1
|
Maherani M, Eslami H, Poursamar SA, Ansari M. A modular approach to 3D-printed bilayer composite scaffolds for osteochondral tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:62. [PMID: 39370474 PMCID: PMC11456551 DOI: 10.1007/s10856-024-06824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 10/08/2024]
Abstract
Prolonged osteochondral tissue engineering damage can result in osteoarthritis and decreased quality of life. Multiphasic scaffolds, where different layers model different microenvironments, are a promising treatment approach, yet stable joining between layers during fabrication remains challenging. To overcome this problem, in this study, a bilayer scaffold for osteochondral tissue regeneration was fabricated using 3D printing technology which containing a layer of PCL/hydroxyapatite (HA) nanoparticles and another layer of PCL/gelatin with various concentrations of fibrin (10, 20 and 30 wt.%). These printed scaffolds were evaluated with SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared Spectroscopy) and mechanical properties. The results showed that the porous scaffolds fabricated with pore size of 210-255 µm. Following, the ductility increased with the further addition of fibrin in bilayer composites which showed these composites scaffolds are suitable for the cartilage part of osteochondral. Also, the contact angle results demonstrated the incorporation of fibrin in bilayer scaffolds based on PCL matrix, can lead to a decrease in contact angle and result in the improvement of hydrophilicity that confirmed by increasing the degradation rate of scaffolds containing further fibrin percentage. The bioactivity study of bilayer scaffolds indicated that both fibrin and hydroxyapatite can significantly improve the cell attachment on fabricated scaffolds. The MTT assay, DAPI and Alizarin red tests of bilayer composite scaffolds showed that samples containing 30% fibrin have the more biocompatibility than that of samples with 10 and 20% fibrin which indicated the potential of this bilayer scaffold for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Maryam Maherani
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Hossein Eslami
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Seyed Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
2
|
Al Enezy-Ulbrich MA, Belthle T, Malyaran H, Kučikas V, Küttner H, de Lange RD, van Zandvoort M, Neuss S, Pich A. Fibrin Hydrogels Reinforced by Reactive Microgels for Stimulus-Triggered Drug Administration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309912. [PMID: 38898722 DOI: 10.1002/smll.202309912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Tissue engineering is a steadily growing field of research due to its wide-ranging applicability in the field of regenerative medicine. Application-dependent mechanical properties of a scaffold material as well as its biocompatibility and tailored functionality represent particular challenges. Here the properties of fibrin-based hydrogels reinforced by functional cytocompatible poly(N-vinylcaprolactam)-based (PVCL) microgels are studied and evaluated. The employment of temperature-responsive microgels decorated by epoxy groups for covalent binding to the fibrin is studied as a function of cross-linking degree within the microgels, microgel concentration, as well as temperature. Rheology reveals a strong correlation between the mechanical properties of the reinforced fibrin-based hydrogels and the microgel rigidity and concentration. The incorporated microgels serve as cross-links, which enable temperature-responsive behavior of the hydrogels, and slow down the hydrogel degradation. Microgels can be additionally used as carriers for active drugs, as demonstrated for dexamethasone. The microgels' temperature-responsiveness allows for triggered release of payload, which is monitored using a bioassay. The cytocompatibility of the microgel-reinforced fibrin-based hydrogels is demonstrated by LIVE/DEAD staining experiments using human mesenchymal stem cells. The microgel-reinforced hydrogels are a promising material for tissue engineering, owing to their superior mechanical performance and stability, possibility of drug release, and retained biocompatibility.
Collapse
Affiliation(s)
- Miriam Aischa Al Enezy-Ulbrich
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Thomke Belthle
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Hanna Malyaran
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Vytautas Kučikas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Hannah Küttner
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Robert Dirk de Lange
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Marc van Zandvoort
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Department of Genetics and Cell Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, Netherlands
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Andrij Pich
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| |
Collapse
|
3
|
Omidian H, Chowdhury SD, Wilson RL. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 2024; 10:238. [PMID: 38667657 PMCID: PMC11049258 DOI: 10.3390/gels10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript covers the latest advancements and persisting challenges in the domain of tissue engineering, with a focus on the development and engineering of hydrogel scaffolds. It highlights the critical role of these scaffolds in emulating the native tissue environment, thereby providing a supportive matrix for cell growth, tissue integration, and reducing adverse reactions. Despite significant progress, this manuscript emphasizes the ongoing struggle to achieve an optimal balance between biocompatibility, biodegradability, and mechanical stability, crucial for clinical success. It also explores the integration of cutting-edge technologies like 3D bioprinting and biofabrication in constructing complex tissue structures, alongside innovative materials and techniques aimed at enhancing tissue growth and functionality. Through a detailed examination of these efforts, the manuscript sheds light on the potential of hydrogels in advancing regenerative medicine and the necessity for multidisciplinary collaboration to navigate the challenges ahead.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (R.L.W.)
| | | | | |
Collapse
|
4
|
Bongiovanni Abel S, Busatto CA, Karp F, Estenoz D, Calderón M. Weaving the next generation of (bio)materials: Semi-interpenetrated and interpenetrated polymeric networks for biomedical applications. Adv Colloid Interface Sci 2023; 321:103026. [PMID: 39491440 DOI: 10.1016/j.cis.2023.103026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Advances in polymer science have led to the development of semi-interpenetrated and interpenetrated networks (SIPN/IPN). The interpenetration procedure allows enhancing several important properties of a polymeric material, including mechanical properties, swelling capability, stimulus-sensitive response, and biological performance, among others. More interestingly, the interpenetration (or semi-interpenetration) can be achieved independent of the material size, that is at the macroscopic, microscopic, or nanometric scale. SIPN/IPN have been used for a wide range of applications, especially in the biomedical field, including tissue engineering, delivery of chemical compounds or biological macromolecules, and multifunctional systems as theragnostic platforms. In the last years, this fascinating field has gained a great interest in the area of polymers for therapeutics; therefore, a comprehensive revision of the topic is timely. In this review, we describe in detail the most relevant synthetic approaches to fabricate polymeric IPN and SIPN, ranging from nanoscale to macroscale. The advantages of typical synthetic methods are analyzed, as well as novel and promising trends in the field of advanced material fabrication. Furthermore, the characterization techniques employed for these materials are summarized from physicochemical, thermal, mechanical, and biological perspectives. The applications of novel (semi-)interpenetrated structures are discussed with a focus on drug delivery, tissue engineering, and regenerative medicine, as well as combinations thereof.
Collapse
Affiliation(s)
- Silvestre Bongiovanni Abel
- Biomedical Polymers Division, INTEMA (National University of Mar del Plata-CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Carlos A Busatto
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Federico Karp
- Group of Polymeric Nanomaterials, INIFTA (National University of La Plata-CONICET), Diagonal 113, La Plata 1900, Argentina
| | - Diana Estenoz
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
5
|
Jeyachandran D, Murshed M, Haglund L, Cerruti M. A Bioglass-Poly(lactic-co-glycolic Acid) Scaffold@Fibrin Hydrogel Construct to Support Endochondral Bone Formation. Adv Healthc Mater 2023; 12:e2300211. [PMID: 37462089 PMCID: PMC11468889 DOI: 10.1002/adhm.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Bone tissue engineering using stem cells to build bone directly on a scaffold matrix often fails due to lack of oxygen at the injury site. This may be avoided by following the endochondral ossification route; herein, a cartilage template is promoted first, which can survive hypoxic environments, followed by its hypertrophy and ossification. However, hypertrophy is so far only achieved using biological factors. This work introduces a Bioglass-Poly(lactic-co-glycolic acid@fibrin (Bg-PLGA@fibrin) construct where a fibrin hydrogel infiltrates and encapsulates a porous Bg-PLGA. The hypothesis is that mesenchymal stem cells (MSCs) loaded in the fibrin gel and induced into chondrogenesis degrade the gel and become hypertrophic upon reaching the stiffer, bioactive Bg-PLGA core, without external induction factors. Results show that Bg-PLGA@fibrin induces hypertrophy, as well as matrix mineralization and osteogenesis; it also promotes a change in morphology of the MSCs at the gel/scaffold interface, possibly a sign of osteoblast-like differentiation of hypertrophic chondrocytes. Thus, the Bg-PLGA@fibrin construct can sequentially support the different phases of endochondral ossification purely based on material cues. This may facilitate clinical translation by decreasing in-vitro cell culture time pre-implantation and the complexity associated with the use of external induction factors.
Collapse
Affiliation(s)
| | - Monzur Murshed
- Faculty of DentistryDepartment of Medicineand Shriners Hospital for ChildrenMcGill UniversityMontrealQuebecH4A 0A9Canada
| | - Lisbet Haglund
- Experimental SurgeryMcGill UniversityMontrealH3G 2M1Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill UniversityMontrealH3A 0C1Canada
| |
Collapse
|
6
|
Jung SA, Malyaran H, Demco DE, Manukanc A, Häser LS, Kučikas V, van Zandvoort M, Neuss S, Pich A. Fibrin-Dextran Hydrogels with Tunable Porosity and Mechanical Properties. Biomacromolecules 2023; 24:3972-3984. [PMID: 37574715 DOI: 10.1021/acs.biomac.3c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Hydrogels as scaffolds in tissue engineering have gained increasing attention in recent years. Natural hydrogels, e.g., collagen or fibrin, are limited by their weak mechanical properties and fast degradation, whereas synthetic hydrogels face issues with biocompatibility and biodegradation. Therefore, combining natural and synthetic polymers to design hydrogels with tunable mechanical stability and cell affinity for biomedical applications is of interest. By using fibrin with its excellent cell compatibility and dextran with controllable mechanical properties, a novel bio-based hydrogel can be formed. Here, we synthesized fibrin and dextran-methacrylate (MA)-based hydrogels with tailorable mechanical properties, controllable degradation, variable pore sizes, and ability to support cell proliferation. The hydrogels are formed through in situ gelation of fibrinogen and dextran-MA with thrombin and dithiothreitol. Swelling and nuclear magnetic resonance diffusometry measurements showed that the water uptake and mesh sizes of fabricated hydrogels decrease with increasing dextran-MA concentrations. Cell viability tests confirm that these hydrogels exhibit no cytotoxic effect.
Collapse
Affiliation(s)
- Shannon Anna Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Hanna Malyaran
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen 52074, Germany
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Dan Eugen Demco
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
| | - Anna Manukanc
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Leonie Sophie Häser
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Vytautas Kučikas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Marc van Zandvoort
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
- Department of Genetics and Cell Biology, GROW, CARIM, MHeNS, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen 52074, Germany
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| |
Collapse
|
7
|
Yu S, Cha C. Bioadhesives based on multifunctional biopolymers for biomedical applications. Macromol Res 2023. [DOI: 10.1007/s13233-023-00141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Ma B, Xiao Y, Lv Q, Li G, Wang Y, Fu G. Targeting Theranostics of Atherosclerosis by Dual-Responsive Nanoplatform via Photoacoustic Imaging and Three-In-One Integrated Lipid Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206129. [PMID: 36394179 DOI: 10.1002/adma.202206129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerosis, as a life-threatening cardiovascular disease with chronic inflammation and abnormal lipid enrichment, is often difficult to treat timely due to the lack of obvious symptoms. In this work, a theranostic nanoplatform is constructed for the noninvasive in vivo diagnosis, plaque-formation inhibition, and the lesion reversal of atherosclerosis. A three-in-one therapeutic complex is constructed and packaged along with a polymeric photoacoustic probe into nanoparticles named as PLCDP@PMH, which indicates an atherosclerosis-targeting accumulation and a reactive oxygen species (ROS)/matrix metalloproteinase (MMP) dual-responsive degradation. The photoacoustic probe suggests a lesion-specific imaging on atherosclerotic mice with an accurate and distinct recognition of plaques. At the same time, the three-in-one complex performs an integrated lipid management through the inhibition of macrophages M1-polarization, liver X receptor (LXR)-mediated up-regulation of ATP-binding cassette transporter A1/G1 (ABCA1/G1) and the cyclodextrin-assisted lipid dissolution, which lead to the reduced lipid uptake, enhanced lipid efflux, and actuated lipid removal. The in vivo evaluations reveal that PLCDP@PMH can suppress the lesion progression and further reverse the formed plaques under a diet without high fat. Hence, PLCDP@PMH provides a candidate for the theranostics of early-stage atherosclerosis and delivers an impressive potential on the reversal of formed atherosclerotic lesions.
Collapse
Affiliation(s)
- Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Yun Xiao
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| |
Collapse
|
9
|
Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C. Technological advances in fibrin for tissue engineering. J Tissue Eng 2023; 14:20417314231190288. [PMID: 37588339 PMCID: PMC10426312 DOI: 10.1177/20417314231190288] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Ana Matesanz
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Alberto Gallardo
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Helmut Reinecke
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Acedo
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Hyaluronic acid hydrolysis using vacuum ultraviolet TiO 2 photocatalysis combined with an oxygen nanobubble system. Carbohydr Polym 2023; 299:120178. [PMID: 36876793 DOI: 10.1016/j.carbpol.2022.120178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022]
Abstract
Advanced technologies for producing high-quality low molecular weight hyaluronic acid (LMW-HA) are required from the perspective of cost-efficiency and biosafety. Here, we report a new LMW-HA production system from high molecular weight HA (HMW-HA) using vacuum ultraviolet TiO2 photocatalysis with an oxygen nanobubble system (VUV-TP-NB). The VUV-TP-NB treatment for 3 h resulted in a satisfactory LMW-HA (approximately 50 kDa measured by GPC) yield with a low endotoxin level. Further, there were no inherent structural changes in the LMW-HA during the oxidative degradation process. Compared with conventional acid and enzyme hydrolysis methods, VUV-TP-NB showed similar degradation degree with viscosity though reduced process time by at least 8-fold. In terms of endotoxin and antioxidant effects, degradation using VUV-TP-NB demonstrated the lowest endotoxin level (0.21 EU/mL) and highest radical scavenging activity. This nanobubble-based photocatalysis system can thus be used to produce biosafe LMW-HA cost-effectively for food, medical, and cosmetics applications.
Collapse
|
11
|
Mortier C, Costa D, Oliveira M, Haugen H, Lyngstadaas S, Blaker J, Mano J. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. MATERIALS TODAY CHEMISTRY 2022; 26:101222. [DOI: 10.1016/j.mtchem.2022.101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Natural Materials for 3D Printing and Their Applications. Gels 2022; 8:748. [PMID: 36421570 PMCID: PMC9689506 DOI: 10.3390/gels8110748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 08/15/2023] Open
Abstract
In recent years, 3D printing has gradually become a well-known new topic and a research hotspot. At the same time, the advent of 3D printing is inseparable from the preparation of bio-ink. Natural materials have the advantages of low toxicity or even non-toxicity, there being abundant raw materials, easy processing and modification, excellent mechanical properties, good biocompatibility, and high cell activity, making them very suitable for the preparation of bio-ink. With the help of 3D printing technology, the prepared materials and scaffolds can be widely used in tissue engineering and other fields. Firstly, we introduce the natural materials and their properties for 3D printing and summarize the physical and chemical properties of these natural materials and their applications in tissue engineering after modification. Secondly, we discuss the modification methods used for 3D printing materials, including physical, chemical, and protein self-assembly methods. We also discuss the method of 3D printing. Then, we summarize the application of natural materials for 3D printing in tissue engineering, skin tissue, cartilage tissue, bone tissue, and vascular tissue. Finally, we also express some views on the research and application of these natural materials.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
| |
Collapse
|
13
|
Wang H, Wang X, Wu D. Recent Advances of Natural Polysaccharide-based Double-network Hydrogels for Tissue Repair. Chem Asian J 2022; 17:e202200659. [PMID: 35837995 DOI: 10.1002/asia.202200659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Natural polysaccharide hydrogels have been extensively explored for many years due to their outstanding biocompatibility and biodegradability, which are very promising candidates as artificial soft materials for biomedical applications. However, their inferior mechanical performances greatly limited their applications. Introduction of double-network (DN) structure has been well documented to be an efficient strategy for significant improvement of the mechanical property of hydrogels. Here, recent progress of natural polysaccharide-based DN hydrogels is reviewed from the perspective of fundamental concepts on both design rationale and preparation strategies to biomedical application in tissue repair. Retrospect of the DN-strengthened polysaccharide hydrogels can give a deep insight into the fundamental relationship of such bio-based hydrogels among structural design, mechanical properties and practical demands, thereby prompting their translation to clinical application prospects.
Collapse
Affiliation(s)
- Hufei Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Xing Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Decheng Wu
- Southern University of Science and Technology, Department of Biomedical Engineering, No. 1088 Xueyuan Avenue, 518055, Shenzhen, CHINA
| |
Collapse
|
14
|
Fellin CR, Nelson A. Direct-Ink Write 3D Printing Multistimuli-Responsive Hydrogels and Post-Functionalization Via Disulfide Exchange. ACS APPLIED POLYMER MATERIALS 2022; 4:3054-3061. [PMID: 38239328 PMCID: PMC10795753 DOI: 10.1021/acsapm.1c01538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Herein, we describe a multi-stimuli-responsive hydrogel that can be 3D printed via a direct-ink write process to afford cross-linked hydrogel networks that can be post-functionalized with thiol-bearing molecules. Poly(alkyl glycidyl ether)s with methacrylate groups at their termini were synthesized and self-assembled into hydrogels with three key stimuli-responsive behaviors necessary for extrusion based 3D printing: a sol-gel temperature response, shear-thinning behavior, and the ability to be photochemically crosslinked. In addition, the chemically crosslinked hydrogels demonstrated a temperature dependent swelling consistent with an LCST behavior. Pyridyl disulfide urethane methacrylate (PDS-UM) monomers were introduced into the network as a thiol-reactive handle for post-functionalization of the hydrogel. The reactivities of these hydrogels were investigated at different temperatures (5, 25, 37 °C) and swelling statuses (as-cured versus preswollen) using glutathione as a reactive probe. To illustrate the versatility of the platform, a number of additional thiol-containing probes such as proteins, polymers, and small molecules were conjugated to the hydrogel network at different temperatures, pH's, and concentrations. In a final demonstration of the multi-stimuli-responsive hydrogel platform, a customized DIW 3D printer was used to fabricate a printed object that was subsequently conjugated with a fluorescent tag and displayed the ability to change in size with environmental temperature.
Collapse
Affiliation(s)
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
15
|
Aliabouzar M, Ley AW, Meurs S, Putnam AJ, Baker BM, Kripfgans OD, Fowlkes JB, Fabiilli ML. Micropatterning of acoustic droplet vaporization in acoustically-responsive scaffolds using extrusion-based bioprinting. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2022; 25:e00188. [PMID: 35087958 PMCID: PMC8789001 DOI: 10.1016/j.bprint.2021.e00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acoustically-responsive scaffolds (ARSs) are composite hydrogels that respond to ultrasound in an on-demand, spatiotemporally-controlled manner due to the presence of a phase-shift emulsion. When exposed to ultrasound, a gas bubble is formed within each emulsion droplet via a mechanism termed acoustic droplet vaporization (ADV). In previous in vitro and in vivo studies, we demonstrated that ADV can control regenerative processes by releasing growth factors and/or modulating micromechanics in ARSs. Precise, spatial patterning of emulsion within an ARS could be beneficial for ADV-induced modulation of biochemical and biophysical cues. However, precise patterning is limited using conventional bulk polymerization techniques. Here, we developed an extrusion-based method for bioprinting ARSs with micropatterned structures. Emulsions were loaded within bioink formulations containing fibrin, hyaluronic acid and/or alginate. Experimental as well as theoretical studies elucidated the interrelations between printing parameters, needle geometry, rheological properties of the bioink, and the process-induced mechanical stresses during bioprinting. The shear thinning properties of the bioinks enabled use of lower extrusion pressures resulting in decreased shear stresses and shorter residence times, thereby facilitating high viability for cell-loaded bioinks. Bioprinting yielded greater alignment of fibrin fibers in ARSs compared to conventionally polymerized ARSs. Bioprinted ARSs also enabled generation of ADV at high spatial resolutions, which were otherwise not achievable in conventional ARSs, and acoustically-driven collapse of ADV-induced bubbles. Overall, bioprinting could aid in optimizing ARSs for therapeutic applications.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Adam W.Y. Ley
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sabine Meurs
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Oliver D. Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - J. Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Mario L. Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Hintze V, Schnabelrauch M, Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front Chem 2022; 10:830671. [PMID: 35223772 PMCID: PMC8873528 DOI: 10.3389/fchem.2022.830671] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan, the extracellular matrix glycosaminoglycan, is an important structural component of many tissues playing a critical role in a variety of biological contexts. This makes hyaluronan, which can be biotechnologically produced in large scale, an attractive starting polymer for chemical modifications. This review provides a broad overview of different synthesis strategies used for modulating the biological as well as material properties of this polysaccharide. We discuss current advances and challenges of derivatization reactions targeting the primary and secondary hydroxyl groups or carboxylic acid groups and the N-acetyl groups after deamidation. In addition, we give examples for approaches using hyaluronan as biomedical polymer matrix and consequences of chemical modifications on the interaction of hyaluronan with cells via receptor-mediated signaling. Collectively, hyaluronan derivatives play a significant role in biomedical research and applications indicating the great promise for future innovative therapies.
Collapse
Affiliation(s)
- Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Sandra Rother
- School of Medicine, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
18
|
Guo W, Douma L, Hu MH, Eglin D, Alini M, Šećerović A, Grad S, Peng X, Zou X, D'Este M, Peroglio M. Hyaluronic acid-based interpenetrating network hydrogel as a cell carrier for nucleus pulposus repair. Carbohydr Polym 2022; 277:118828. [PMID: 34893245 DOI: 10.1016/j.carbpol.2021.118828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is a key component of the intervertebral disc (IVD) that is widely investigated as an IVD biomaterial. One persisting challenge is introducing materials capable of supporting cell encapsulation and function, yet with sufficient mechanical stability. In this study, a hybrid interpenetrating polymer network (IPN) was produced as a non-covalent hydrogel, based on a covalently cross-linked HA (HA-BDDE) and HA-poly(N-isopropylacrylamide) (HA-pNIPAM). The hybrid IPN was investigated for its physicochemical properties, with histology and gene expression analysis to determine matrix deposition in vitro and in an ex vivo model. The IPN hydrogel displayed cohesiveness for at least one week and rheological properties resembling native nucleus pulposus (NP) tissue. When implanted in an ex vivo IVD organ culture model, the IPN supported cell viability, phenotype expression of encapsulated NP cells and IVD matrix production over four weeks under physiological loading. Overall, our results indicate the therapeutic potential of this HA-based IPN hydrogel for IVD regeneration.
Collapse
Affiliation(s)
- Wei Guo
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Luzia Douma
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Ming Hsien Hu
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Amra Šećerović
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Xinsheng Peng
- Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Xuenong Zou
- Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
| | - Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
19
|
Degirmenci A, Sanyal R, Arslan M, Sanyal A. Benzothiazole-disulfide based redox-responsive polymers: facile access to reversibly functionalizable polymeric coatings. Polym Chem 2022. [DOI: 10.1039/d2py00133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox-responsive polymers and polymeric coatings containing benzothiazole-disulfide groups provide facile access to reversibly functionalizable platforms.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Mehmet Arslan
- Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University, Yalova 77200, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| |
Collapse
|
20
|
Wu HY, Yang L, Tu JS, Wang J, Li JG, Lv HY, Yang XN. Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2639-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Montero A, Atienza C, Elvira C, Jorcano JL, Velasco D. Hyaluronic acid-fibrin hydrogels show improved mechanical stability in dermo-epidermal skin substitutes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112352. [PMID: 34474900 DOI: 10.1016/j.msec.2021.112352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Human plasma-derived bilayered skin substitutes have been successfully used by our group in different skin tissue engineering applications. However, several issues associated with their poor mechanical properties were observed, and they often resulted in rapid contraction and degradation. In this sense, hydrogels composed of plasma-derived fibrin and thiolated-hyaluronic acid (HA-SH, 0.05-0.2% w/v) crosslinked with poly(ethylene glycol) diacrylate (PEGDA, 2:1, 6:1, 10:1 and 14:1 mol of thiol to moles of acrylate) were developed to reduce the shrinking rates and enhance the mechanical properties of the plasma-derived matrices. Plasma/HA-SH-PEGDA hydrogels showed a decrease in the contraction behaviour ranging from 5% to 25% and an increase in Young's modulus. Furthermore, the results showed that a minimal amount of the added HA-SH was able to escape the plasma/HA-SH-PEGDA hydrogels after incubation in PBS. The results showed that the increase in rigidity of the matrices as well as the absence of adhesion cellular moieties in the second network of HA-SH/PEGDA, resulted in a decrease in contraction in the presence of the encapsulated primary human fibroblasts (hFBs), which may have been related to an overall decrease in proliferation of hFBs found for all hydrogels after 7 days with respect to the plasma control. The metabolic activity of hFB returned to the control levels at 14 days except for the 2:1 PEGDA crosslinking ratio. The metabolic activity of primary human keratinocytes (hKCs) seeded on the hydrogels showed a decrease when high amounts of HA-SH and PEGDA crosslinker were incorporated. Organotypic skins formed in vitro after 21 days with plasma/HA-SH-PEGDA hydrogels with an HA content of 0.05% w/v and a 2:1 crosslinking ratio were up to three times thicker than the plasma controls, evidencing a reduction in contraction, while they also showed better and more homogeneous keratin 10 (K10) expression in the supra-basal layer of the epidermis. Furthermore, filaggrin expression showed the formation of an enhanced stratum corneum for the constructs containing HA. These promising results indicate the potential of using these biomimetic hydrogels as in vitro skin models for pharmaceutical products and cosmetics and future work will elucidate their potential functionality for clinical treatment.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
| | - Clara Atienza
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
| | - Carlos Elvira
- Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
22
|
Gsib O, Eggermont LJ, Egles C, Bencherif SA. Engineering a macroporous fibrin-based sequential interpenetrating polymer network for dermal tissue engineering. Biomater Sci 2021; 8:7106-7116. [PMID: 33089849 DOI: 10.1039/d0bm01161d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The success of skin tissue engineering for deep wound healing relies predominantly on the design of innovative and effective biomaterials. This study reports the synthesis and characterization of a new type of naturally-derived and macroporous interpenetrating polymer network (IPN) for skin repair. These biomaterials consist of a biologically active fibrous fibrin network polymerized within a mechanically robust and macroporous construct made of polyethylene glycol and biodegradable serum albumin (PEGDM-co-SAM). First, mesoporous PEGDM-co-SAM hydrogels were synthesized and subjected to cryotreatment to introduce an interconnected macroporous network. Subsequently, fibrin precursors were incorporated within the cryotreated PEG-based network and then allowed to spontaneously polymerize and form a sequential IPN. Rheological measurements indicated that fibrin-based sequential IPN hydrogels exhibited improved and tunable mechanical properties when compared to fibrin hydrogels alone. In vitro data showed that human dermal fibroblasts adhere, infiltrate and proliferate within the IPN constructs, and were able to secrete endogenous extracellular matrix proteins, namely collagen I and fibronectin. Furthermore, a preclinical study in mice demonstrated that IPNs were stable over 1-month following subcutaneous implantation, induced a minimal host inflammatory response, and displayed a substantial cellular infiltration and tissue remodeling within the constructs. Collectively, these data suggest that macroporous and mechanically reinforced fibrin-based sequential IPN hydrogels are promising three-dimensional platforms for dermal tissue regeneration.
Collapse
Affiliation(s)
- Olfat Gsib
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France.
| | - Loek J Eggermont
- Departments of Chemical Engineering and Bioengineering, Northeastern University, Boston, MA, USA
| | - Christophe Egles
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France.
| | - Sidi A Bencherif
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France. and Departments of Chemical Engineering and Bioengineering, Northeastern University, Boston, MA, USA and Department of Bioengineering, Northeastern University, Boston, MA, USA and Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
23
|
Chu W, Nie M, Ke X, Luo J, Li J. Recent Advances in Injectable Dual Crosslinking Hydrogels for Biomedical Applications. Macromol Biosci 2021; 21:e2100109. [PMID: 33908175 DOI: 10.1002/mabi.202100109] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Indexed: 02/05/2023]
Abstract
Injectable dual crosslinking hydrogels hold great promise to improve therapeutic efficacy in minimally invasive surgery. Compared with prefabricated hydrogels, injectable hydrogels can be implanted more accurately into deeply enclosed sites and repair irregularly shaped lesions, showing great applicable potential. Here, the current fabrication considerations of injectable dual crosslinking hydrogels are reviewed. Besides, the progress of the hydrogels used in corresponding applications and emerging challenges are discussed, with detailed emphasis in the fields of bone and cartilage regeneration, wound dressings, sensors and other less mentioned applications for their more hopeful employments in clinic. It is envisioned that the further development of the injectable dual crosslinking hydrogels will catalyze their innovation and transformation in the biomedical field.
Collapse
Affiliation(s)
- Wenlin Chu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingxi Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
24
|
Prouvé E, Drouin B, Chevallier P, Rémy M, Durrieu MC, Laroche G. Evaluating Poly(Acrylamide-co-Acrylic Acid) Hydrogels Stress Relaxation to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells. Macromol Biosci 2021; 21:e2100069. [PMID: 33870650 DOI: 10.1002/mabi.202100069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Indexed: 11/09/2022]
Abstract
The aim of this study is to investigate polyacrylamide-based hydrogels stress relaxation and the subsequent impact on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different hydrogels are synthesized by varying the amount of cross-linker and the ratio between the monomers (acrylamide and acrylic acid), and characterized by compression tests. It has been found that hydrogels containing 18% of acrylic acid exhibit an average relaxation of 70%, while pure polyacrylamide gels show an average relaxation of 15%. Subsequently, hMSCs are cultured on two different hydrogels functionalized with a mimetic peptide of the bone morphogenetic protein-2 to enable cell adhesion and favor their osteogenic differentiation. Phalloidin staining shows that for a constant stiffness of 55 kPa, a hydrogel with a low relaxation (15%) leads to star-shaped cells, which is typical of osteocytes, while a hydrogel with a high relaxation (70%) presents cells with a polygonal shape characteristic of osteoblasts. Immunofluorescence labeling of E11, strongly expressed in early osteocytes, also shows a dramatically higher expression for cells cultured on the hydrogel with low relaxation (15%). These results clearly demonstrate that, by fine-tuning hydrogels stress relaxation, hMSCs differentiation can be directed toward osteoblasts, and even osteocytes, which is particularly rare in vitro.
Collapse
Affiliation(s)
- Emilie Prouvé
- Department of mining, metallurgy, and materials engineering, Surface Engineering Laboratory, Research Center on Advanced Materials, Laval University, 1065 Avenue de la médecine, Québec, G1V 0A6, Canada.,Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada.,Institute of Chemistry and Biology of Membranes and Nano-objects (UMR 5248 CBMN), Bordeaux University, Allée Geoffroy St Hilaire - Bât B14, Pessac, 33600, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France
| | - Bernard Drouin
- Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada
| | - Pascale Chevallier
- Department of mining, metallurgy, and materials engineering, Surface Engineering Laboratory, Research Center on Advanced Materials, Laval University, 1065 Avenue de la médecine, Québec, G1V 0A6, Canada.,Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada
| | - Murielle Rémy
- Institute of Chemistry and Biology of Membranes and Nano-objects (UMR 5248 CBMN), Bordeaux University, Allée Geoffroy St Hilaire - Bât B14, Pessac, 33600, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France
| | - Marie-Christine Durrieu
- Institute of Chemistry and Biology of Membranes and Nano-objects (UMR 5248 CBMN), Bordeaux University, Allée Geoffroy St Hilaire - Bât B14, Pessac, 33600, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France
| | - Gaétan Laroche
- Department of mining, metallurgy, and materials engineering, Surface Engineering Laboratory, Research Center on Advanced Materials, Laval University, 1065 Avenue de la médecine, Québec, G1V 0A6, Canada.,Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada
| |
Collapse
|
25
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Xu X, Jerca VV, Hoogenboom R. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. MATERIALS HORIZONS 2021; 8:1173-1188. [PMID: 34821910 DOI: 10.1039/d0mh01514h] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design and synthesis of double network (DN) hydrogels that can mimic the properties and/or structure of natural tissue has flourished in recent years, overcoming the bottlenecks of mechanical performance of single network hydrogels and extending their potential applications in various fields. In recent years, such bioinspired DN hydrogels with extraordinary mechanical performance, excellent biocompatibility, and considerable strength have been demonstrated to be promising candidates for biomedical applications, such as tissue engineering and biomedicine. In this minireview, we provide an overview of the recent developments of bioinspired DN hydrogels defined as DN hydrogels that mimic the properties and/or structure of natural tissue, ranging from, e.g., anisotropically structured DN hydrogels, via ultratough energy dissipating DN hydrogels to dynamic, reshapable DN hydrogels. Furthermore, we discuss future perspectives of bioinspired DN hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Xiaowen Xu
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
27
|
Aldana AA, Houben S, Moroni L, Baker MB, Pitet LM. Trends in Double Networks as Bioprintable and Injectable Hydrogel Scaffolds for Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:4077-4101. [DOI: 10.1021/acsbiomaterials.0c01749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ana A. Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sofie Houben
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Louis M. Pitet
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
28
|
Mendes BB, Daly AC, Reis RL, Domingues RMA, Gomes ME, Burdick JA. Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications. Acta Biomater 2021; 119:101-113. [PMID: 33130309 DOI: 10.1016/j.actbio.2020.10.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Towards the repair of damaged tissues, numerous scaffolds have been fabricated to recreate the complex extracellular matrix (ECM) environment to support desired cell behaviors; however, it is often challenging to design scaffolds with the requisite cell-anchorage sites, mechanical stability, and tailorable physicochemical properties necessary for many applications. To address this and to improve on the properties of hyaluronic acid (HA) hydrogels, we combined photocrosslinkable norbornene-modified HA (NorHA) with human platelet lysate (PL). These PL-NorHA hybrid hydrogels supported the adhesion of cells when compared to NorHA hydrogels without PL, exhibited tailorable physicochemical properties based on the concentration of individual components, and released proteins over time. Using microfluidic techniques with on-chip mixing of NorHA and PL and subsequent photocrosslinking, spherical PL-NorHA microgels with a hierarchical fibrillar network were fabricated that exhibited the sustained delivery of PL proteins. Microgels could be jammed into granular hydrogels that exhibited shear-thinning and self-healing properties, enabling ejection from syringes and the fabrication of stable 3D constructs with 3D printing. Again, the inclusion of PL enhanced cellular interactions with the microgel structures. Overall, the combination of biomolecules and fibrin self-assembly arising from the enriched milieu of PL-derived proteins improved the bioactivity of HA-based hydrogels, enabling the formation of dynamic systems with modular design. The granular systems can be engineered to meet the complex demands of functional tissue repair using versatile processing techniques, such as with 3D printing.
Collapse
Affiliation(s)
- Bárbara B Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Andrew C Daly
- Department of Bioengineering, University of Pennsylvania, USA
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal.
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal.
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, USA.
| |
Collapse
|
29
|
Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation. J Control Release 2020; 327:571-583. [DOI: 10.1016/j.jconrel.2020.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
|
30
|
Vocetkova K, Sovkova V, Buzgo M, Lukasova V, Divin R, Rampichova M, Blazek P, Zikmund T, Kaiser J, Karpisek Z, Amler E, Filova E. A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment. NANOMATERIALS 2020; 10:nano10091801. [PMID: 32927642 PMCID: PMC7559479 DOI: 10.3390/nano10091801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap regenerative therapy option, as it delivers a wide spectrum of native growth factors, cytokines and other bioactive molecules. The aim of this study was to develop a simple delivery system to prolong the effects of the bioactive molecules released from platelets. The surface of electrospun and centrifugally spun poly-ε-caprolactone (PCL) fibrous scaffolds was functionalized with various concentrations of platelets; the influence of the morphology of the scaffolds and the concentration of the released platelet-derived bioactive molecules on melanocytes, was then assessed. An almost two-fold increase in the amount of the released bioactive molecules was detected on the centrifugally spun vs. electrospun scaffolds, and a sustained 14-day release of the bioactive molecules was demonstrated. A strong concentration-dependent response of melanocyte to the bioactive molecules was observed; higher concentrations of bioactive molecules resulted in improved metabolic activity and proliferation of melanocytes. This simple system improves melanocyte viability, offers on-site preparation and is suitable for prolonged topical PRP administration.
Collapse
Affiliation(s)
- Karolina Vocetkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
- Correspondence:
| | - Vera Sovkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Matej Buzgo
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Vera Lukasova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Radek Divin
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Michala Rampichova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
| | - Pavel Blazek
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Zdenek Karpisek
- Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic;
| | - Evzen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Eva Filova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
| |
Collapse
|
31
|
Ma X, Liu X, Wang P, Wang X, Yang R, Liu S, Ye Z, Chi B. Covalently Adaptable Hydrogel Based on Hyaluronic Acid and Poly(γ-glutamic acid) for Potential Load-Bearing Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:4036-4043. [DOI: 10.1021/acsabm.0c00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xuebin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwen Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
32
|
Eelkema R, Pich A. Pros and Cons: Supramolecular or Macromolecular: What Is Best for Functional Hydrogels with Advanced Properties? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906012. [PMID: 31919957 DOI: 10.1002/adma.201906012] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Hydrogels are fascinating soft materials with unique properties. Many biological systems are based on hydrogel-like structures, underlining their versatility and relevance. The properties of hydrogels strongly depend on the structure of the building blocks they are composed of, as well as the nature of interactions between them in the network structure. Herein, gel networks made by supramolecular interactions are compared to covalent macromolecular networks, drawing conclusions about their performance and application as responsive materials.
Collapse
Affiliation(s)
- Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
33
|
Storozhylova N, Crecente-Campo J, Cabaleiro D, Lugo L, Dussouy C, Simões S, Monteiro M, Grandjean C, Alonso MJ. An In Situ Hyaluronic Acid-Fibrin Hydrogel Containing Drug-Loaded Nanocapsules for Intra-Articular Treatment of Inflammatory Joint Diseases. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00154-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Weak acidic stable carbazate modified cellulose membranes target for scavenging carbonylated proteins in hemodialysis. Carbohydr Polym 2020; 231:115727. [DOI: 10.1016/j.carbpol.2019.115727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/28/2022]
|
35
|
Yu Q, Zhang C, Jiang Z, Qin S, Zhang A. Mussel-Inspired Adhesive Polydopamine-Functionalized Hyaluronic Acid Hydrogel with Potential Bacterial Inhibition. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:1900068. [PMID: 32042445 PMCID: PMC7001117 DOI: 10.1002/gch2.201900068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/09/2019] [Indexed: 05/06/2023]
Abstract
Hyaluronic acid (HA)-based hydrogels have been receiving increasing attention for wound management. However, pure HA hydrogels usually exhibit weak mechanical strength and poor anti-infection. Herein, a hybrid HA-based hydrogel (PDA-HA) comprised of polydopamine (PDA) and thiolated hyaluronic acid (HA-SH) is developed based on the Michael addition reaction. The introduction of PDA into HA hydrogel can decrease the critical gel concentration, improve the cell affinity and tissue adhesion, as well as endow the hydrogel with efficient free-radical scavenging ability. Combining the merits of good biocompatibility and moist environment from HA hydrogel with excellent tissue adhesiveness and free radical scavenging capability from PDA, this cross-linked PDA-HA hybrid hydrogel exhibits great potential for creating antimicrobial wound medical dressings.
Collapse
Affiliation(s)
- Qi‐Hang Yu
- School of Chemistry and Materials ScienceSouth Central University for NationalitiesWuhan430074China
| | - Chen‐Ming Zhang
- School of Chemistry and Materials ScienceSouth Central University for NationalitiesWuhan430074China
| | - Zhi‐Wei Jiang
- School of Chemistry and Materials ScienceSouth Central University for NationalitiesWuhan430074China
| | - Si‐Yong Qin
- School of Chemistry and Materials ScienceSouth Central University for NationalitiesWuhan430074China
| | - Ai‐Qing Zhang
- School of Chemistry and Materials ScienceSouth Central University for NationalitiesWuhan430074China
| |
Collapse
|
36
|
Yang L, Li X, Wang D, Mu S, Lv W, Hao Y, Lu X, Zhang G, Nan W, Chen H, Xie L, Zhang Y, Dong Y, Zhang Q, Zhao L. Improved mechanical properties by modifying fibrin scaffold with PCL and its biocompatibility evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:658-678. [PMID: 31903857 DOI: 10.1080/09205063.2019.1710370] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lei Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Dongmei Wang
- The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Songfeng Mu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Wenhao Lv
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Yongwei Hao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaosheng Lu
- Department of Orthopaedics, People’s Hospital of Baise, Baise, China
| | | | - Wenbin Nan
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Hongli Chen
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Liqin Xie
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yongjun Zhang
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Yuzhen Dong
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Qiqing Zhang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Liang Zhao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
37
|
Hyaluronic Acid Hydrogel Crosslinked with Complementary DNAs. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/1470819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hyaluronic acid (HA), a polysaccharide presents widely in the extracellular matrix of various animals, is used as an injectable gel material for regenerative medicine due to its biocompatibility. HA hydrogel can be produced from HA molecules via crosslinking. Physical crosslinking by noncovalent bonds is preferable rather than chemical crosslinking using a crosslinking agent to prevent unintended interactions in a biological environment and reduce inflammation caused by reaction by-products. In this study, HA was modified with two types of complementary single-stranded DNA obtained by digestion of pUC118 vector with the restriction enzyme Bsp1286I. When both of HA-DNAs were mixed, hybridized complementary strands acted as crosslinking points to form hydrogels. Shearing stress was applied to mix these DNA-conjugated HA solutions. As a result, a stiff hydrogel with an elastic modulus of about 100 Pa was obtained. The gel thus obtained would be facile to handle as an injectable gel that gains its structural properties from the shear stress applied through injection with a needle. In addition, DNA crosslinking points can be used for hybridization of the hydrogels with other biopolymers, cleavage with restriction enzymes and dissociation by thermal denaturation.
Collapse
|
38
|
Altinbasak I, Arslan M, Sanyal R, Sanyal A. Pyridyl disulfide-based thiol–disulfide exchange reaction: shaping the design of redox-responsive polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py01215g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.
Collapse
Affiliation(s)
| | - Mehmet Arslan
- Yalova University
- Faculty of Engineering
- Department of Polymer Materials Engineering
- 77100 Yalova
- Turkey
| | - Rana Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| |
Collapse
|
39
|
Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2019; 20:e1900283. [PMID: 31769933 DOI: 10.1002/mabi.201900283] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Indexed: 12/19/2022]
Abstract
This review focuses on fibrin, starting from biological mechanisms (its production from fibrinogen and its enzymatic degradation), through its use as a medical device and as a biomaterial, and finally discussing the techniques used to add biological functions and/or improve its mechanical performance through its molecular engineering. Fibrin is a material of biological (human, and even patient's own) origin, injectable, adhesive, and remodellable by cells; further, it is nature's most common choice for an in situ forming, provisional matrix. Its widespread use in the clinic and in research is therefore completely unsurprising. There are, however, areas where its biomedical performance can be improved, namely achieving a better control over mechanical properties (and possibly higher modulus), slowing down degradation or incorporating cell-instructive functions (e.g., controlled delivery of growth factors). The authors here specifically review the efforts made in the last 20 years to achieve these aims via biomimetic reactions or self-assembly, as much via formation of hybrid materials.
Collapse
Affiliation(s)
- Iwan Vaughan Roberts
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Deena Bukhary
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | | | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| |
Collapse
|
40
|
Clay NE, Villanueva C, You T, Wrice N, Kowalczewski A, Christy RJ, Natesan S. Plasma-Alginate Composite Material Provides Improved Mechanical Support for Stem Cell Growth and Delivery. ACS APPLIED BIO MATERIALS 2019; 2:4271-4282. [PMID: 35021442 DOI: 10.1021/acsabm.9b00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Blood plasma-based products have been recently utilized in different tissue engineering applications, ranging from soft tissue repair to bone regeneration. Plasma contains fibrinogen which can be converted to an insoluble fibrin-laden gel in the presence of activated thrombin. In tissue engineering, these plasma-based materials can serve either as a three-dimensional scaffold to deliver therapeutic cells in vivo or as a growth factor-rich supply for tissue regeneration. Unfortunately, plasma-based materials are often mechanically weak and easily deformed, thus limiting their usability in harsh clinical settings. Simpler methods to create sturdier plasma-based materials are therefore needed. To this end, we hypothesized that combining alginate with plasma can create a composite plasma material with improved mechanical properties. Incorporating alginate into plasma produced composite gels with increasing bulk stiffness, as measured by rheology. Specifically, the plasma-alginate composite (PAC) gels with an alginate concentration of 2.86 mg/mL were 10-fold stiffer than pure plasma gels (11 vs 112 Pa). Interestingly, gel lysis rates were unchanged despite increasing alginate concentration (lysis time approximately 50 min). Adipose-derived stem cells cultured in the stiffer PAC gels expressed stemness markers (THY1, ENG, NT5E) at levels comparable to those in the pure plasma gels. Similarly, proangiogenic factor secretion was also constant across all gel conditions. In sum, we envision this PAC gel system will extend the use of plasma gel-based therapies into more rigorous clinical applications.
Collapse
|
41
|
Young SA, Riahinezhad H, Amsden BG. In situ-forming, mechanically resilient hydrogels for cell delivery. J Mater Chem B 2019; 7:5742-5761. [PMID: 31531443 DOI: 10.1039/c9tb01398a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Injectable, in situ-forming hydrogels can improve cell delivery in tissue engineering applications by facilitating minimally invasive delivery to irregular defect sites and improving cell retention and survival. Tissues targeted for cell delivery often undergo diverse mechanical loading including high stress, high strain, and repetitive loading conditions. This review focuses on the development of hydrogel systems that meet the requirements of mechanical resiliency, cytocompatibility, and injectability for such applications. First, we describe the most important design considerations for maintaining the viability and function of encapsulated cells, for reproducing the target tissue morphology, and for achieving degradation profiles that facilitate tissue replacement. Models describing the relationships between hydrogel structure and mechanical properties are described, focusing on design principles necessary for producing mechanically resilient hydrogels. The advantages and limitations of current strategies for preparing cytocompatible, injectable, and mechanically resilient hydrogels are reviewed, including double networks, nanocomposites, and high molecular weight amphiphilic copolymer networks. Finally, challenges and opportunities are outlined to guide future research in this developing field.
Collapse
Affiliation(s)
- Stuart A Young
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
42
|
Lee MI, Kim JH, Kwak HH, Woo HM, Han JH, Yayon A, Jung YC, Cho JM, Kang BJ. A placebo-controlled study comparing the efficacy of intra-articular injections of hyaluronic acid and a novel hyaluronic acid-platelet-rich plasma conjugate in a canine model of osteoarthritis. J Orthop Surg Res 2019; 14:314. [PMID: 31533754 PMCID: PMC6749694 DOI: 10.1186/s13018-019-1352-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background The objective of this study was to assess the efficacy of intra-articular injections of hyaluronic acid (HA) and a novel, on-site conjugate of HA with autologous fibrinogen in platelet-rich plasma (HA-PRP) in a canine model of osteoarthritis (OA) Methods Twelve beagle dogs underwent a unilateral resection of the cranial cruciate ligament (CrCL) of the stifle joint. Clinical and radiographic signs of OA were confirmed in all dogs 8 weeks following CrCL resection and prior to treatment. The dogs were randomized into three groups: saline (n = 4), HA (n = 4), and HA-PRP (n = 4). Each dog received intra-articular injections of the respective substance into the affected joint at pre-determined time points. The dogs were assessed for adverse effects for 3 days after each injection and for lameness, pain, range of motion, kinetics, and radiographic OA severity prior to treatment and 3 months after injection. OA severity as determined by radiographic examination was not significantly different among the groups at any time point. The dogs were then humanely euthanatized and the stifle joint assessed by gross and histological examinations. Results Dogs treated with four weekly injections of HA or two biweekly injections of HA-PRP were significantly (p < 0.05) better than dogs treated with four weekly injections of saline at 2-, 4-, and 12-week time points based on a comfortable range of motion (CROM) and clinical lameness score. Gait analysis measuring symmetry and weight distribution on pressure sensor walkway showed significantly (p < 0.05) improved limb function for dogs treated with HA and HA-PRP compared with dogs treated with saline yet with better clinical outcome for the HA-PRP-treated group at 12 and 20 weeks follow-up. Gross and histological analysis of synovium and articular cartilage demonstrated significant (p < 0.05) improvement by both treatments groups compared to controls. There was however significantly (p < 0.05) less damage to the cartilage in the HA-PRP group compared to the HA-treated group. Conclusions These data suggest that while injection of HA and HA-PRP may be sufficient for short-term amelioration of the symptoms associated with OA, treatment with HA-PRP conjugates may be superior, providing significantly better long-term cartilage preservation.
Collapse
Affiliation(s)
- Mun-Ik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Jun-Hyung Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Ho-Hyun Kwak
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Heung-Myong Woo
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Jeong-Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Avner Yayon
- ProCore-biomed, Ltd., Weizmann Science Park, 76400, Ness Ziona, Israel
| | | | - Jin-Man Cho
- Research Institute, Green Cross Veterinary Products Co., Ltd., Yongin, 17066, Korea
| | - Byung-Jae Kang
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Korea. .,Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
43
|
Bao Z, Xian C, Yuan Q, Liu G, Wu J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv Healthc Mater 2019; 8:e1900670. [PMID: 31364824 DOI: 10.1002/adhm.201900670] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Hydrogels based on natural polymers have bright application prospects in biomedical fields due to their outstanding biocompatibility and biodegradability. However, the poor mechanical performances of pure natural polymer-based hydrogels greatly limit their application prospects. Recently, a variety of strategies has been applied to prepare natural polymer-based hydrogels with enhanced mechanical properties, which generally exhibit stiffening, strengthening, and stretchable behaviors. This article summarizes the recent progress of natural polymer-based hydrogels with enhanced mechanical properties. From a structure point of view, four kinds of hydrogel are reviewed; double network hydrogels, nanocomposite hydrogels, click chemistry-based hydrogels, and supramolecular hydrogels. For each typical hydrogel, its preparation, structure, and mechanical performance are introduced in detail. At the end of this article, the current challenges and future prospects of hydrogels based on natural polymers are discussed and it is pointed out that 3D printing may offer a new platform for the development of natural polymer-based hydrogels.
Collapse
Affiliation(s)
- Ziting Bao
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Caihong Xian
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Qijuan Yuan
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Guiting Liu
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Jun Wu
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 Guangdong P. R. China
| |
Collapse
|
44
|
Goczkowski M, Gobin M, Hindié M, Agniel R, Larreta-Garde V. Properties of interpenetrating polymer networks associating fibrin and silk fibroin networks obtained by a double enzymatic method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109931. [PMID: 31499978 DOI: 10.1016/j.msec.2019.109931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 06/17/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Fibrin gels are of interest as biomaterials for regenerative medicine but present poor mechanical properties, undergo fast degradation and strongly contract in presence of cells. To face these drawbacks, a fibrin network can be associated with another polymer network, in an Interpenetrating Polymer Network (IPN) architecture. In this study, we report the properties of an IPN comprising a fibrin (Fb) network and a silk fibroin (SF) network. This IPN is synthesized through the action of 2 enzymes, each one being specific of one protein gelation, i.e. thrombin (Tb) for Fb gelation, and horseradish peroxidase (HRP) for SF gelation. The effective formation of both Fb and SF networks in an IPN architecture was first verified at qualitative and quantitative levels. The resulting IPN was easily manipulable, displayed high viscoelastic properties and showed homogeneous macro- and micro-structure. Then the degradability of the IPN by two proteases, thermolysin (TL) and trypsin (TRY), obeying different mechanisms was presented. Finally, two-dimensional culture of human fibroblasts on the IPN surface induced little material contraction, while fibroblasts showed healthy morphology, displayed high viability and produced mature extracellular matrix (ECM) proteins. Taken together, the results suggest that this new IPN have a strong potential for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mathieu Goczkowski
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France; Celogos, Paris, France
| | - Maxime Gobin
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France
| | - Véronique Larreta-Garde
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France.
| |
Collapse
|
45
|
Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells. Carbohydr Polym 2019; 211:336-348. [PMID: 30824098 DOI: 10.1016/j.carbpol.2019.01.115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
In tumor biology, it is widely recognized that 3D rather than 2D cell culture can recapitulate key features of solid tumors, including cell-extracellular matrix (ECM) interactions. In this study, to mimick the ECM of breast cancer, hyaluronic acid (HA) hydrogels were synthesized from two polyvalent HA derivatives through a hydrazone and photo dual crosslinking process. HA hydrogels could be formed within 120 s. The hydrogels had similar topography and mechanical properties to breast tumor and displayed glutathione and hyaluronidase dual-responsive degradation behavior. Biological studies demonstrated that HA hydrogel could support the proliferation and clustering of breast cancer MCF-7 cells. The expression levels of VEGF, IL-8 and bFGF in hydrogel-cultured cells were significantly greater than those in 2D culture. Moreover, cells from hydrogel culture exhibited greater migration/invasion abilities and tumorigenicity than 2D-cultured cells. Therefore, the HA hydrogels are a promising ECM-mimicking matrix for in vitro construction of breast cancer.
Collapse
|
46
|
Sharma D, Ferguson M, Kamp TJ, Zhao F. Constructing Biomimetic Cardiac Tissues: A Review of Scaffold Materials for Engineering Cardiac Patches. EMERGENT MATERIALS 2019; 2:181-191. [PMID: 33225220 PMCID: PMC7678685 DOI: 10.1007/s42247-019-00046-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/13/2019] [Indexed: 05/18/2023]
Abstract
Engineered cardiac patches (ECPs) hold great promise to repair ischemia-induced damages to the myocardium. Recent studies have provided robust technological advances in obtaining pure cardiac cell populations as well as various novel scaffold materials to generate engineered cardiac tissues that can significantly improve electrical and contractile functions of damaged myocardium. Given the significance in understanding the cellular and extracellular structural as well as compositional details of native human heart wall, in order to fabricate most suitable scaffold material for cardiac patches, herein, we have reviewed the structure of the human pericardium and heart wall as well as the compositional details of cardiac extracellular matrix (ECM). Moreover, several strategies to obtain cardiac-specific scaffold materials have been reviewed, including natural, synthetic and hybrid hydrogels, electrospun fibers, decellularized native tissues or whole organs, and scaffolds derived from engineered cell sheets. This review provides a comprehensive analysis of different scaffold materials for engineering cardiac tissues.
Collapse
Affiliation(s)
- Dhavan Sharma
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Morgan Ferguson
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Timothy J Kamp
- Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI 53705, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
47
|
Mutlu H, Ceper EB, Li X, Yang J, Dong W, Ozmen MM, Theato P. Sulfur Chemistry in Polymer and Materials Science. Macromol Rapid Commun 2018; 40:e1800650. [DOI: 10.1002/marc.201800650] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Hatice Mutlu
- Institute for Biological Interfaces III; Karlsruhe Institute of Technology; Herrmann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Ezgi Berfin Ceper
- Department of Bioengineering; Yildiz Technical University; Esenler 34220 Istanbul Turkey
| | - Xiaohui Li
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| | - Jingmei Yang
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
- Institute of Fundamental Science and Frontiers; University of Electronic Science and Technology of China; Chengdu 610054 China
| | - Wenyuan Dong
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| | - Mehmet Murat Ozmen
- Department of Bioengineering; Yildiz Technical University; Esenler 34220 Istanbul Turkey
| | - Patrick Theato
- Institute for Biological Interfaces III; Karlsruhe Institute of Technology; Herrmann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| |
Collapse
|
48
|
Monteiro CF, Custódio CA, Mano JF. Three-Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cátia F. Monteiro
- Department of Chemistry, CICECO; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| | - Catarina A. Custódio
- Department of Chemistry, CICECO; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| | - João F. Mano
- Department of Chemistry, CICECO; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| |
Collapse
|
49
|
Ma X, Liu S, Tang H, Yang R, Chi B, Ye Z. In situ photocrosslinked hyaluronic acid and poly (γ-glutamic acid) hydrogels as injectable drug carriers for load-bearing tissue application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2252-2266. [PMID: 30311855 DOI: 10.1080/09205063.2018.1535820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to the syringeability of precursor solution and convenience of open surgical treatment, injectable hydrogels have gained growing attention in drug delivery application. For load-bearing tissue, the excellent mechanical property is an important requirement for delivery vehicles to resist external stress and loads. Herein, we prepared mechanically robust injectable hydrogels (HA/γ-PGA hydrogels for short) using methacrylate-functionalized hyaluronic acid and poly (γ-glutamic acid) via photopolymerization. The HA/γ-PGA hydrogels showed outstanding anti-compression ability and could suffer a more than 80% strain. Meanwhile, after 5 cycles of compression, HA/γ-PGA hydrogels could still recover quickly against external stress, showing excellent shape recovery capability. Moreover, the mechanical properties could be modulated easily by changing the molar ratio of HA to γ-PGA. The drug release behavior was also evaluated and the drug-loaded HA/γ-PGA hydrogels showed a weak burst release and sustained release behavior. Additionally, HA/γ-PGA hydrogels also exhibited superior biocompatibility. Therefore, HA/γ-PGA hydrogels have great potential as injectable drug carriers for load-bearing tissue application.
Collapse
Affiliation(s)
- Xuebin Ma
- a School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Shuai Liu
- a School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing , China
| | - Hejun Tang
- b State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing , China
| | - Rong Yang
- b State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing , China
| | - Bo Chi
- b State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing , China
| | - Zhiwen Ye
- a School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing , China
| |
Collapse
|
50
|
Wieduwild R, Howarth M. Assembling and decorating hyaluronan hydrogels with twin protein superglues to mimic cell-cell interactions. Biomaterials 2018; 180:253-264. [DOI: 10.1016/j.biomaterials.2018.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
|