1
|
Lei KF, Bai KC, Pai PC. Study of cell migration trajectory on two-dimensional continuous stiffness gradient surface edited by grayscale photopolymerization. Talanta 2025; 281:126899. [PMID: 39298803 DOI: 10.1016/j.talanta.2024.126899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
In native tissues, cells encounter a diverse range of stiffness, which can significantly affect their behavior and function. The ability of cells to sense and respond to these mechanical cues is essential for various physiological processes, including cell migration. Cell migration is a complex process influenced by multiple factors, with substrate stiffness emerging as a critical determinant. This study developed a technique to edit the stiffness of polyacrylamide (PAA) hydrogel substrates by adjusting the grayscale level of a photomask during photopolymerization. By analyzing cell morphologies on the hydrogel, we confirmed the development of a single PAA hydrogel substrate with continuous stiffness gradients. This method was used to explore the correlation between substrate stiffness and cell migration dynamics. The study found that cells typically migrated from softer to stiffer surfaces. When the cells initially located on stiffer surfaces, they were able to travel longer distances. Additionally, a continuous 2D stiffness gradient surface was fabricated to explore how cells migrate on smoother versus steeper stiffness gradients. The results showed that cells tended to migrate more readily on smoother stiffness gradient surfaces compared to steeper ones. This study provides valuable insights into cell migration dynamics on substrates with varying stiffness gradients. The results underscore the importance of the mechanical environment in cancer cell migration and offer promising directions for developing interventions to prevent cancer spread.
Collapse
Affiliation(s)
- Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, South Korea.
| | - Kuo-Cheng Bai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| |
Collapse
|
2
|
Shannon MJ, Eisman SE, Lowe AR, Sloan TFW, Mace EM. cellPLATO - an unsupervised method for identifying cell behaviour in heterogeneous cell trajectory data. J Cell Sci 2024; 137:jcs261887. [PMID: 38738282 PMCID: PMC11213520 DOI: 10.1242/jcs.261887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Advances in imaging, segmentation and tracking have led to the routine generation of large and complex microscopy datasets. New tools are required to process this 'phenomics' type data. Here, we present 'Cell PLasticity Analysis Tool' (cellPLATO), a Python-based analysis software designed for measurement and classification of cell behaviours based on clustering features of cell morphology and motility. Used after segmentation and tracking, the tool extracts features from each cell per timepoint, using them to segregate cells into dimensionally reduced behavioural subtypes. Resultant cell tracks describe a 'behavioural ID' at each timepoint, and similarity analysis allows the grouping of behavioural sequences into discrete trajectories with assigned IDs. Here, we use cellPLATO to investigate the role of IL-15 in modulating human natural killer (NK) cell migration on ICAM-1 or VCAM-1. We find eight behavioural subsets of NK cells based on their shape and migration dynamics between single timepoints, and four trajectories based on sequences of these behaviours over time. Therefore, by using cellPLATO, we show that IL-15 increases plasticity between cell migration behaviours and that different integrin ligands induce different forms of NK cell migration.
Collapse
Affiliation(s)
- Michael J. Shannon
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, NYC, NY 10032, USA
| | - Shira E. Eisman
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, NYC, NY 10032, USA
| | - Alan R. Lowe
- Institute for the Physics of Living Systems, Institute for Structural and Molecular Biology and London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | | | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, NYC, NY 10032, USA
| |
Collapse
|
3
|
Chen ST, Yan Y, He SY, Li Y, Gu N. Laser-assisted manipulation of Volta potential pattern on the TC4 surface for improved hBMSCs osteogenesis. BIOMATERIALS ADVANCES 2024; 162:213916. [PMID: 38838618 DOI: 10.1016/j.bioadv.2024.213916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The Ti6Al4V (TC4) alloy, a prevalent biomedical material in orthopedics, still faces limitation of the insufficient osseointegration. To improve the bioactivity of TC4, introducing the electric environment onto the TC4 surface may be an effective way in the view of the necessity of endogenous electric microenvironment in bone regeneration. Herein, a Volta potential pattern was engendered on the TC4 surface via parallel laser patterning, so as to promote the osteogenic differentiation of cells. A 15 W laser successfully transformed the original α + β dual phase towards radially distributed lath-like martensite phase in the laser treated region. The atomic lattice distortion between the heterogeneous microstructures of the laser treated and untreated regions leads to a significant Volta potential fluctuation on the TC4 surface. The Volta potential pattern as well as the laser-engraved microgrooves respectively induced mutually orthogonal cell alignments. The hBMSCs osteogenic differentiation was significantly enhanced on the laser treated TC4 surfaces in comparison to the surface without the laser treatment. Moreover, a drastic Volta potential gradient on the TC4 surface (treated with 15 W power and 400 μm interval) resulted in the most pronounced osteogenic differentiation tendency compared to other groups. Modulating the electric environment on the TC4 surface by manipulating the phase transformation may provide an effective way in evoking favorable cell response of bone regeneration, thereby improving the bioactivity of TC4 implant.
Collapse
Affiliation(s)
- Shi-Ting Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yang Yan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Si-Yuan He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yan Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Kajouri R, Theodorakis PE, Milchev A. Durotaxis and Antidurotaxis Droplet Motion onto Gradient Gel-Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17779-17785. [PMID: 39106075 PMCID: PMC11340025 DOI: 10.1021/acs.langmuir.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
The self-sustained motion of fluids on gradient substrates is a spectacular phenomenon, which can be employed and controlled in applications by carefully engineering the substrate properties. Here, we report on a design of a gel substrate with stiffness gradient, which can cause the spontaneous motion of a droplet along (durotaxis) or to the opposite (antidurotaxis) direction of the gradient, depending on the droplet affinity to the substrate. By using extensive molecular dynamics simulations of a coarse-grained model, we find that the mechanisms of the durotaxis and antidurotaxis droplet motion are distinct, require the minimization of the interfacial energy between the droplet and the substrate, and share similarities with those mechanisms previously observed for brush substrates with stiffness gradient. Moreover, durotaxis motion takes place over a wider range of affinities and is generally more efficient (faster motion) than antidurotaxis. Thus, our study points to further possibilities and guidelines for realizing both antidurotaxis and durotaxis motion on the same gradient substrate for applications in microfluidics, energy conservation, and biology.
Collapse
Affiliation(s)
- Russell Kajouri
- Institute
for Computational Physics, University of
Stuttgart, 70569 Stuttgart, Germany
| | | | - Andrey Milchev
- Bulgarian
Academy of Sciences, Institute of Physical
Chemistry, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
6
|
Shannon MJ, Eisman SE, Lowe AR, Sloan T, Mace EM. cellPLATO: an unsupervised method for identifying cell behaviour in heterogeneous cell trajectory data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564355. [PMID: 37961659 PMCID: PMC10634992 DOI: 10.1101/2023.10.28.564355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Advances in imaging, cell segmentation, and cell tracking now routinely produce microscopy datasets of a size and complexity comparable to transcriptomics or proteomics. New tools are required to process this 'phenomics' type data. Cell PLasticity Analysis TOol (cellPLATO) is a Python-based analysis software designed for measurement and classification of diverse cell behaviours based on clustering of parameters of cell morphology and motility. cellPLATO is used after segmentation and tracking of cells from live cell microscopy data. The tool extracts morphological and motility metrics from each cell per timepoint, before being using them to segregate cells into behavioural subtypes with dimensionality reduction. Resultant cell tracks have a 'behavioural ID' for each cell per timepoint corresponding to their changing behaviour over time in a sequence. Similarity analysis allows the grouping of behavioural sequences into discrete trajectories with assigned IDs. Trajectories and underlying behaviours generate a phenotypic fingerprint for each experimental condition, and representative cells are mathematically identified and graphically displayed for human understanding of each subtype. Here, we use cellPLATO to investigate the role of IL-15 in modulating NK cell migration on ICAM-1 or VCAM-1. We find 8 behavioural subsets of NK cells based on their shape and migration dynamics, and 4 trajectories of behaviour. Therefore, using cellPLATO we show that IL-15 increases plasticity between cell migration behaviours and that different integrin ligands induce different forms of NK cell migration.
Collapse
Affiliation(s)
- Michael J Shannon
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Shira E Eisman
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Alan R Lowe
- Institute for the Physics of Living Systems, Institute for Structural and Molecular Biology and London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | | | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
7
|
Kajouri R, Theodorakis PE, Židek J, Milchev A. Antidurotaxis Droplet Motion onto Gradient Brush Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15285-15296. [PMID: 37672007 PMCID: PMC10621003 DOI: 10.1021/acs.langmuir.3c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Durotaxis motion is a spectacular phenomenon manifesting itself by the autonomous motion of a nano-object between parts of a substrate with different stiffness. This motion usually takes place along a stiffness gradient from softer to stiffer parts of the substrate. Here, we propose a new design of a polymer brush substrate that demonstrates antidurotaxis droplet motion, that is, droplet motion from stiffer to softer parts of the substrate. By carrying out extensive molecular dynamics simulation of a coarse-grained model, we find that antidurotaxis is solely controlled by the gradient in the grafting density of the brush and is favorable for fluids with a strong attraction to the substrate (low surface energy). The driving force of the antidurotaxial motion is the minimization of the droplet-substrate interfacial energy, which is attributed to the penetration of the droplet into the brush. Thus, we anticipate that the proposed substrate design offers a new understanding and possibilities in the area of autonomous motion of droplets for applications in microfluidics, energy conservation, and biology.
Collapse
Affiliation(s)
- Russell Kajouri
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | | | - Jan Židek
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Andrey Milchev
- Bulgarian
Academy of Sciences, Institute of Physical Chemistry, 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Kajouri R, Theodorakis PE, Deuar P, Bennacer R, Židek J, Egorov SA, Milchev A. Unidirectional Droplet Propulsion onto Gradient Brushes without External Energy Supply. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2818-2828. [PMID: 36758225 PMCID: PMC9948540 DOI: 10.1021/acs.langmuir.2c03381] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Using extensive molecular dynamics simulation of a coarse-grained model, we demonstrate the possibility of sustained unidirectional motion (durotaxis) of droplets without external energy supply when placed on a polymer brush substrate with stiffness gradient in a certain direction. The governing key parameters for the specific substrate design studied, which determine the durotaxis efficiency, are found to be the grafting density of the brush and the droplet adhesion to the brush surface, whereas the strength of the stiffness gradient, the viscosity of the droplet, or the length of the polymer chains of the brush have only a minor effect on the process. It is shown that this durotaxial motion is driven by the steady increase of the interfacial energy between droplet and brush as the droplet moves from softer to stiffer parts of the substrate whereby the mean driving force gradually declines with decreasing roughness of the brush surface. We anticipate that our findings indicate further possibilities in the area of nanoscale motion without external energy supply.
Collapse
Affiliation(s)
- Russell Kajouri
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | | | - Piotr Deuar
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Rachid Bennacer
- Université
Paris-Saclay, ENS Paris-Saclay, CNRS, LMPS, 4 Av. des Sciences, 91190 Gif-sur-Yvette, France
| | - Jan Židek
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Sergei A. Egorov
- Department
of Chemistry, University of Virginia, 22901 Charlottesville, Virginia, United States
- Institut
für Physik, Johannes Gutenberg Universität
Mainz, 55099 Mainz, Germany
- Leibniz-Institut
für Polymerforschung, Institut Theorie
der Polymere, Hohe Str.
6, 01069 Dresden, Germany
| | - Andrey Milchev
- Bulgarian
Academy of Sciences, Institute of Physical
Chemistry, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Xu X, Zhou Y, Zheng K, Li X, Li L, Xu Y. 3D Polycaprolactone/Gelatin-Oriented Electrospun Scaffolds Promote Periodontal Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46145-46160. [PMID: 36197319 DOI: 10.1021/acsami.2c03705] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Periodontitis is a worldwide chronic inflammatory disease, where surgical treatment still shows an uncertain prognosis. To break through the dilemma of periodontal treatment, we fabricated a three-dimensional (3D) multilayered scaffold by stacking and fixing electrospun polycaprolactone/gelatin (PCL/Gel) fibrous membranes. The biomaterial displayed good hydrophilic and mechanical properties. Besides, we found human periodontal ligament stem cell (hPDLSC) adhesion and proliferation on it. The following scanning electron microscopy (SEM) and cytoskeleton staining results proved the guiding function of fibers to hPDLSCs. Then, we further analyzed periodontal regeneration-related proteins and mRNA expression between groups. In vivo results in a rat acute periodontal defect model confirmed that the topographic cues of materials could directly guide cellular orientation and might provide the prerequisite for further differentiation. In the aligned scaffold group, besides new bone regeneration, we also observed that angular concentrated fiber regeneration in the root surface of the defect is similar to the normal periodontal tissue. To sum up, we have constructed electrospun membrane-based 3D biological scaffolds, which provided a new treatment strategy for patients undergoing periodontal surgery.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Kai Zheng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| |
Collapse
|
10
|
Tortorici M, Brauer E, Thiele M, Duda GN, Petersen A. Characterizing cell recruitment into isotropic and anisotropic biomaterials by quantification of spatial density gradients in vitro. Front Bioeng Biotechnol 2022; 10:939713. [PMID: 35992332 PMCID: PMC9389461 DOI: 10.3389/fbioe.2022.939713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The success of cell-free in situ tissue engineering approaches depends on an appropriate recruitment of autologous cells from neighboring tissues. This identifies cellular migration as a critical parameter for the pre-clinical characterization of biomaterials. Here, we present a new method to quantify both the extent and the spatial anisotropy of cell migration in vitro. For this purpose, a cell spheroid is used as a cell source to provide a high number of cells for cellular invasion and, at the same time, to guarantee a controlled and spatially localized contact to the material. Therefore, current limitations of assays based on 2D cell sources can be overcome. We tested the method on three biomaterials that are in clinical use for soft tissue augmentation in maxilla-facial surgery and a substrate used for 3D in vitro cell culture. The selected biomaterials were all collagen-derived, but differed in their internal architecture. The analysis of cellular isodensity profiles within the biomaterials allowed the identification of the extent and the preferential directions of migration, as well as their relation to the biomaterials and their specific pore morphologies. The higher cell density within the biomaterials resulting from the here-introduced cell spheroid assay compared to established 2D cell layer assays suggests a better representation of the in vivo situation. Consequently, the presented method is proposed to advance the pre-clinical evaluation of cell recruitment into biomaterials, possibly leading to an improved prediction of the regeneration outcome.
Collapse
Affiliation(s)
- Martina Tortorici
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Erik Brauer
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Thiele
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Ansgar Petersen,
| |
Collapse
|
11
|
Zhang X, Zhang T, Liu B, Zhang Y, Ji Z, Wang X. Effects of Biomimetic Micropatterned Surfaces on the Adhesion and Morphology of Cervical Cancer Cells. ACS OMEGA 2022; 7:19913-19919. [PMID: 35722016 PMCID: PMC9202008 DOI: 10.1021/acsomega.2c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
It has been demonstrated that micropatterned surfaces have an important influence on modulating cellular behavior. In recent years, with the rapid development of microfabrication techniques and in-depth study of nature, an increasing number of patterned structures imitating natural organisms have been successfully fabricated and widely evaluated. However, there are only a few reports about biomimetic patterned microstructures in biologically related fields. In our work, micropatterned polydimethylsiloxane (PDMS) was fabricated by mimicking the surface microstructures of natural Trifolium and Parthenocissus tricuspidata leaves using the template duplication method. The interactions between the two types of biomimetic micro-PDMS surfaces and two kinds of human cervical cancer cells (HeLa and SiHa) were investigated. HeLa and SiHa cells cultured on the two micropatterned PDMS samples exhibited more stretchable morphology, higher diffusion, and a much lower nuclear/cytoplasmic ratio than those cultured on flat PDMS surfaces, indicating a higher adhesion area of the cells. Both of the micro-PDMS substrates were found to induce significantly different morphological changes between HeLa and SiHa cells. This suggests that the micropatterned structure affects cell adhesion and morphology correlated with their surface geometric structure and roughness. The results reveal that biomimetic micropatterned surfaces from natural leaves significantly regulate the morphology and adhesion behavior of cervical cancer cells and are believed to be the new platforms for investigating the interaction between cells and substrates.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School
of Stomatology, Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou 730000, China
| | - Ting Zhang
- School/Hospital
of Stomatology Lanzhou University, Lanzhou 730000, China
| | - Bin Liu
- School/Hospital
of Stomatology Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- Lanzhou
Stomatology Hospital, Lanzhou 730000, China
| | - Zhongying Ji
- State
Key Laboratory of Solid Lubrication, , Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai
Zhongke Research Institute of Advanced Materials and Green Chemical
Engineering, Yantai 264006, China
| | - Xiaolong Wang
- State
Key Laboratory of Solid Lubrication, , Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Darby DR, Cai Z, Mason CR, Pham JT. Modulus and adhesion of Sylgard 184, Solaris, and Ecoflex 00‐30 silicone elastomers with varied mixing ratios. J Appl Polym Sci 2022. [DOI: 10.1002/app.52412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Daniel R. Darby
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Zhuoyun Cai
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Christopher R. Mason
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Jonathan T. Pham
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
13
|
Liamas E, Connell SD, Zembyla M, Ettelaie R, Sarkar A. Friction between soft contacts at nanoscale on uncoated and protein-coated surfaces. NANOSCALE 2021; 13:2350-2367. [PMID: 33367416 DOI: 10.1039/d0nr06527g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The understanding of friction on soft sliding biological surfaces at the nanoscale is poorly understood as hard interfaces are frequently used as model systems. Herein, we studied the influence of elastic modulus on the frictional properties of model surfaces at the nanoscale for the first time. We prepared model silicone-based elastomer surfaces with tuneable modulus ranging from hundreds of kPa to a few MPa, similar to those found in real biological surfaces, and employed atomic force microscopy to characterize their modulus, adhesion, and surface morphology. Consequently, we used friction force microscopy to investigate nanoscale friction in hard-soft and soft-soft contacts using spherical colloidal probes covered by adsorbed protein films. Unprecedented results from this study reveal that modulus of a surface can have a significant impact on the frictional properties of protein-coated surfaces with higher deformability leading to lower contact pressure and, consequently, decreased friction. These important results pave the way forward for designing new functional surfaces for serving as models of appropriate deformability to replicate the mechanical properties of the biological structures and processes for accurate friction measurements at nanoscale.
Collapse
Affiliation(s)
- Evangelos Liamas
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, UK.
| | - Morfo Zembyla
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| |
Collapse
|
14
|
The self-organized differentiation from MSCs into SMCs with manipulated micro/Nano two-scale arrays on TiO2 surfaces for biomimetic construction of vascular endothelial substratum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111179. [DOI: 10.1016/j.msec.2020.111179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
|
15
|
Lueckgen A, Garske DS, Ellinghaus A, Mooney DJ, Duda GN, Cipitria A. Dual alginate crosslinking for local patterning of biophysical and biochemical properties. Acta Biomater 2020; 115:185-196. [PMID: 32736118 DOI: 10.1016/j.actbio.2020.07.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 01/10/2023]
Abstract
Hydrogels with patterned biophysical and biochemical properties have found increasing attention in the biomaterials community. In this work, we explore alginate-based materials with two orthogonal crosslinking mechanisms: the spontaneous Diels-Alder reaction and the ultraviolet light-initiated thiol-ene reaction. Combining these mechanisms in one material and spatially restricting the location of the latter using photomasks, enables the formation of dual-crosslinked hydrogels with patterns in stiffness, biomolecule presentation and degradation, granting local control over cell behavior. Patterns in stiffness are characterized morphologically by confocal microscopy and mechanically by uniaxial compression and microindentation measurement. Mouse embryonic fibroblasts seeded on stiffness-patterned substrates attach preferably and attain a spread morphology on stiff compared to soft regions. Human mesenchymal stem cells demonstrate preferential adipogenic differentiation on soft surfaces and osteogenic differentiation on stiff surfaces. Patterns in biomolecule presentation reveal favored attachment of mouse pre-osteoblasts on stripe regions, where thiolated cell-adhesive biomolecules have been coupled. Patterns in degradation are visualized by microindentation measurement following collagenase exposure. Patterned tissue infiltration into degradable regions on the surface is discernible in n=5/12 samples, when these materials are implanted subcutaneously into the backs of mice. Taken together, these results demonstrate that our hydrogel system with patterns in biophysical and biochemical properties enables the study of how environmental cues affect multiple cell behaviors in vitro and could be applied to guide endogenous tissue growth in diverse healing scenarios in vivo. STATEMENT OF SIGNIFICANCE: Hydrogels with patterns in biophysical and biochemical properties have been explored in the biomaterials community in order to spatially control or guide cell behavior. In our alginate-based system, we demonstrate the effect of local substrate stiffness and biomolecule presentation on the in vitro cell attachment, morphology, migration and differentiation behavior of two different mouse cell lines and human primary cells. Additionally, the effect of degradation patterns on the in vivo tissue infiltration is analyzed following subcutaneous implantation into a mouse model. The achievement of patterned tissue infiltration following the hydrogel template represents an important step towards guiding endogenous healing responses, thus inviting application in various tissue engineering contexts.
Collapse
|
16
|
Anisotropic stiffness gradient-regulated mechanical guidance drives directional migration of cancer cells. Acta Biomater 2020; 106:181-192. [PMID: 32044461 DOI: 10.1016/j.actbio.2020.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Interfacial interactions between cancer cells and surrounding microenvironment involve complex mechanotransduction mechanisms that are directly associated with tumor invasion and metastasis. Matrix remodeling triggers heterogeneity of stiffness in tumor microenvironment and thus generates anisotropic stiffness gradient (ASG). The migration of cancer cells mediated by ASG, however, still remains elusive. Based on a multi-layer polymerization method of microstructured hydrogels with surface topology, we develop an in vitro experimental platform for mechanical interactions of cancer cells with ASG matrix microenvironment. We show that mechanical guidance of mesenchymal cells is essentially modulated by ASG, leading to a spontaneous directional migration along the orientation parallel to the maximum stiffness although there is no stiffness gradient in the direction. The ASG-regulated mechanical guidance presents an alternative way of cancer cell directional migration. Further, our findings indicate that the mechanical guidance occurs only in mesenchymal cancer cells, but not in epithelial cancer cells, implying that cell contractility may contribute to ASG-regulated migration of cells. This work is not only helpful for elucidating the role of matrix remodeling in mediating tumor cell invasion and metastasis, but has potential implications for developing specific cancer treatments. STATEMENT OF SIGNIFICANCE: Local extracellular matrix (ECM) stiffening triggers mechanical heterogeneity in tumor microenvironment, which can exert a crucial impact on interfacial interactions between tumor cells and surrounding ECM. The underlying mechanobiological mechanism that tumor cells are modulated by mechanically heterogeneous ECM, however, still remains mysterious to a great extent. Through our established in vitro platform and analysis, we have demonstrated that anisotropic stiffness gradient (ASG) has the ability to elicit directional migration of cells, essentially depending on local stiffness gradients and the corresponding absolute stiffness values. This study is not only crucial for revealing the role of matrix remodeling in regulating tumor invasion and metastasis, but also offers a valuable guidance for developing anti-tumor therapies from the biomechanical perspective.
Collapse
|
17
|
Ge L, Yang L, Bron R, Burgess JK, van Rijn P. Topography-Mediated Fibroblast Cell Migration Is Influenced by Direction, Wavelength, and Amplitude. ACS APPLIED BIO MATERIALS 2020; 3:2104-2116. [DOI: 10.1021/acsabm.0c00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lu Ge
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Liangliang Yang
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Reinier Bron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Hanzeplein 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
18
|
Glover JD, McLaughlin CE, McFarland MK, Pham JT. Extracting uncrosslinked material from low modulus sylgard 184 and the effect on mechanical properties. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Justin D. Glover
- Department of Chemical and Materials EngineeringUniversity of Kentucky, 177 F. Paul Anderson Tower Lexington Kentucky 40506
| | - Colbi E. McLaughlin
- Department of Chemical and Materials EngineeringUniversity of Kentucky, 177 F. Paul Anderson Tower Lexington Kentucky 40506
| | - Mary K. McFarland
- Department of Chemical and Materials EngineeringUniversity of Kentucky, 177 F. Paul Anderson Tower Lexington Kentucky 40506
| | - Jonathan T. Pham
- Department of Chemical and Materials EngineeringUniversity of Kentucky, 177 F. Paul Anderson Tower Lexington Kentucky 40506
| |
Collapse
|
19
|
Taghavi S, Brissenden A, Amsden BG. High modulus, enzyme-degradable poly(trimethylene carbonate)-peptide biohybrid networks formed from triblock prepolymers. J Mater Chem B 2019; 7:2819-2828. [PMID: 32255084 DOI: 10.1039/c8tb02195c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biohybrid networks have the potential to have stiffnesses equivalent to that of native soft connective tissues as well as cell-mediated degradation behavior. Most strategies to generate such materials to date have utilized crosslinking of two separate and orthogonally functionalized polymers. Herein we describe a triblock prepolymer consisting of a central enzyme degradable peptide block flanked by two synthetic, hydrolysis resistant poly(trimethylene carbonate) blocks (PTMC) or poly(ethylene glycol)-PTMC blocks terminated in methacrylate groups. To form these prepolymers heterobifunctional PTMC and PEG-PTMC were prepared, possessing a vinyl sulfone terminus and a methacrylate terminus. These polymers were conjugated to a di-cysteine containing peptide through a Michael-type addition to form cross-linkable prepolymers. These prepolymers were then photo-cured to form enzyme degradable networks. The compressive moduli of the resulting water swollen networks was within the range of many soft connective tissues and was inversely proportional to the water solubility of the prepolymers. The prepolymer water solubility in turn could be tuned by adjusting PTMC molecular weight or by the addition of a PEG block. In vitro degradation only occurred in the presence of matrix metalloproteinases, and was fastest for networks prepared with prepolymers of higher water solubility.
Collapse
Affiliation(s)
- Shadi Taghavi
- Department of Chemical Engineering and Human Mobility Research Centre, Queen's University, Kingston, ON, Canada.
| | | | | |
Collapse
|
20
|
Polydopamine and collagen coated micro-grated polydimethylsiloxane for human mesenchymal stem cell culture. Bioact Mater 2019; 4:142-150. [PMID: 30873506 PMCID: PMC6400012 DOI: 10.1016/j.bioactmat.2019.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Natural tissues contain highly organized cellular architecture. One of the major challenges in tissue engineering is to develop engineered tissue constructs that promote cellular growth in physiological directionality. To address this issue, micro-patterned polydimethylsiloxane (PDMS) substrates have been widely used in cell sheet engineering due to their low microfabrication cost, higher stability, excellent biocompatibility, and most importantly, ability to guide cellular growth and patterning. However, the current methods for PDMS surface modification either require a complicated procedure or generate a non-uniform surface coating, leading to the production of poor-quality cell layers. A simple and efficient surface coating method is critically needed to improve the uniformity and quality of the generated cell layers. Herein, a fast, simple and inexpensive surface coating method was analyzed for its ability to uniformly coat polydopamine (PD) with or without collagen on micro-grated PDMS substrates without altering essential surface topographical features. Topographical feature, stiffness and cytotoxicity of these PD and/or collagen based surface coatings were further analyzed. Results showed that the PD-based coating method facilitated aligned and uniform cell growth, therefore holds great promise for cell sheet engineering as well as completely biological tissue biomanufacturing.
Collapse
|
21
|
Khosravi N, Maeda A, DaCosta RS, Davies JE. Nanosurfaces modulate the mechanism of peri-implant endosseous healing by regulating neovascular morphogenesis. Commun Biol 2018; 1:72. [PMID: 30271953 PMCID: PMC6123776 DOI: 10.1038/s42003-018-0074-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Nanosurfaces have improved clinical osseointegration by increasing bone/implant contact. Neovascularization is considered an essential prerequisite to osteogenesis, but no previous reports to our knowledge have examined the effect of surface topography on the spatio-temporal pattern of neovascularization during peri-implant healing. We have developed a cranial window model to study peri-implant healing intravitally over clinically relevant time scales as a function of implant topography. Quantitative intravital confocal imaging reveals that changing the topography (but not chemical composition) of an implant profoundly affects the pattern of peri-implant neovascularization. New vessels develop proximal to the implant and the vascular network matures sooner in the presence of an implant nanosurface. Accelerated angiogenesis can lead to earlier osseointegration through the delivery of osteogenic precursors to, and direct formation of bone on, the implant surface. This study highlights a critical aspect of peri-implant healing, but also informs the biological rationale for the surface design of putative endosseous implant materials.
Collapse
Affiliation(s)
- Niloufar Khosravi
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5G 1G6, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Azusa Maeda
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ralph S DaCosta
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Techna Institute, University Health Network, Toronto, ON, M5G 1L5, Canada.
| | - John E Davies
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5G 1G6, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
22
|
Theodorakis PE, Egorov SA, Milchev A. Stiffness-guided motion of a droplet on a solid substrate. J Chem Phys 2018; 146:244705. [PMID: 28668029 DOI: 10.1063/1.4990436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A range of technologies require the directed motion of nanoscale droplets on solid substrates. A way of realizing this effect is durotaxis, whereby a stiffness gradient of a substrate can induce directional motion without requiring an energy source. Here, we report on the results of extensive molecular dynamics investigations of droplets on a surface with varying stiffness. We find that durotaxis is enhanced by increasing the stiffness gradient and, also, by increased wettability of the substrate, in particular, when the droplet size decreases. We anticipate that our study will provide further insights into the mechanisms of nanoscale directional motion.
Collapse
Affiliation(s)
| | - Sergei A Egorov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Andrey Milchev
- Bulgarian Academy of Sciences, Institute of Physical Chemistry, 1113 Sofia, Bulgaria
| |
Collapse
|
23
|
Wang X, Tan D, Zhang X, Lei Y, Xue L. Effective Elastic Modulus of Structured Adhesives: From Biology to Biomimetics. Biomimetics (Basel) 2017; 2:E10. [PMID: 31105173 PMCID: PMC6352679 DOI: 10.3390/biomimetics2030010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/24/2017] [Accepted: 06/24/2017] [Indexed: 11/16/2022] Open
Abstract
Micro- and nano-hierarchical structures (lamellae, setae, branches, and spatulae) on the toe pads of many animals play key roles for generating strong but reversible adhesion for locomotion. The hierarchical structure possesses significantly reduced, effective elastic modulus (Eeff), as compared to the inherent elastic modulus (Einh) of the corresponding biological material (and therefore contributes to a better compliance with the counterpart surface). Learning from nature, three types of hierarchical structures (namely self-similar pillar structure, lamella⁻pillar hybrid structure, and porous structure) have been developed and investigated.
Collapse
Affiliation(s)
- Xin Wang
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China.
| | - Di Tan
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China.
| | - Xinyu Zhang
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China.
| | - Yifeng Lei
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China.
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China.
| |
Collapse
|
24
|
|
25
|
Novikova EA, Raab M, Discher DE, Storm C. Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients. PHYSICAL REVIEW LETTERS 2017; 118:078103. [PMID: 28256894 PMCID: PMC5338469 DOI: 10.1103/physrevlett.118.078103] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 05/28/2023]
Abstract
Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior-in and of itself-results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.
Collapse
Affiliation(s)
- Elizaveta A Novikova
- Institute for Integrative Biology of the Cell(I2BC), Institut de Biologie et de Technologies de Saclay(iBiTec-S), CEA, CNRS, Universite Paris Sud, F-91191 Gif-sur-Yvette cedex, France
- Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands
| | - Matthew Raab
- CNRS UMR144, Institut Curie, 12 rue Lhomond, 75005 Paris, France
| | - Dennis E Discher
- Molecular & Cell Biophysics and Graduate Group in Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands
| |
Collapse
|