1
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
2
|
Wu Z, Wang Y, Liu W, Lu M, Shi J. The role of neuropilin in bone/cartilage diseases. Life Sci 2024; 346:122630. [PMID: 38614296 DOI: 10.1016/j.lfs.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Bone remodeling is the balance between osteoblasts and osteoclasts. Bone diseases such as osteoporosis and osteoarthritis are associated with imbalanced bone remodeling. Skeletal injury leads to limited motor function and pain. Neurophilin was initially identified in axons, and its various ligands and roles in bone remodeling, angiogenesis, neuropathic pain and immune regulation were later discovered. Neurophilin promotes osteoblast mineralization and inhibits osteoclast differentiation and its function. Neuropolin-1 provides channels for immune cell chemotaxis and cytokine diffusion and leads to pain. Neuropolin-1 regulates the proportion of T helper type 17 (Th17) and regulatory T cells (Treg cells), and affects bone immunity. Vascular endothelial growth factors (VEGF) combine with neuropilin and promote angiogenesis. Class 3 semaphorins (Sema3a) compete with VEGF to bind neuropilin, which reduces angiogenesis and rejects sympathetic nerves. This review elaborates on the structure and general physiological functions of neuropilin and summarizes the role of neuropilin and its ligands in bone and cartilage diseases. Finally, treatment strategies and future research directions based on neuropilin are proposed.
Collapse
Affiliation(s)
- Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Wei Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Mingcheng Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
3
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
4
|
Qiu M, Xie Y, Tan G, Wang X, Huang P, Hong L. Synovial mesenchymal stem cell-derived exosomal miR-485-3p relieves cartilage damage in osteoarthritis by targeting the NRP1-mediated PI3K/Akt pathway: Exosomal miR-485-3p relieves cartilage damage. Heliyon 2024; 10:e24042. [PMID: 38293485 PMCID: PMC10826677 DOI: 10.1016/j.heliyon.2024.e24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis (OA) is an age-related musculoskeletal disease that results in pain and functional disability. Stem cell therapy has been considered as a promising treatment for OA. In this study, the therapeutic action and potential mechanism of synovial mesenchymal stem cells (SMSCs)-derived exosomes (Exos) in OA cartilage damage were investigated. Cartilage cells were stimulated with IL-1β to establish an in vitro model of OA cartilage damage. Cartilage cell functions were detected by CCK-8, scratch assay, and flow cytometry, respectively. Inflammatory cytokine levels were assessed by ELISA. Target molecule levels were measured by qRT‒PCR and Western blotting. Exos-induced differential expression of miRNAs in cartilage cells were analyzed by microarray analysis. The interaction between miR-485-3p and neuropilin-1 (NRP1) was validated by dual luciferase reporter and RIP assays. We found that treatment with Exos promoted proliferation, migration, and ECM secretion, but restrained apoptosis and inflammation of IL-1β-exposed cartilage cells via up-regulation of miR-485-3p. Additionally, miR-485-3p directly targeted NRP1 to repress NRP1 expression, which subsequently caused inactivation of the PI3K/Akt pathway. The protective effect of Exos on cartilage damage was counteracted by NRP1 overexpression-mediated activation of the PI3K/Akt pathway. In conclusion, Exos delivered miR-485-3p to attenuate IL-1β-induced cartilage degradation by targeting NRP1 and succedent inactivation of the PI3K/Akt pathway. Our findings shed light on the novel protective mechanism of Exos in OA, which suggest that the restoration of miR-485-3p by Exos might be a novel approach for OA treatment.
Collapse
Affiliation(s)
- Mingjun Qiu
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Yanhua Xie
- Department of orthopedic, The Second Affiliated Hospital of University of South China, China
| | - Guanghua Tan
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Xiaoxu Wang
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Peiguan Huang
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Liang Hong
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| |
Collapse
|
5
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
6
|
Zhang Z, Hao Z, Xian C, Fang Y, Cheng B, Wu J, Xia J. Neuro-bone tissue engineering: Multiple potential translational strategies between nerve and bone. Acta Biomater 2022; 153:1-12. [PMID: 36116724 DOI: 10.1016/j.actbio.2022.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
Numerous tissue regeneration paradigms show evident neurological dependence, including mammalian fingertip, skin, and bone regeneration. The mature skeleton is innervated by an abundant nervous system that infiltrates the developing axial and appendicular bones and maintains the stability of the systemic skeletal system by controlling blood flow, regulating bone metabolism, secreting neurotransmitters, and regulating stem cell behavior. In recent years, neurotization in tissue-engineered bone has been considered as a promising strategy to effectively overcome the challenge of vascularization and innervation regeneration in the central zone of "critical-sized bone defects" that conventional tissue-engineered scaffolds are unable to handle, however, further validation is needed in relevant clinical applications. Therefore, this study reviews the mechanisms by which the nervous system regulates bone metabolism and regeneration through a variety of neurogenic or non-neurogenic factors, as well as the recent progress and design strategies of neuralized tissue-engineered bone, to provide new ideas for further studies on subsequent neural bone tissue engineering. STATEMENT OF SIGNIFICANCE: The interaction of nerve and bone tissue during skeletal development and repair has attracted widespread attention, with emerging evidences highlighting the regulation of bone metabolism and regeneration by the nervous system, but the underlying mechanisms have not been elucidated. Thus, further applications of neuro-bone tissue engineering still needs careful consideration. In this review, we summarize the numerous neurogenic and non-neurogenic factors which are involved in bone repair and regeneration, and further explore the current status of their application and biomaterial design in neuro-bone tissue engineering, and finally discuss the challenge and prospective for neuro-bone tissue engineering to facilitate its further development.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhichao Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
7
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
8
|
Huang Y, Wang X, Lin H. The hypoxic microenvironment: a driving force for heterotopic ossification progression. Cell Commun Signal 2020; 18:20. [PMID: 32028956 PMCID: PMC7006203 DOI: 10.1186/s12964-020-0509-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) refers to the formation of bone tissue outside the normal skeletal system. According to its pathogenesis, HO is divided into hereditary HO and acquired HO. There currently lack effective approaches for HO prevention or treatment. A deep understanding of its pathogenesis will provide promising strategies to prevent and treat HO. Studies have shown that the hypoxia-adaptive microenvironment generated after trauma is a potent stimulus of HO. The hypoxic microenvironment enhances the stability of hypoxia-inducible factor-1α (HIF-1α), which regulates a complex network including bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and neuropilin-1 (NRP-1), which are implicated in the formation of ectopic bone. In this review, we summarize the current understanding of the triggering role and underlying molecular mechanisms of the hypoxic microenvironment in the initiation and progression of HO, focusing mainly on HIF-1 and it's influenced genes BMP, VEGF, and NRP-1. A better understanding of the role of hypoxia in HO unveils novel therapeutic targets for HO that reduce the local hypoxic microenvironment and inhibit HIF-1α activity. Video Abstract. (MP4 52403 kb)
Collapse
Affiliation(s)
- Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xinyi Wang
- First Clinical Medical School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 461 BaYi Avenue, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
9
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
10
|
Yang K, Miron RJ, Bian Z, Zhang YF. A bone-targeting drug-delivery system based on Semaphorin 3A gene therapy ameliorates bone loss in osteoporotic ovariectomized mice. Bone 2018; 114:40-49. [PMID: 29883786 DOI: 10.1016/j.bone.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Osteoporosis is a serious health problem worldwide. Semaphorins (Sema) have been described as key molecules involved in the cross-talk between bone cells (osteoblasts/osteoclasts). In this study, we investigated whether plasmid containing Sema3a could ameliorate bone loss in an ovariectomized (OVX) mouse model via (AspSerSer)6, a selectively bone-targeting moiety. Plasmid pcDNA3.1(+)-Sema3a-GFP was fabricated and transfected cells with the plasmid demonstrated statistically higher levels of Sema3A in vitro (p < 0.001). Mice were ovariectomized and injected twice weekly with (AspSerSer)6-(STR-R8)+pcDNA3.1(+)-Sema3a-GFP for four weeks. The aim of the study was twofold: firstly to design an effective bone-targeting drug-delivery system (AspSerSer)6. Secondly, the effects of Sem3A gene therapy on bone loss was investigated. Here, the targeting selectivity of pcDNA3.1(+)-Sema3a-GFP via (AspSerSer)6 to the trabecular bone surface was firstly verified by histological observation of frozen sections and immunofluorescence staining. Then, bone microstructure analysis by Micro-CT indicated significantly less bone loss in mice treated with (AspSerSer)6-(STR-R8)+pcDNA3.1(+)-Sema3a-GFP compared to the control group (p < 0.05). Furthermore,H&E staining and Safranin O staining of the decalcified sections demonstrated statistically significantly higher bone area/total area in the mice that were injected with (AspSerSer)6-(STR-R8)+pcDNA3.1(+)-Sema3a-GFP (p < 0.001, p < 0.01,respectively). TRAP staining and immunohistochemistry staining of COL I demonstrated lower numbers of osteoclasts and significantly increased numbers of osteoblasts in the bone-targeting moiety delivering pcDNA3.1(+)-Sema3a-GFP group, when compared to the control group (p < 0.01, p < 0.001,respectively). Together, our findings have identified that, (AspSerSer)6, a bone-targeting drug-delivery system based on semaphorin3A gene therapy, ameliorated bone loss in osteoporotic ovariectomized mice, by suppressing osteoclastic bone resorption and simultaneously increasing osteoblastic bone formation. Gene therapy by local site-specific Sema3A overexpression might be a potential new strategy for treating osteoporosis and bone defects.
Collapse
Affiliation(s)
- K Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - R J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, Cell Therapy Institute, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Y F Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Yu H, Pei T, Ren J, Ding Y, Wu A, Zhou Y. Semaphorin 3A enhances osteogenesis of MG63 cells through interaction with Schwann cells in vitro. Mol Med Rep 2018; 17:6084-6092. [PMID: 29484438 DOI: 10.3892/mmr.2018.8628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/26/2018] [Indexed: 11/06/2022] Open
Abstract
Bone remodeling is under the control of various signals and systems in the body, including the nervous system. Semaphorin (Sema) 3A is a chemorepellent protein which regulates bone mass. Schwann cells, having a pivotal role following nerve injury, interact with Sema3A under numerous circumstances. The present study established a co‑culture system of MG63 and Schwann cells to investigate the role of the interaction between Sema3A and Schwann cells in osteogenesis. The results from the alkaline phosphatase assay, calcium nodule staining and the analysis of the osteogenic gene expression revealed that Sema3A inhibits osteogenic differentiation of MG63 cells in single‑cell culture and promotes osteogenic differentiation of MG63 cells in co‑culture with Schwann cells, in a concentration‑dependent manner. These findings suggest that the presence of Schwann cells induces Sema3A‑associated osteogenic differentiation in bone cells, and also reveals the pivotal role of Sema3A as a regulator in the skeletal and nervous systems, thus contributing to a better understanding of the interaction between these systems.
Collapse
Affiliation(s)
- Hongqiang Yu
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tingting Pei
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jingyi Ren
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Ding
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Anqian Wu
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanmin Zhou
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
12
|
Mediero A, Wilder T, Shah L, Cronstein BN. Adenosine A 2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis. FASEB J 2018; 32:3487-3501. [PMID: 29394106 DOI: 10.1096/fj.201700217r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The axonal guidance proteins semaphorin (Sema)4D and Sema3A play important roles in communication between osteoclasts and osteoblasts. As stimulation of adenosine A2A receptors (A2AR) regulates both osteoclast and osteoblast function, we asked whether A2AR regulates both osteoclast and osteoblast expression of Semas. In vivo bone formation and Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1 protein expression were studied in a murine model of wear particle-induced osteolysis. Osteoclast/osteoblast differentiation were studied in vitro as the number of tartrate-resistant acid phosphatase+/Alizarin Red+ cells after challenge with CGS21680 (A2AR agonist, 1 µM) or ZM241385 (A2AR antagonist, 1 µM), with or without Sema4D or Sema3A (10 ng/ml). Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1, and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) expression was studied by RT-PCR and Western blot. β-Catenin activation and cytoskeleton changes were studied by fluorescence microscopy and Western blot. In mice with wear particles implanted over the calvaria, CGS21680 treatment increased bone formation in vivo, reduced Sema4D, and increased Sema3A expression compared with mice with wear particle-induced osteolysis treated with vehicle alone. During osteoclast differentiation, CGS21680 abrogated RANKL-induced Sema4D mRNA expression (1.3 ± 0.3- vs. 2.5 ± 0.1-fold change, P < 0.001, n = 4). PlexinA1, but not Neuropilin-1, mRNA was enhanced by CGS21680 treatment. CGS21680 enhanced Sema3A mRNA expression during osteoblast differentiation (8.7 ± 0.2-fold increase, P < 0.001, n = 4); PlexinB1 mRNA was increased 2-fold during osteoblast differentiation and was not altered by CGS21680. Similar changes were observed at the protein level. CGS21680 decreased RANKL, increased OPG, and increased total/nuclear β-catenin expression in osteoblasts. Sema4D increased Ras homolog gene family, member A phosphorylation and focal adhesion kinase activation in osteoclast precursors, and CGS21680 abrogated these effects. In summary, A2AR activation diminishes secretion of Sema4D by osteoclasts, inhibits Sema4D-mediated osteoclast activation, and enhances secretion of Sema3A by osteoblasts, increasing osteoblast differentiation and diminishing inflammatory osteolysis.-Mediero, A., Wilder, T., Shah, L., Cronstein, B. N. Adenosine A2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and.,Bone and Joint Research Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Tuere Wilder
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Lopa Shah
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| |
Collapse
|
13
|
Roy S, Bag AK, Singh RK, Talmadge JE, Batra SK, Datta K. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Front Immunol 2017; 8:1228. [PMID: 29067024 PMCID: PMC5641316 DOI: 10.3389/fimmu.2017.01228] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropilins (NRPs) are non-tyrosine kinase cell surface glycoproteins expressed in all vertebrates and widely conserved across species. The two isoforms, such as neuropilin-1 (NRP1) and neuropilin-2 (NRP2), mainly act as coreceptors for class III Semaphorins and for members of the vascular endothelial growth factor family of molecules and are widely known for their role in a wide array of physiological processes, such as cardiovascular, neuronal development and patterning, angiogenesis, lymphangiogenesis, as well as various clinical disorders. Intriguingly, additional roles for NRPs occur with myeloid and lymphoid cells, in normal physiological as well as different pathological conditions, including cancer, immunological disorders, and bone diseases. However, little is known concerning the molecular pathways that govern these functions. In addition, NRP1 expression has been characterized in different immune cellular phenotypes including macrophages, dendritic cells, and T cell subsets, especially regulatory T cell populations. By contrast, the functions of NRP2 in immune cells are less well known. In this review, we briefly summarize the genomic organization, structure, and binding partners of the NRPs and extensively discuss the recent advances in their role and function in different immune cell subsets and their clinical implications.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh K Singh
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - James E Talmadge
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
14
|
Curcumin Attenuation of Wear Particle-Induced Osteolysis via RANKL Signaling Pathway Suppression in Mouse Calvarial Model. Mediators Inflamm 2017; 2017:5784374. [PMID: 29085185 PMCID: PMC5632469 DOI: 10.1155/2017/5784374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
Wear particle-induced chronic inflammation and osteoclastogenesis are two critical factors in the osteolytic process. Curcumin (CUR) is an active compound of the medicinal herb Curcuma longa and has anti-inflammatory and antiosteoclastogenic properties. Our study tested the hypothesis that CUR might attenuate polymethylmethacrylate- (PMMA-) induced inflammatory osteolysis using mouse calvaria osteolysis model in vivo and in vitro. The mice were divided into four groups: phosphate-buffered saline group, CUR, PMMA, and PMMA + CUR groups. Three days before PMMA particle implantation, the mice were intraperitoneally injected with CUR (25 mg/kg/day). Ten days after the operation, the mouse calvaria was harvested for microcomputed tomography, histomorphometry, and molecular biology analysis. As expected, CUR markedly reduced the secretion of tumor necrosis factor-α, interleukin- (IL-) 1β, and IL-6 in the calvarial organ culture. Moreover, CUR suppressed osteoclastogenesis and decreased bone resorption in vivo compared with PMMA-stimulated calvaria. Furthermore, CUR downregulated the osteoclast-specific gene expression and reversed the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin messenger RNA and protein ratio in PMMA particle-stimulated mice. These results suggest that CUR attenuated PMMA particle-induced inflammatory osteolysis by suppressing the RANKL signaling pathway in the murine calvarium, which could be a candidate compound to prevent and treat AL.
Collapse
|
15
|
Veronesi F, Tschon M, Fini M. Gene Expression in Osteolysis: Review on the Identification of Altered Molecular Pathways in Preclinical and Clinical Studies. Int J Mol Sci 2017; 18:E499. [PMID: 28245614 PMCID: PMC5372515 DOI: 10.3390/ijms18030499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Aseptic loosening (AL) due to osteolysis is the primary cause of joint prosthesis failure. Currently, a second surgery is still the only available treatment for AL, with its associated drawbacks. The present review aims at identifying genes whose expression is altered in osteolysis, and that could be the target of new pharmacological treatments, with the goal of replacing surgery. This review also aims at identifying the molecular pathways altered by different wear particles. We reviewed preclinical and clinical studies from 2010 to 2016, analyzing gene expression of tissues or cells affected by osteolysis. A total of 32 in vitro, 16 in vivo and six clinical studies were included. These studies revealed that genes belonging to both inflammation and osteoclastogenesis pathways are mainly involved in osteolysis. More precisely, an increase in genes encoding for the following factors were observed: Interleukins 6 and 1β (IL16 and β), Tumor Necrosis Factor α (TNFα), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), Cathepsin K (CATK) and Tartrate-resistant acid phosphatase (TRAP). Titanium (Ti) and Polyethylene (PE) were the most studied particles, showing that Ti up-regulated inflammation and osteoclastogenesis related genes, while PE up-regulated primarily osteoclastogenesis related genes.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
16
|
Semaphorin 3A Shifts Adipose Mesenchymal Stem Cells towards Osteogenic Phenotype and Promotes Bone Regeneration In Vivo. Stem Cells Int 2016; 2016:2545214. [PMID: 27721834 PMCID: PMC5046026 DOI: 10.1155/2016/2545214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/08/2023] Open
Abstract
Adipose mesenchymal stem cells (ASCs) are considered as the promising seed cells for bone regeneration. However, the lower osteogenic differentiation capacity limits its therapeutic efficacy. Identification of the key molecules governing the differences between ASCs and BMSCs would shed light on manipulation of ASCs towards osteogenic phenotype. In this study, we screened semaphorin family members in ASCs and BMSCs and identified Sema3A as an osteogenic semaphorin that was significantly and predominantly expressed in BMSCs. The analyses in vitro showed that the overexpression of Sema3A in ASCs significantly enhanced the expression of bone-related genes and extracellular matrix calcium deposition, while decreasing the expression of adipose-related genes and thus lipid droplet formation, resembling a BMSCs phenotype. Furthermore, Sema3A modified ASCs were then engrafted into poly(lactic-co-glycolic acid) (PLGA) scaffolds to repair the critical-sized calvarial defects in rat model. As expected, Sema3A modified ASCs encapsulation significantly promoted new bone formation with higher bone volume fraction and bone mineral density. Additionally, Sema3A was found to simultaneously increase multiple Wnt related genes and thus activating Wnt pathway. Taken together, our study here identifies Sema3A as a critical gene for osteogenic phenotype and reveals that Sema3A-modified ASCs would serve as a promising candidate for bettering bone defect repair.
Collapse
|
17
|
Li Y, He D, Liu B, Hu J. SEMA3A suspended in matrigel improves titanium implant fixation in ovariectomized rats. J Biomed Mater Res B Appl Biomater 2016; 105:2060-2065. [PMID: 27403923 DOI: 10.1002/jbm.b.33730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Yunfeng Li
- Department of Oral and Maxillofacial surgery; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Chengdu 610041 China
| | - Dongming He
- Department of Oral and Maxillofacial surgery; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Chengdu 610041 China
| | - Biao Liu
- Department of Oral and Maxillofacial surgery; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Chengdu 610041 China
| | - Jing Hu
- Department of Oral and Maxillofacial surgery; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Chengdu 610041 China
| |
Collapse
|