. Acta Biomater 2018; 67:53-65. [PMID: 29246650 PMCID: PMC6534820 DOI: 10.1016/j.actbio.2017.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
The use of human mesenchymal stromal cells (hMSC) for treating diseased tissues with poor vascularization has received significant attention, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have also been suggested as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. In this study, calcium-releasing particles and hMSC were combined within a hydrogel to examine their vasculogenic potential in vitro and in vivo. The particles provided sustained calcium release and showed proangiogenic stimulation in a chorioallantoic membrane (CAM) assay. The number of hMSC encapsulated in a degradable RGD-functionalized PEG hydrogel containing particles remained constant over time and IGF-1 release was increased. When implanted in the epidydimal fat pad of immunocompromised mice, this composite material improved cell survival and stimulated vessel formation and maturation. Thus, the combination of hMSC and calcium-releasing glass-ceramics represents a new strategy to achieve vessel stabilization, a key factor in the revascularization of ischemic tissues. STATEMENT OF SIGNIFICANCE Increasing blood vessel formation in diseased tissues with poor vascularization is a current clinical challenge. Cell therapy using human mesenchymal stem cells has received considerable interest, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have been explored as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. By incorporating both human mesenchymal stem cells and glass-ceramic particles in an implantable hydrogel, this study provides insights into the vasculogenic potential in soft tissues of the combined strategies. Enhancement of vessel formation and maturation supports further investigation of this strategy.
Collapse
Affiliation(s)
- Claudia Navarro-Requena
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain
| | - Jessica D Weaver
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amy Y Clark
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Douglas A Clift
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Soledad Pérez-Amodio
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain
| | - Óscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona 08028, Spain; Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain
| | - Dennis W Zhou
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain; Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain.
| |
Collapse
|
25
|
Balasubramanian P, Detsch R, Esteban-Tejeda L, Grünewald A, Moya JS, Boccaccini AR. Influence of dissolution products of a novel Ca-enriched silicate bioactive glass-ceramic on VEGF release from bone marrow stromal cells. BIOMEDICAL GLASSES 2017. [DOI: 10.1515/bglass-2017-0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis study evaluated the influence of ionic dissolution products of a novel Ca-enriched silicate bioactive glass compared to commercial available hydroxyapaptite samples (Endobonr) on cell activity and vascular endothelial growth factor (VEGF) release in vitro. Bone marrow stromal cells (ST-2) were cultivated with the supernatant of granules of different sizes and at different concentrations (0-1 wt/vol % of granules) for 48 h. In addition to in vitro studies, Ca-ion release from all as cell morphology observation revealed no cytotoxic effect of the released products from all tested materials. It was found that supernatants from granules in concentrations of 1 wt/vol %enhanced the VEGF release from ST2 cells, which is important as a marker of the vascularisation ability of the glass during the bone healing process.
Collapse
|
26
|
Grémare A, Guduric V, Bareille R, Heroguez V, Latour S, L'heureux N, Fricain JC, Catros S, Le Nihouannen D. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A 2017; 106:887-894. [DOI: 10.1002/jbm.a.36289] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/22/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Agathe Grémare
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026; Bordeaux 33076 France
- Univ. Bordeaux, INSERM , Tissue Bioengineering, U1026, CHU Bordeaux, Services d'Odontologie et de Santé Buccale; Bordeaux 33076 France
| | - Vera Guduric
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026; Bordeaux 33076 France
- Faculty of Technical Sciences, University of Novi Sad; Serbia
| | - Reine Bareille
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026; Bordeaux 33076 France
| | - Valérie Heroguez
- Univ. Bordeaux, IPB-ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques, UMR5629; Pessac 33607 France
| | - Simon Latour
- Univ. Bordeaux, Institut Bergonié, INSERM, ACTION, U1218; Bordeaux 33076 France
| | - Nicolas L'heureux
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026; Bordeaux 33076 France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026; Bordeaux 33076 France
- Univ. Bordeaux, INSERM , Tissue Bioengineering, U1026, CHU Bordeaux, Services d'Odontologie et de Santé Buccale; Bordeaux 33076 France
| | - Sylvain Catros
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026; Bordeaux 33076 France
- Univ. Bordeaux, INSERM , Tissue Bioengineering, U1026, CHU Bordeaux, Services d'Odontologie et de Santé Buccale; Bordeaux 33076 France
| | | |
Collapse
|
27
|
Halib N, Perrone F, Cemazar M, Dapas B, Farra R, Abrami M, Chiarappa G, Forte G, Zanconati F, Pozzato G, Murena L, Fiotti N, Lapasin R, Cansolino L, Grassi G, Grassi M. Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. MATERIALS (BASEL, SWITZERLAND) 2017; 10:977. [PMID: 28825682 PMCID: PMC5578343 DOI: 10.3390/ma10080977] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Level 15, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Kuala Lumpur 55100, Malaysia;.
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Gianluca Chiarappa
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - Fabrizio Zanconati
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Gabriele Pozzato
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Luigi Murena
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Nicola Fiotti
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Romano Lapasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Laura Cansolino
- Department of Clinico-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia and IRCCS S, Matteo Hospital Pavia, 27100 Pavia, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| |
Collapse
|
28
|
3D anatomical and perfusion MRI for longitudinal evaluation of biomaterials for bone regeneration of femoral bone defect in rats. Sci Rep 2017; 7:6100. [PMID: 28733632 PMCID: PMC5522444 DOI: 10.1038/s41598-017-06258-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/12/2017] [Indexed: 02/04/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) appears as a good surrogate to Computed Tomography (CT) scan as it does not involve radiation. In this context, a 3D anatomical and perfusion MR imaging protocol was developed to follow the evolution of bone regeneration and the neo-vascularization in femoral bone defects in rats. For this, three different biomaterials based on Pullulan-Dextran and containing either Fucoidan or HydroxyApatite or both were implanted. In vivo MRI, ex vivo micro-CT and histology were performed 1, 3 and 5 weeks after implantation. The high spatially resolved (156 × 182 × 195 µm) anatomical images showed a high contrast from the defects filled with biomaterials that decreased over time due to bone formation. The 3D Dynamic Contrast Enhanced (DCE) imaging with high temporal resolution (1 image/19 s) enabled to detect a modification in the Area-Under-The-Gadolinium-Curve over the weeks post implantation. The high sensitivity of MRI enabled to distinguish which biomaterial was the least efficient for bone regeneration, which was confirmed by micro-CT images and by a lower vessel density observed by histology. In conclusion, the methodology developed here highlights the efficiency of longitudinal MRI for tissue engineering as a routine small animal exam.
Collapse
|
29
|
Guduric V, Metz C, Siadous R, Bareille R, Levato R, Engel E, Fricain JC, Devillard R, Luzanin O, Catros S. Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:78. [PMID: 28386854 DOI: 10.1007/s10856-017-5887-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
The conventional tissue engineering is based on seeding of macroporous scaffold on its surface ("top-down" approach). The main limitation is poor cell viability in the middle of the scaffold due to poor diffusion of oxygen and nutrients and insufficient vascularization. Layer-by-Layer (LBL) bioassembly is based on "bottom-up" approach, which considers assembly of small cellularized blocks. The aim of this work was to evaluate proliferation and differentiation of human bone marrow stromal cells (HBMSCs) and endothelial progenitor cells (EPCs) in two and three dimensions (2D, 3D) using a LBL assembly of polylactic acid (PLA) scaffolds fabricated by 3D printing. 2D experiments have shown maintain of cell viability on PLA, especially when a co-cuture system was used, as well as adequate morphology of seeded cells. Early osteoblastic and endothelial differentiations were observed and cell proliferation was increased after 7 days of culture. In 3D, cell migration was observed between layers of LBL constructs, as well as an osteoblastic differentiation. These results indicate that LBL assembly of PLA layers could be suitable for BTE, in order to promote homogenous cell distribution inside the scaffold and gene expression specific to the cells implanted in the case of co-culture system.
Collapse
Affiliation(s)
- Vera Guduric
- Biotis, Inserm U1026, Université Bordeaux Segalen, 146 rue Léo-Saignat, Case 45, Bordeaux Cedex, 33076, France
- Fakultet Tehnickih Nauka, Univerzitet u Novom Sadu, Trg Dositeja Obradovica 3, Novi Sad, 21000, Serbia
| | - Carole Metz
- Biotis, Inserm U1026, Université Bordeaux Segalen, 146 rue Léo-Saignat, Case 45, Bordeaux Cedex, 33076, France
| | - Robin Siadous
- Biotis, Inserm U1026, Université Bordeaux Segalen, 146 rue Léo-Saignat, Case 45, Bordeaux Cedex, 33076, France
| | - Reine Bareille
- Biotis, Inserm U1026, Université Bordeaux Segalen, 146 rue Léo-Saignat, Case 45, Bordeaux Cedex, 33076, France
| | - Riccardo Levato
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Jean-Christophe Fricain
- Biotis, Inserm U1026, Université Bordeaux Segalen, 146 rue Léo-Saignat, Case 45, Bordeaux Cedex, 33076, France
| | - Raphaël Devillard
- Biotis, Inserm U1026, Université Bordeaux Segalen, 146 rue Léo-Saignat, Case 45, Bordeaux Cedex, 33076, France
| | - Ognjan Luzanin
- Fakultet Tehnickih Nauka, Univerzitet u Novom Sadu, Trg Dositeja Obradovica 3, Novi Sad, 21000, Serbia
| | - Sylvain Catros
- Biotis, Inserm U1026, Université Bordeaux Segalen, 146 rue Léo-Saignat, Case 45, Bordeaux Cedex, 33076, France.
| |
Collapse
|
30
|
Oliveira H, Catros S, Castano O, Rey S, Siadous R, Clift D, Marti-Munoz J, Batista M, Bareille R, Planell J, Engel E, Amédée J. The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation. Acta Biomater 2017; 54:377-385. [PMID: 28242456 DOI: 10.1016/j.actbio.2017.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
Insufficient angiogenesis remains a major hurdle in current bone tissue engineering strategies. An extensive body of work has focused on the use of angiogenic factors or endothelial progenitor cells. However, these approaches are inherently complex, in terms of regulatory and methodologic implementation, and present a high cost. We have recently demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate (CaP) ormoglass particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. Here we have devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a (Hydroxypropyl)methyl cellulose (HPMC) matrix, with the capacity to release calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. The bone regeneration kinetics was dependent on the Ca2+ release rate, with the faster Ca2+ release composite gel showing improved bone repair at 3weeks, in relation to control. In the same line, improved angiogenesis could be observed for the same gel formulation at 6weeks post implantation. This methodology allows to integrate two fundamental processes for bone tissue regeneration while using a simple, cost effective, and safe approach. STATEMENT OF SIGNIFICANCE In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, we have shown that calcium ions, released by the degradation of calcium phosphate ormoglasses (CaP), are effective angiogenic promoters, in both in vitro and in a subcutaneous implantation model. Here, we devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a HPMC matrix, enabling the release of calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. This simple and cost effective approach holds great promise to translate to the clinics.
Collapse
|
31
|
Calcium Phosphates and Angiogenesis: Implications and Advances for Bone Regeneration. Trends Biotechnol 2016; 34:983-992. [PMID: 27481474 DOI: 10.1016/j.tibtech.2016.07.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/10/2023]
Abstract
Calcium phosphates (CaPs) are among the most utilized synthetic biomaterials for bone regeneration, largely owing to their established osteoconductive and osteoinductive properties. While angiogenesis is a crucial prerequisite to bone formation, research and applications for CaPs have not appreciated its crucial role. This review discusses how CaPs influence angiogenesis, and highlights promising strategies that address this topic. The objective is to draw attention to the gap in the literature and to highlight the importance of angiogenesis in CaP research, development, and use.
Collapse
|
32
|
Sachot N, Castaño O, Oliveira H, Martí-Muñoz J, Roguska A, Amedee J, Lewandowska M, Planell JA, Engel E. A novel hybrid nanofibrous strategy to target progenitor cells for cost-effective in situ angiogenesis. J Mater Chem B 2016; 4:6967-6978. [DOI: 10.1039/c6tb02162j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ti-doped calcium phosphate ormoglasses combined with biodegradable PLA promote an efficient and low-cost angiogenesis by the generation of high Ca2+concentrated interfaces that induce a high yield of tubulogenesis, with the gain in interface–cell interaction and instructivity.
Collapse
Affiliation(s)
- N. Sachot
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - O. Castaño
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - H. Oliveira
- Inserm U1026
- Tissue Bioengineering
- University of Bordeaux
- 33076 Bordeaux
- France
| | - J. Martí-Muñoz
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - A. Roguska
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - J. Amedee
- Inserm U1026
- Tissue Bioengineering
- University of Bordeaux
- 33076 Bordeaux
- France
| | - M. Lewandowska
- Faculty of Materials Science and Engineering
- Warsaw University of Technology
- 02-507 Warsaw
- Poland
| | - J. A. Planell
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - E. Engel
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| |
Collapse
|