1
|
Presnyakov KY, Ilicheva PM, Tsyupka DV, Khudina EA, Pozharov MV, Pidenko PS, Burmistrova NA. Dummy-template imprinted bovine serum albumin for extraction of zearalenone. Mikrochim Acta 2024; 191:767. [PMID: 39607557 DOI: 10.1007/s00604-024-06790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
The aim of this study is to develop molecularly imprinted protein specific to zearalenone (ZEN). The primary idea of our study was to replace the toxic template-ZEN-with a dummy-template-4-hydroxicoumarin-during the synthesis of imprinted proteins (IPs). The choice of the dummy-template was based on the results of comprehensive evaluation that included a combination of blind docking and molecular dynamics simulations. Furthermore, we studied the influence of protonation and purification conditions to IPs sorption capacity. 3D fluorescence spectroscopy was used to monitor the process of bovine serum albumin (BSA) imprinting. The modified purification approach allowed reducing the eluent volume and purification time by approximately 300 and 48 times, respectively. The imprinted BSA was then used to produce a bioinorganic sorbent (IPs-BIS) based on silica nanoparticles (silica NPs), that, as far as we know, was never described before. The synthesized IPs-BIS were successfully applied as ZEN sorbents in model solutions (Qmax = 1.70 ± 0.15 mg g- 1 , imprinting factor = 2.5) and artificially contaminated wheat extract (Qmax = 2.24 ± 0.02 mg g- 1 ) confirmed by HPLC-UV. We believe that our method can be used for mycotoxin monitoring in animal feeds and foodstuff.
Collapse
Affiliation(s)
- Kirill Yu Presnyakov
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov, 410012, Russia
| | - Polina M Ilicheva
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov, 410012, Russia
| | - Daria V Tsyupka
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov, 410012, Russia
| | - Ekaterina A Khudina
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov, 410012, Russia
| | - Mikhail V Pozharov
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov, 410012, Russia
| | - Pavel S Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov, 410012, Russia.
| | - Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov, 410012, Russia.
| |
Collapse
|
2
|
Wang C, Zhao H. Polymer Brushes and Surface Nanostructures: Molecular Design, Precise Synthesis, and Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2439-2464. [PMID: 38279930 DOI: 10.1021/acs.langmuir.3c02813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
For over two decades, polymer brushes have found wide applications in industry and scientific research. Now, polymer brush research has been a significant research focus in the community of polymer science. In this review paper, we give an introduction to the synthesis, self-assembly, and applications of one-dimensional (1D) polymer brushes on polymer backbones, two-dimensional (2D) polymer brushes on flat surfaces, and three-dimensional (3D) polymer brushes on spherical particles. Examples of the synthesis of polymer brushes on different substrates are provided. Studies on the formation of the surface nanostructures on solid surfaces are also reviewed in this article. Multicomponent polymer brushes on solid surfaces are able to self-assemble into surface micelles (s-micelles). If the s-micelles are linked to the substrates through cleavable linkages, the s-micelles can be cleaved from the substrates, and the cleaved s-micelles are able to self-assemble into hierarchical structures. The formation of the surface nanostructures by coassembly of polymer brushes and "free" polymer chains (coassembly approach) or polymerization-induced surface self-assembly approach, is discussed. The applications of the polymer brushes in colloid and biomedical science are summarized. Finally, perspectives on the development of polymer brushes are offered in this article.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
3
|
Liu L, Wang C, Liu F, Zhao H. Polymerization-Induced Proteinosome Formation Initiated by Artificial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4456-4465. [PMID: 36926885 DOI: 10.1021/acs.langmuir.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cellular communication is essential for living cells to coordinate the individual cellular responses and make collective behaviors. In the past decade, the communications between artificial cells have aroused great interest due to the potential applications of the structures in bioscience and biotechnology. To mimic the cellular communication, artificial cell assisted synthesis of proteinosomes was studied in this research. Multienzyme proteinosomes with glucose oxidase (GOx) and horseradish peroxidase (HRP) decorated on the membranes were synthesized by the thermally triggered self-assembly approach. Free radicals produced in a cascade reaction taking place on the surfaces of the multienzyme proteinosomes initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM at a temperature above LCST of PNIPAM in the presence of bovine serum albumin (BSA) or alcohol dehydrogenase (ADH)/acetaldehyde dehydrogenase (ALDH), and daughter proteinosomes with BSA or ADH/ALDH on the surfaces were fabricated. The structures of the GOx/HRP initiator proteinosomes, and the synthesized daughter proteinosomes were characterized with transmission electron microscopy, atomic force microscopy, fluorescence microscopy, dynamic light scattering, and micro-DSC. Enzyme activity assays demonstrate the high bioactivities of the enzymes on the surfaces of the initiator and the synthesized daughter proteinosomes.
Collapse
Affiliation(s)
- Luyang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Chen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Fang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
4
|
Yi J, Qin Y, Zhang Y. Synthesis and Self-Assembly of Hyperbranched Multiarm Copolymer Lysozyme Conjugates Based on Light-Induced Metal-Free Atrp. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061017. [PMID: 36985911 PMCID: PMC10053904 DOI: 10.3390/nano13061017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/12/2023]
Abstract
In recent years, the coupling of structurally and functionally controllable polymers with biologically active protein materials to obtain polymer-protein conjugates with excellent overall properties and good biocompatibility has been important research in the field of polymers. In this study, the hyperbranched polymer hP(DEGMA-co-OEGMA) was first prepared by combining self-condensation vinyl polymerization (SCVP) with photo-induced metal-free atom transfer radical polymerization (ATRP), with 2-(2-bromo-2-methylpropanoyloxy) ethyl methacrylate (BMA) as inimer, and Di (ethylene glycol) methyl ether methacrylate (DEGMA) and (oligoethylene glycol) methacrylate (OEGMA, Mn = 300) as the copolymer monomer. Then, hP(DEGMA-co-OEGMA) was used as a macroinitiator to continue the polymerization of a segment of pyridyl disulfide ethyl methacrylate (DSMA) monomer to obtain the hyperbranched multiarm copolymers hP(DEGMA-co-OEGMA)-star-PDSMA. Finally, the lysozyme with sulfhydryl groups was affixed to the hyperbranched multiarm copolymers by the exchange reaction between sulfhydryl groups and disulfide bonds to obtain the copolymer protein conjugates hP(DEGMA-co-OEGMA)-star-PLZ. Three hyperbranched multiarm copolymers with relatively close molecular weights but different degrees of branching were prepared, and all three conjugates could self-assemble to form nanoscale vesicle assemblies with narrow dispersion. The biological activity and secondary structure of lysozyme on the assemblies remained essentially unchanged.
Collapse
Affiliation(s)
- Jianguo Yi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yan Qin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
5
|
Wang C, Zhao H. Polymer brush-based nanostructures: from surface self-assembly to surface co-assembly. SOFT MATTER 2022; 18:5138-5152. [PMID: 35781482 DOI: 10.1039/d2sm00458e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface structures play an important role in the practical applications of materials. The synthesis of polymer brushes on a solid surface has emerged as an effective tool for tuning surface properties. The fabrication of polymer brush-based surface nanostructures has greatly facilitated the development of materials with unique surface properties. In this review article, synthetic methods used in the synthesis of polymer brushes, and self-assembly approaches applied in the fabrication of surface nanostructures including self-assembly of polymer brushes, co-assembly of polymer brushes and "free" block copolymer chains, and polymerization induced surface self-assembly, are reviewed. It is demonstrated that polymer brush-based surface nanostructures, including spherical surface micelles, wormlike surface structures, layered structures and surface vesicles, can be fabricated. Meanwhile, the challenges in the synthesis and applications of the surface nanostructures are discussed. This review is expected to be helpful for understanding the principles, methods and applications of polymer brush-based surface nanostructures.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| |
Collapse
|
6
|
Shen X, Wang H, Zhao Y, Liang J, Lu B, Sun W, Lu K, Wang H, Yuan L. Recycling protein selective adsorption on fluorine-modified surface through fluorine-fluorine interaction. Colloids Surf B Biointerfaces 2022; 214:112486. [PMID: 35364454 DOI: 10.1016/j.colsurfb.2022.112486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
Abstract
Low surface energy materials with micro-nano structures have been widely developed to prevent non-specific adhesion of biomolecules. Herein we put forward a new approach based on the antifouling and self-assembly properties of fluorine components, to construct a non-specific protein resistance surface with selective protein adsorption property. Briefly, the antifouling surface (SN-F) was obtained by a simple one-step modification on silicon nanowire arrays (SiNWAs) with fluorine coupling agent 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane (FAS). And protein was fluorinated by conjugation with an amphiphilic fluoro-copolymer, produced from 2-methacrylamido glucopyranose (MAG) and trifluoroethyl methacrylate (TFEMA) via RAFT polymerization. The properties of the materials were characterized by 1H nuclear magnetic resonance (1H NMR), infrared spectroscopy (FTIR), water contact angle, and X-ray photoelectron spectroscopy (XPS) etc., and protein adsorption was investigated by protein content measurement, fluorescence detection, and electrophoresis. It was observed that the adsorption for native proteins on SN-F was at an extremely low level, while the adsorption for the fluoro-copolymer conjugated protein (PFG-BSA) was significantly increased. When the percentage of TFEMA in the fluoro-copolymer was as high as 52.0%, the fluorinated protein adsorbed on SN-F was more than 35 times of native proteins on the surface. Moreover, the platform could resist IgG adhesion in serum after the adsorption of fluorinated protein, and it could be recycled three times after 75% ethanol treatment. In conclusion, SN-F showed non-specific protein resistance through low surface energy and specific protein adsorption by fluorine-fluorine self-assembly. The fluorinated nanostructured platform has a great potential in controlling protein adsorption and release.
Collapse
Affiliation(s)
- Xiang Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hengxiao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Yingxian Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Jinwei Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Benben Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hongwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| |
Collapse
|
7
|
Li Y, Liu L, Zhao H. Enzyme-catalyzed cascade reactions on multienzyme proteinosomes. J Colloid Interface Sci 2021; 608:2593-2601. [PMID: 34763887 DOI: 10.1016/j.jcis.2021.10.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
In this research, to mimic the structures and the functionalities of the organelles in living cells multienzyme proteinosomes with β-galactosidase (β-gal), glucose oxidase (GOx) and horseradish peroxidase (HRP) on the surfaces are fabricated by hydrophobic-interaction induced self-assembly approach. To investigate the mechanism of the formation of proteinosomes, poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) and bovine serum albumin are employed in a model system and the study demonstrates that the hydrophobic interaction between the dehydrated polymer chains and the hydrophobic patches on the proteins plays a key role in the fabrication of the proteinosomes. Based on the model system, multienzyme proteinosomes with β-gal, GOx and HRP on the surfaces are fabricated through hydrophobic interaction between PDEGMA and enzyme molecules. Enzyme-catalyzed cascade reactions are performed on the surfaces of the proteinosomes, and the immobilized enzymes show higher bioactivities than the "free" enzymes, due to the direct transfer of the product as a substrate from one enzyme molecule to another. This research provides a unique method for the synthesis of multienzyme proteinosomes with improved bioactivities, and the biofunctional structures will find promising applications in medical and biological science.
Collapse
Affiliation(s)
- Yuwei Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
| |
Collapse
|
8
|
Hou W, Zhong W, Zhao H. Asymmetric Colloidal Particles Fabricated by Polymerization-Induced Surface Self-Assembly Approach. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wangmeng Hou
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Wen Zhong
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Liu F, Cai Y, Wang H, Yang X, Zhao H. Polymerization-induced proteinosome formation. J Mater Chem B 2021; 9:1406-1413. [PMID: 33464259 DOI: 10.1039/d0tb02635b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, the fabrication of well-organized proteinosomes has been a popular topic due to the potential applications of the structures in materials science and nanotechnology. A big challenge in the fabrication of proteinosomes is to maintain the structures and the functionalities of proteins on the proteinosomes. In this research, a new concept of polymerization-induced formation of proteinosomes is proposed. In thermal dispersion polymerization of N-isopropyl acrylamide (NIPAM) in the presence of bovine serum albumin (BSA), the growing PNIPAM chains experience phase transition from hydrated coils to dehydrated globules, and the dehydrated PNIPAM chains have hydrophobic interaction with BSA, leading to the formation of hollow proteinosomes. Kinetics studies indicate that there is a transition from the homogeneous polymerization of NIPAM in solution to the heterogeneous polymerization in the proteinosomes. Transmission electron microscopy, atomic force microscopy, confocal laser scanning microscopy and dynamic light scattering all demonstrate the formation of hollow structures. The results of circular dichroism spectroscopy indicate that the secondary structure of BSA remains unchanged in the polymerization process. The formation of proteinosomes is reversible. Upon cooling of the solution to a temperature below the phase transition temperature of PNIPAM, the proteinosomes are dissociated due to the absence of the hydrophobic interaction. The proteinosomes can be used in the encapsulation of hydrophilic compounds in aqueous solution. In this research, not only BSA but also ovalbumin (OVA) is used as a model protein for the fabrication of proteinosomes by the polymerization-induced approach.
Collapse
Affiliation(s)
- Fang Liu
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Yaqian Cai
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Huan Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Xinlin Yang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| |
Collapse
|
10
|
Dhara M, Rudra S, Mukherjee N, Jana T. Hollow polymer nanocapsules with a ferrocenyl copolymer shell. Polym Chem 2021. [DOI: 10.1039/d1py00590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hollow polymer nanocapsules consisting of ferrocenyl shell have been developed by crosslinking the polymer chains grafted over silica nanoparticles synthesized via one pot surface-initiated RAFT polymerization.
Collapse
Affiliation(s)
- Moumita Dhara
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| | - Somdatta Rudra
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| | | | - Tushar Jana
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| |
Collapse
|
11
|
Wang H, Hou W, Liu Y, Liu L, Zhao H. Janus Surface Micelles on Silica Particles: Synthesis and Application in Enzyme Immobilization. Macromol Rapid Commun 2020; 42:e2000589. [PMID: 33270313 DOI: 10.1002/marc.202000589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Indexed: 12/20/2022]
Abstract
In these years, synthesis and applications of Janus structures have aroused great interest for large-scale applications in chemistry and materials science. Up to now, Janus particles with different morphologies and different functionalities have been synthesized in solutions, but the synthesis of Janus particles on solid surfaces has not been touched. In this research, Janus surface micelles (JSMs) are fabricated on the surfaces of silica particles by polymerization induced surface self-assembly (PISSA) approach, and the JSMs are used for enzyme immobilization. Usually, enzyme immobilization should be able to optimize the performance of the immobilized enzymes, and an ideal immobilization system must offer protection to the immobilized enzyme with retained bioactivity. Herein, it is demonstrated that JSMs on silica particles can be used as an ideal platform for the immobilization of enzymes. To prepare JSMs, poly(2-(dimethylamino) ethyl methacrylate) macro chain transfer agent (PDMAEMA-CTA) brushes on silica particles and poly(di(ethylene glycol) methyl ether methacrylate) macro CTA (PDEGMA-CTA) are employed in reversible addition-fragmentation chain transfer dispersion polymerization of styrene. After polymerization, JSMs with polystyrene cores and PDMAEMA/PDEGMA patches on the surfaces are prepared on silica particles. After quaternization reaction, the quaternized PDMAEMA patches are used for the immobilization of enzymes. Experimental results turn out that enhanced bioactivities of the immobilized enzymes are achieved and the enzyme molecules are well protected by surface Janus structures.
Collapse
Affiliation(s)
- Huan Wang
- Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Wangmeng Hou
- Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yingze Liu
- Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Li Liu
- Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Hanying Zhao
- Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
12
|
Hou Z, Wu Y, Xu C, Reghu S, Shang Z, Chen J, Pranantyo D, Marimuth K, De PP, Ng OT, Pethe K, Kang ET, Li P, Chan-Park MB. Precisely Structured Nitric-Oxide-Releasing Copolymer Brush Defeats Broad-Spectrum Catheter-Associated Biofilm Infections In Vivo. ACS CENTRAL SCIENCE 2020; 6:2031-2045. [PMID: 33274280 PMCID: PMC7706084 DOI: 10.1021/acscentsci.0c00755] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 06/12/2023]
Abstract
Gram-negative bacteria cannot be easily eradicated by antibiotics and are a major source of recalcitrant infections of indwelling medical devices. Among various device-associated infections, intravascular catheter infection is a leading cause of mortality. Prior approaches to surface modification, such as antibiotics impregnation, hydrophilization, unstructured NO-releasing, etc., have failed to achieve adequate infection-resistant coatings. We report a precision-structured diblock copolymer brush (H(N)-b-S) composed of a surface antifouling block of poly(sulfobetaine methacrylate) (S) and a subsurface bactericidal block (H(N)) of nitric-oxide-emitting functionalized poly(hydroxyethyl methacrylate) (H) covalently grafted from the inner and outer surfaces of a polyurethane catheter. The block copolymer architecture of the coating is important for achieving good broad-spectrum anti-biofilm activity with good biocompatibility and low fouling. The coating procedure is scalable to clinically useful catheter lengths. Only the block copolymer brush coating ((H(N)-b-S)) shows unprecedented, above 99.99%, in vitro biofilm inhibition of Gram-positive and Gram-negative bacteria, 100-fold better than previous coatings. It has negligible toxicity toward mammalian cells and excellent blood compatibility. In a murine subcutaneous infection model, it achieves >99.99% biofilm reduction of Gram-positive and Gram-negative bacteria compared with <90% for silver catheter, while in a porcine central venous catheter infection model, it achieves >99.99% reduction of MRSA with 5-day implantation. This precision coating is readily applicable for long-term biofilm-resistant and blood-compatible copolymer coatings covalently grafted from a wide range of medical devices.
Collapse
Affiliation(s)
- Zheng Hou
- School
of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), 62 Nanyang Drive, Singapore 637459
- Centre
for Antimicrobial Bioengineering, NTU, 62 Nanyang Drive, Singapore 637459
| | - Yang Wu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), 62 Nanyang Drive, Singapore 637459
- Centre
for Antimicrobial Bioengineering, NTU, 62 Nanyang Drive, Singapore 637459
| | - Chen Xu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), 62 Nanyang Drive, Singapore 637459
- Centre
for Antimicrobial Bioengineering, NTU, 62 Nanyang Drive, Singapore 637459
| | - Sheethal Reghu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), 62 Nanyang Drive, Singapore 637459
- Centre
for Antimicrobial Bioengineering, NTU, 62 Nanyang Drive, Singapore 637459
| | - Zifang Shang
- Frontiers
Science Center for Flexible Electronics (FSCFE), Xi’an Institute
of Flexible Electronics (IFE) & Xi’an Institute of Biomedical
Materials and Engineering (IBME), Northwestern
Polytechnical University (NPU), 1 Dongxiang Road Changan District, Xi’an 710072, China
| | - Jingjie Chen
- Frontiers
Science Center for Flexible Electronics (FSCFE), Xi’an Institute
of Flexible Electronics (IFE) & Xi’an Institute of Biomedical
Materials and Engineering (IBME), Northwestern
Polytechnical University (NPU), 1 Dongxiang Road Changan District, Xi’an 710072, China
| | - Dicky Pranantyo
- Department
of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Kalisvar Marimuth
- Tan
Tock Seng Hospital, 11
Jalan Tan Tock Seng, Singapore 308433
- Yong
Loo Lin School of Medicine, National University
of Singapore, 1E Kent Ridge Road, Singapore 119228
- National
Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442
| | - Partha Pratim De
- Tan
Tock Seng Hospital, 11
Jalan Tan Tock Seng, Singapore 308433
| | - Oon Tek Ng
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore 636921
- Tan
Tock Seng Hospital, 11
Jalan Tan Tock Seng, Singapore 308433
- National
Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442
| | - Kevin Pethe
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore 636921
| | - En-Tang Kang
- Department
of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Peng Li
- Frontiers
Science Center for Flexible Electronics (FSCFE), Xi’an Institute
of Flexible Electronics (IFE) & Xi’an Institute of Biomedical
Materials and Engineering (IBME), Northwestern
Polytechnical University (NPU), 1 Dongxiang Road Changan District, Xi’an 710072, China
| | - Mary B. Chan-Park
- School
of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), 62 Nanyang Drive, Singapore 637459
- Centre
for Antimicrobial Bioengineering, NTU, 62 Nanyang Drive, Singapore 637459
- School
of Physical and Mathematical Sciences, 21 Nanyang Link, Singapore 637371
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
13
|
Chakraborty S, Khamrui R, Ghosh S. Redox responsive activity regulation in exceptionally stable supramolecular assembly and co-assembly of a protein. Chem Sci 2020; 12:1101-1108. [PMID: 34163877 PMCID: PMC8179030 DOI: 10.1039/d0sc05312k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/14/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular assembly of biomolecules/macromolecules stems from the desire to mimic complex biological structures and functions of living organisms. While DNA nanotechnology is already in an advanced stage, protein assembly is still in its infancy as it is a significantly difficult task due to their large molecular weight, conformational complexity and structural instability towards variation in temperature, pH or ionic strength. This article reports highly stable redox-responsive supramolecular assembly of a protein Bovine serum albumin (BSA) which is functionalized with a supramolecular structure directing unit (SSDU). The SSDU consists of a benzamide functionalized naphthalene-diimide (NDI) chromophore which is attached with the protein by a bio-reducible disulfide linker. The SSDU attached protein (NDI-BSA) exhibits spontaneous supramolecular assembly in water by off-set π-stacking among the NDI chromophores, leading to the formation of spherical nanoparticles (diameter: 150-200 nm). The same SSDU when connected with a small hydrophilic wedge (NDI-1) instead of the large globular protein, exhibits a different π-stacking mode with relatively less longitudinal displacement which results in a fibrillar network and hydrogelation. Supramolecular co-assembly of NDI-BSA and NDI-1 (3 : 7) produces similar π-stacking and an entangled 1D morphology. Both the spherical assembly of NDI-BSA or the fibrillar co-assembly of NDI-BSA + NDI-1 (3 : 7) provide sufficient thermal stability to the protein as its thermal denaturation could be completely surpassed while the secondary structure remained intact. However, the esterase like activity of the protein reduced significantly as a result of such supramolecular assembly indicating limited access by the substrate to the active site of the enzyme located in the confined environment. In the presence of glutathione (GSH), a biologically important tri-peptide, due to the cleavage of the disulfide bond, the protein became free and was released, resulting in fully regaining its enzymatic activity. Such supramolecular assembly provided excellent protection to the protein against enzymatic hydrolysis as the relative hydrolysis was estimated to be <30% for the co-assembled protein with respect to the free protein under identical conditions. Similar to bioactivity, the enzymatic hydrolysis also became prominent after GSH-treatment, confirming that the lack of hydrolysis in the supramolecularly assembled state is indeed related to the confinement of the protein in the nanostructure assembly.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| |
Collapse
|
14
|
Zhong W, Hou W, Liu Y, Liu L, Zhao H. Biosurfaces Fabricated by Polymerization-Induced Surface Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12649-12657. [PMID: 33070609 DOI: 10.1021/acs.langmuir.0c02201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface biofunctionalization provides an approach to the fabrication of surfaces with improved biological and clinical performances. Biosurfaces have found increasing applications in many areas such as sensing, cell growth, and disease detection. Efficient synthesis of biosurfaces without damages to the structures and functionalities of biomolecules is a great challenge. Polymerization-induced surface self-assembly (PISSA) provides an effective approach to the synthesis of surface nanostructures with different compositions, morphologies, and properties. In this research, application of PISSA in the fabrication of biosurfaces is investigated. Two different reversible addition-fragmentation chain transfer (RAFT) agents, RAFT chain transfer agent (CTA) on silica particles (SiO2-CTA) and CTA on bovine serum albumin (BSA-CTA), were employed in RAFT dispersion polymerization of N-isopropylacrylamide (NIPAM) in water at a temperature above the lower critical solution temperature (LCST) of poly-(isopropylacrylamide) (PNIPAM). After polymerization, PNIPAM layers with BSA on the top surfaces are fabricated on the surfaces of silica particles. Transmission electron microscopy results show that the average PNIPAM layer thickness increases with monomer conversion. Kinetics study indicates that there is a turn point on a plot of ln([M]0/[M]t) versus polymerization time. After the critical point, surface coassembly of PNIPAM brushes and BSA-PNIPAM bioconjugates is performed on the silica particles. The secondary structure and the activity of BSA immobilized on top of the PNIPAM layers are basically kept unchanged in the PISSA process. To prepare permanently immobilized protein surfaces, PNIPAM layers on silica particles are cross-linked. BSA on the top surfaces presents a reversible "on-off" switching property. At a temperature below the LCST of PNIPAM, the activity of the immobilized BSA is retained; however, the BSA activity decreases significantly at a temperature above the LCST because of the hydrophobic interaction between PNIPAM and BSA. Based on this approach, many different biosurfaces can be fabricated and the materials will find applications in many fields, such as enzyme immobilization, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Wen Zhong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Wangmeng Hou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Yingze Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
15
|
Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020; 27:1174-1205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peptide-based pharmaceuticals have recently experienced a renaissance due to their ability to fill the gap between the two main classes of available drugs, small molecules and biologics. Peptides combine the high potency and selectivity typical of large proteins with some of the characteristic advantages of small molecules such as synthetic accessibility, stability and the potential of oral bioavailability. METHODS In the present manuscript we review the recent literature on selected peptide-based approaches for cancer treatment, emphasizing recent advances, advantages and challenges of each strategy. RESULTS One of the applications in which peptide-based approaches have grown rapidly is cancer therapy, with a focus on new and established targets. We describe, with selected examples, some of the novel peptide-based methods for cancer treatment that have been developed in the last few years, ranging from naturally-occurring and modified peptides to peptidedrug conjugates, peptide nanomaterials and peptide-based vaccines. CONCLUSION This review brings out the emerging role of peptide-based strategies in oncology research, critically analyzing the advantages and limitations of these approaches and the potential for their development as effective anti-cancer therapies.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Alanca Schmid
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Meder Kamalov
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Claudia Bello
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria.,Department of Chemistry "Ugo Schiff", University of Florence, Laboratory of Peptide and Protein Chemistry and Biolology-PeptLab, Via della Lastruccia 13, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
16
|
Hou W, Liu Y, Zhao H. Surface Nanostructures Based on Assemblies of Polymer Brushes. Chempluschem 2020; 85:998-1007. [DOI: 10.1002/cplu.202000112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Wangmeng Hou
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
| | - Yingze Liu
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 P. R. China
| |
Collapse
|
17
|
Altinbasak I, Arslan M, Sanyal R, Sanyal A. Pyridyl disulfide-based thiol–disulfide exchange reaction: shaping the design of redox-responsive polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py01215g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.
Collapse
Affiliation(s)
| | - Mehmet Arslan
- Yalova University
- Faculty of Engineering
- Department of Polymer Materials Engineering
- 77100 Yalova
- Turkey
| | - Rana Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| |
Collapse
|
18
|
Yu Q, Ma X, Liu Y, Zhao H. Biomimetic Mineralization of Protein Nanogels for Enzyme Protection. Chemistry 2019; 25:16712-16717. [PMID: 31664741 DOI: 10.1002/chem.201904412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Indexed: 01/24/2023]
Abstract
Protein nanogels have found a wide variety of applications, ranging from biocatalysis to drug/protein delivery. However, in practical applications, proteins in nanogels may suffer from enzymic hydrolysis and denaturation. Inspired by the structure and functionalities of the fowl eggshells, biomimetic mineralization of protein nanogels was studied in this research. Protein nanogels with embedded porcine pancreas lipase (PPL) in the cross-linked nanostructures were synthesized through the thiol-disulfide reaction between thiol-functionalized PPL and poly(N-isopropylacrylamide) with pendant pyridyl disulfide groups. The nanogels were further reacted with reduced bovine serum albumin (BSA) and BSA molecules were coated on the nanogels. Mineralization of BSA leads to the synthesis of biomineralized shells on the nanogels. With the growth of CaCO3 on the shells, the nanogels aggregate into suprastructures. Thermogravimetric analysis, XRD, dynamic light scattering, and TEM were employed to study the mechanism of the biomineralization process and analyze the structures of the mineralized nanogels. The biomineralized shells can effectively protect the PPL molecules from hydrolysis by trypsin; meanwhile, the nanosized channels on the mineralized shells allow the transport of small-molecule substrates across the shells. Bioactivity measurements indicate that PPL in the nanogels maintains more than 80 % bioactivity after biomineralization.
Collapse
Affiliation(s)
- Qianyu Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of, Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| | - Xiaoteng Ma
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of, Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| | - Yingze Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of, Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of, Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
19
|
Hou W, Wang H, Cui Y, Liu Y, Ma X, Zhao H. Surface Nanostructures Fabricated by Polymerization-Induced Surface Self-Assembly. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01664] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Cai Y, Liu F, Ma X, Yang X, Zhao H. Hydrophobic Interaction-Induced Coassembly of Homopolymers and Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10958-10964. [PMID: 31355645 DOI: 10.1021/acs.langmuir.9b01749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Studies on the fabrication of polymer-protein hybrid self-assemblies have aroused great interest over the past years because of a broad range of applications of the materials in drug/protein delivery, biosensors, and enhancement of protein stability. The hybrid assemblies are usually fabricated from polymer-protein bioconjugates, which may suffer from the damages to the protein structures and the loss of functionalities in the synthesis. Herein, we report a simple and efficient approach to the fabrication of vesicle-like structures based on coassembly of homopolymer chains and protein molecules. At room temperature, poly(N-isopropylacrylamide) (PNIPAM) and bovine serum albumin (BSA) are able to form complexes through hydrophobic interactions in aqueous solution. Upon heating to a temperature above the cloud point of PNIPAM, vesicle-like structures with collapsed PNIPAM in the walls and BSA at the surfaces are formed. The size and membrane thickness of the assemblies can be tuned by the molar ratio of PNIPAM to BSA. The hydrophobic interaction between PNIPAM and BSA plays a key role in the complex formation and self-assembly process. The complexes and assembled structures are analyzed by using micro differential scanning calorimetry, light scattering, and transmission electron microscopy. BSA in the assemblies retains over 90% of its activity, and the protein stability is enhanced because of the hydrophobic interaction between proteins and polymers. This approach allows us to prepare polymer-protein assemblies without bioconjugate synthesis. Meanwhile, possible damages to the protein structures and the loss of bioactivities of proteins can be avoided.
Collapse
|
21
|
Cai Y, Zhao H. Protein-Induced Dissociation of Biomolecular Assemblies. ACS APPLIED BIO MATERIALS 2018; 2:470-479. [DOI: 10.1021/acsabm.8b00672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaqian Cai
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
22
|
Liu Q, Ju Y, Zhao H. Bioassemblies Fabricated by Coassembly of Protein Molecules and Monotethered Single-Chain Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13705-13712. [PMID: 30351955 DOI: 10.1021/acs.langmuir.8b02895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular nanoparticles have been used as building blocks in the synthesis of functional materials. The grand challenges in the synthesis of the functional materials are precise control of the structures and functionalities of the materials by using nanoparticles with different architectures and properties. Monotethered single-chain polymeric nanoparticles (SCPN) are a type of nanosized asymmetric particles formed by intramolecular cross-linking of linear diblock copolymer chains. Monotethered SCPNs can be used as elemental building blocks for the fabrication of well-defined advanced structures. In this research, synthesis of biohybrid materials based on coassembly of bovine serum albumin (BSA) molecules and monotethered SCPNs is investigated. Due to the asymmetric structure of the SCPNs, positively charged SCPNs and negatively charged protein molecules coassemble into biohybrid vesicles with SCPNs on the layers and protein molecules in the walls. The self-assembled structures were analyzed by using dynamic light scattering, transmission electron microscopy, cryo-transmission electron microscopy, and atomic force microscopy. The average size of the biohybrid vesicles can be controlled by the molar ratio of SCPNs to BSA. The protein molecules in the biohybrid vesicles maintain most of the activities. This research paves a new way for the synthesis of functional biohybrid structures, and the materials can be used as protein carriers.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yuanyuan Ju
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
23
|
Hou W, Feng Y, Li B, Zhao H. Coassembly of Linear Diblock Copolymer Chains and Homopolymer Brushes on Silica Particles: A Combined Computer Simulation and Experimental Study. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02461] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Ju Y, Zhang Y, Zhao H. Fabrication of Polymer-Protein Hybrids. Macromol Rapid Commun 2018; 39:e1700737. [PMID: 29383794 DOI: 10.1002/marc.201700737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Rapid developments in organic chemistry and polymer chemistry promote the synthesis of polymer-protein hybrids with different structures and biofunctionalities. In this feature article, recent progress achieved in the synthesis of polymer-protein conjugates, protein-nanoparticle core-shell structures, and polymer-protein nanogels/hydrogels is briefly reviewed. The polymer-protein conjugates can be synthesized by the "grafting-to" or the "grafting-from" approach. In this article, different coupling reactions and polymerization methods used in the synthesis of bioconjugates are reviewed. Protein molecules can be immobilized on the surfaces of nanoparticles by covalent or noncovalent linkages. The specific interactions and chemical reactions employed in the synthesis of core-shell structures are discussed. Finally, a general introduction to the synthesis of environmentally responsive polymer-protein nanogels/hydrogels by chemical cross-linking reactions or molecular recognition is provided.
Collapse
Affiliation(s)
- Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
25
|
Fan W, Liu L, Zhao H. Co-assembly of Patchy Polymeric Micelles and Protein Molecules. Angew Chem Int Ed Engl 2017; 56:8844-8848. [PMID: 28561455 DOI: 10.1002/anie.201704955] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Indexed: 11/05/2022]
Abstract
The development in the synthesis and self-assembly of patchy nanoparticles has resulted in the creation of complex hierarchical structures. Co-assembly of polymeric nanoparticles and protein molecules combines the advantages of polymeric materials and biomolecules, and will produce new functional materials. Co-assembly of positively charged patchy micelles and negatively charged bovine serum albumin (BSA) molecules is investigated. The patchy micelles, which were synthesized using block copolymer brushes as templates, leads to co-assembly with protein molecules into vesicular structures. The average size of the assembled structures can be controlled by the molar ratio of BSA to patchy micelles. The assembled structures are dissociated in the presence of trypsin. The protein-polymer hybrid vesicles could find potential applications in medicine.
Collapse
Affiliation(s)
- Weijing Fan
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
26
|
Fan W, Liu L, Zhao H. Co-assembly of Patchy Polymeric Micelles and Protein Molecules. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weijing Fan
- Key Laboratory of Functional Polymer Materials; Ministry of Education, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials; Ministry of Education, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials; Ministry of Education, College of Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| |
Collapse
|
27
|
Frasco MF, Truta LAANA, Sales MGF, Moreira FTC. Imprinting Technology in Electrochemical Biomimetic Sensors. SENSORS (BASEL, SWITZERLAND) 2017; 17:E523. [PMID: 28272314 PMCID: PMC5375809 DOI: 10.3390/s17030523] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022]
Abstract
Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.
Collapse
Affiliation(s)
- Manuela F Frasco
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - Liliana A A N A Truta
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - M Goreti F Sales
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - Felismina T C Moreira
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| |
Collapse
|
28
|
Ju Y, Xing C, Wu D, Wu Y, Wang L, Zhao H. Covalently Connected Polymer-Protein Nanostructures Fabricated by a Reactive Self-Assembly Approach. Chemistry 2017; 23:3366-3374. [PMID: 28072497 DOI: 10.1002/chem.201604843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Indexed: 11/10/2022]
Abstract
The synthesis of polymer-protein nanostructures opens up a new avenue for the development of new biomaterials. In this research, covalently connected polymer-protein nanostructures were fabricated through a reactive self-assembly approach. Poly(tert-butyl methacrylate-co-pyridyl disulfide methacrylamide) (PtBMA-co-PPDSMA) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Covalently connected nanostructures (CCNs) with hydrophobic polymer cores and hydrophilic protein coronae were prepared by adding solutions of PtBMA-co-PPDSMA/DMF to aqueous solutions of bovine serum albumin (BSA). The thiol-disulfide exchange reaction between pyridyl disulfide groups on the polymer chains and thiol groups on the protein molecules plays a key role in the fabrication of CCNs. The self-assembly process was investigated by dynamic light scattering (DLS) and stopped-flow techniques. DLS results indicated that the sizes of the CCNs were determined by the initial polymer concentration, the BSA concentration, and the average number of thiol groups on BSA molecules. TEM and sodium dodecyl sulfate polyacrylamide gel electrophoresis were used to analyze the nanostructures. Far-UV circular dichroism results demonstrated that the original folded conformations of BSA molecules were basically maintained in the reactive self-assembly process. Compared with native BSA, the secondary structure and conformation change of coronal BSA induced by urea or thermal treatment were remarkably suppressed. The cytotoxicity assays demonstrated that the CCNs were essentially nontoxic to Hela and COS-7 cells.
Collapse
Affiliation(s)
- Yuanyuan Ju
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of Chemical, Science and Engineering (Tianjin), Nankai University, P.R. China
| | - Cheng Xing
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, P.R. China
| | - Dongxia Wu
- The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin, 300192, P.R. China
| | - Yunfang Wu
- The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin, 300192, P.R. China
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, P.R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of Chemical, Science and Engineering (Tianjin), Nankai University, P.R. China
| |
Collapse
|
29
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Han G, Wang JT, Ji X, Liu L, Zhao H. Nanoscale Proteinosomes Fabricated by Self-Assembly of a Supramolecular Protein–Polymer Conjugate. Bioconjug Chem 2017; 28:636-641. [DOI: 10.1021/acs.bioconjchem.6b00704] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangda Han
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Jin-Tao Wang
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Xiaotian Ji
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Li Liu
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
31
|
Ju Y, Zhang M, Zhao H. Poly(ε-caprolactone) with pendant natural peptides: an old polymeric biomaterial with new properties. Polym Chem 2017. [DOI: 10.1039/c7py01012e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ε-caprolactone) with pendant glutathione or l-carnosine was synthesized by a combination of ring-opening copolymerization, click chemistry and thiol-disulfide exchange reaction, and the self-assemblies of the polymers were investigated.
Collapse
Affiliation(s)
- Yuanyuan Ju
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
32
|
Ji X, Liu L, Zhao H. The synthesis and self-assembly of bioconjugates composed of thermally-responsive polymer chains and pendant lysozyme molecules. Polym Chem 2017. [DOI: 10.1039/c7py00315c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermal-responsive polymer chains with pendant lysozyme molecules were prepared via a “grafting to” approach. The bioconjugates were able to self-assemble into mesoglobules at a temperature above their cloud point.
Collapse
Affiliation(s)
- Xiaotian Ji
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- China
| |
Collapse
|
33
|
Ji X, Liu J, Liu L, Zhao H. Enzyme-polymer hybrid nanogels fabricated by thiol-disulfide exchange reaction. Colloids Surf B Biointerfaces 2016; 148:41-48. [DOI: 10.1016/j.colsurfb.2016.08.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/26/2022]
|
34
|
Wu L, Qiu J, Wu S, Liu X, Liu C, Xu Z, Li S, Xu H. Bioinspired Production of Antibacterial Sucrose Isomerase-Sponge for the Synthesis of Isomaltulose. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lingtian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Juanjuan Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Shanshan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xiaoliu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Chao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| |
Collapse
|