1
|
Dalfino S, Olaret E, Piazzoni M, Savadori P, Stancu I, Tartaglia G, Dolci C, Moroni L. Polycaprolactone/β-Tricalcium Phosphate Composite Scaffolds with Advanced Pore Geometries Promote Human Mesenchymal Stromal Cells' Osteogenic Differentiation. Tissue Eng Part A 2025; 31:13-28. [PMID: 38613813 DOI: 10.1089/ten.tea.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Critical-sized mandibular bone defects, arising from, for example, resections after tumor surgeries, are currently treated with autogenous bone grafts. This treatment is considered very invasive and is associated with limitations such as morbidity and graft resorption. Tissue engineering approaches propose to use 3D scaffolds that combine structural features, biomaterial properties, cells, and biomolecules to create biomimetic constructs. However, mimicking the complex anatomy and composition of the mandible poses a challenge in scaffold design. In our study, we evaluated the dual effect of complex pore geometry and material composition on the osteogenic potential of 3D printed scaffolds. The scaffolds were made of polycaprolactone (PCL) alone (TCP0), or with a high concentration of β-tricalcium phosphate (β-TCP) up to 40% w/w (TCP40), with two complex pore geometries, namely a star- (S) and a diamond-like (D) shape. Scanning electron microscopy and microcomputed tomography images confirmed high fidelity during the printing process. The D-scaffolds displayed higher compressive moduli than the corresponding S-scaffolds. TCP40 scaffolds in simulated body fluid showed deposition of minerals on the surface after 28 days. Subsequently, we assessed the differentiation of seeded bone marrow-derived human mesenchymal stromal cells (hMSCs) over 28 days. The early expression of RUNX2 in the cell nuclei confirmed the commitment toward an osteogenic phenotype. Moreover, alkaline phosphatase (ALP) activity and collagen deposition displayed an increasing trend in the D-scaffolds. Collagen type I was mainly present in the deposited extracellular matrix (ECM), confirming deposition of bone matrix. Finally, Alizarin Red staining showed successful mineralization on all the TCP40 samples, with higher values for the S-shaped scaffolds. Taken together, our study demonstrated that the complex pore architectures of scaffolds comprised TCP40 stimulated osteogenic differentiation and mineralization of hMSCs in vitro. Future research will aim to validate these findings in vivo.
Collapse
Affiliation(s)
- Sophia Dalfino
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elena Olaret
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Marco Piazzoni
- Department of Physics, Università degli Studi di Milano, Milano, Italy
| | - Paolo Savadori
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Izabela Stancu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Claudia Dolci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| |
Collapse
|
2
|
Tang J, Wu L, Fan X, Dong X, Li X, Xie Y, Li J, Rao J, Li T, Gan W. Superstrong, sustainable, origami wood paper enabled by dual-phase nanostructure regulation in cell walls. SCIENCE ADVANCES 2024; 10:eado5142. [PMID: 39058784 PMCID: PMC11277399 DOI: 10.1126/sciadv.ado5142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Constructing a crystalline-amorphous hybrid structure is an effective strategy to overcome the conflict between the strength and toughness of materials. However, achieving such a material structure often involves complex, energy-intensive processing. Here, we leverage the natural wood featuring coexisting crystalline and amorphous regions to achieve superstrong and ultratough wood paper (W-paper) via a dual-phase nanostructure regulation strategy. After partially removing amorphous hemicellulose and eliminating most lignin, the treated wood can self-densify through an energy-efficient air drying, resulting in a W-paper with high tensile strength, toughness, and folding endurance. Coarse-grained molecular dynamics simulations reveal the underlying deformation mechanism of the crystalline and amorphous regions inside cell walls and the failure mechanism of the W-paper under tension. Life cycle assessment reveals that W-paper shows a lower environmental impact than commercial paper and common plastics. This dual-phase nanostructure regulation based on natural wood may provide valuable insights for developing high-performance and sustainable film materials.
Collapse
Affiliation(s)
- Jianfu Tang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Lianping Wu
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Xueqin Fan
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Xiaofei Dong
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Xueqi Li
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Yanjun Xie
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Jiancun Rao
- AIM Lab, Maryland NanoCenter, University of Maryland, College Park, MD, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Wentao Gan
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| |
Collapse
|
3
|
Giacomini F, Baião Barata D, Suk Rho H, Tahmasebi Birgani Z, van Blitterswijk C, Giselbrecht S, Truckenmüller R, Habibović P. Microfluidically Aligned Collagen to Maintain the Phenotype of Tenocytes In Vitro. Adv Healthc Mater 2024; 13:e2303672. [PMID: 37902084 PMCID: PMC11468977 DOI: 10.1002/adhm.202303672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Tendon is a highly organized tissue that transmits forces between muscle and bone. The architecture of the extracellular matrix of tendon, predominantly from collagen type I, is important for maintaining tenocyte phenotype and function. Therefore, in repair and regeneration of damaged and diseased tendon tissue, it is crucial to restore the aligned arrangement of the collagen type I fibers of the original matrix. To this end, a novel, user-friendly microfluidic piggyback platform is developed allowing the controlled patterned formation and alignment of collagen fibers simply on the bottom of culture dishes. Rat tenocytes cultured on the micropatterns of aligned fibrous collagen exhibit a more elongated morphology. The cells also show an increased expression of tenogenic markers at the gene and protein level compared to tenocytes cultured on tissue culture plastic or non-fibrillar collagen coatings. Moreover, using imprinted polystyrene replicas of aligned collagen fibers, this work shows that the fibrillar structure of collagen per se affects the tenocyte morphology, whereas the biochemical nature of collagen plays a prominent role in the expression of tenogenic markers. Beyond the controlled provision of aligned collagen, the microfluidic platform can aid in developing more physiologically relevant in vitro models of tendon and its regeneration.
Collapse
Affiliation(s)
- Francesca Giacomini
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - David Baião Barata
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas MonizLisbon1649‐028Portugal
| | - Hoon Suk Rho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| |
Collapse
|
4
|
Impact of In-Process Crystallinity of Biodegradable Scaffolds Fabricated by Material Extrusion on the Micro- and Nanosurface Topography, Viability, Proliferation, and Differentiation of Human Mesenchymal Stromal Cells. Polymers (Basel) 2023; 15:polym15061468. [PMID: 36987248 PMCID: PMC10052033 DOI: 10.3390/polym15061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Due to affordability, and the ability to parametrically control the vital processing parameters, material extrusion is a widely accepted technology in tissue engineering. Material extrusion offers sufficient control over pore size, geometry, and spatial distribution, and can also yield different levels of in-process crystallinity in the resulting matrix. In this study, an empirical model based on four process parameters—extruder temperature, extrusion speed, layer thickness, and build plate temperature—was used to control the level of in-process crystallinity of polylactic acid (PLA) scaffolds. Two sets of scaffolds were fabricated, with low- and high-crystallinity content, and subsequently seeded with human mesenchymal stromal cells (hMSC). The biochemical activity of hMSC cells was tested by examining the DNA content, lactate dehydrogenase (LDH) activity, and alkaline phosphatase (ALP) tests. The results of this 21-day in vitro experiment showed that high level crystallinity scaffolds performed significantly better in terms of cell response. Follow-up tests revealed that the two types of scaffolds were equivalent in terms of hydrophobicity, and module of elasticity. However, detailed examination of their micro- and nanosurface topographic features revealed that the higher crystallinity scaffolds featured pronounced nonuniformity and a larger number of summits per sampling area, which was the main contributor to a significantly better cell response.
Collapse
|
5
|
Wang T, Zhao H, Jing S, Fan Y, Sheng G, Ding Q, Liu C, Wu H, Liu Y. Magnetofection of miR-21 promoted by electromagnetic field and iron oxide nanoparticles via the p38 MAPK pathway contributes to osteogenesis and angiogenesis for intervertebral fusion. J Nanobiotechnology 2023; 21:27. [PMID: 36694219 PMCID: PMC9875474 DOI: 10.1186/s12951-023-01789-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Magnetofection-mediated gene delivery shows great therapeutic potential through the regulation of the direction and degree of differentiation. Lumbar degenerative disc disease (DDD) is a serious global orthopaedic problem. However, even though intervertebral fusion is the gold standard for the treatment of DDD, its therapeutic effect is unsatisfactory. Here, we described a novel magnetofection system for delivering therapeutic miRNAs to promote osteogenesis and angiogenesis in patients with lumbar DDD. RESULTS Co-stimulation with electromagnetic field (EMF) and iron oxide nanoparticles (IONPs) enhanced magnetofection efficiency significantly. Moreover, in vitro, magnetofection of miR-21 into bone marrow mesenchymal stem cells (BMSCs) and human umbilical endothelial cells (HUVECs) influenced their cellular behaviour and promoted osteogenesis and angiogenesis. Then, gene-edited seed cells were planted onto polycaprolactone (PCL) and hydroxyapatite (HA) scaffolds (PCL/HA scaffolds) and evolved into the ideal tissue-engineered bone to promote intervertebral fusion. Finally, our results showed that EMF and polyethyleneimine (PEI)@IONPs were enhancing transfection efficiency by activating the p38 MAPK pathway. CONCLUSION Our findings illustrate that a magnetofection system for delivering miR-21 into BMSCs and HUVECs promoted osteogenesis and angiogenesis in vitro and in vivo and that magnetofection transfection efficiency improved significantly under the co-stimulation of EMF and IONPs. Moreover, it relied on the activation of p38 MAPK pathway. This magnetofection system could be a promising therapeutic approach for various orthopaedic diseases.
Collapse
Affiliation(s)
- Tianqi Wang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hongqi Zhao
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shaoze Jing
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Yang Fan
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Gaohong Sheng
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qing Ding
- grid.412793.a0000 0004 1799 5032Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chaoxu Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hua Wu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yang Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
6
|
Chen T, Zhao X, Weng Y. Self-assembled polylactic acid (PLA): Synthesis, properties and biomedical applications. Front Chem 2023; 10:1107620. [PMID: 36688028 PMCID: PMC9852896 DOI: 10.3389/fchem.2022.1107620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The surface morphology and topography of cell culture substrates play an important role in cell proliferation and growth. Regulation of the surface microstructure allows the development of tissue culture media suitable for different cells. Polylactic acid (PLA) is a biobased and biodegradable (under defined conditions) polymer with low immunogenicity, non-toxicity, and good mechanical properties, which have facilitated their pharmaceutical and biomedical applications. This review summarizes recent advances in the synthesis and self-assembly of surface microstructure based on PLA materials and discusses their biomedical applications such as cell culturing and tissue engineering.
Collapse
Affiliation(s)
- Tianyu Chen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Xiaoying Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China,*Correspondence: Xiaoying Zhao, ; Yunxuan Weng,
| | - Yunxuan Weng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, China,*Correspondence: Xiaoying Zhao, ; Yunxuan Weng,
| |
Collapse
|
7
|
Galván-Chacón V, de Melo Pereira D, Vermeulen S, Yuan H, Li J, Habibović P. Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic. Bioact Mater 2023; 19:127-138. [PMID: 35475029 PMCID: PMC9014318 DOI: 10.1016/j.bioactmat.2022.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- V.P. Galván-Chacón
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - D. de Melo Pereira
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - S. Vermeulen
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - H. Yuan
- Kuros Biosciences BV, 3723 MB, Bilthoven, the Netherlands
| | - J. Li
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - P. Habibović
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
- Corresponding author. Maastricht University, MERLN Institute, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Cámara-Torres M, Sinha R, Sanchez A, Habibovic P, Patelli A, Mota C, Moroni L. Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells. BIOMATERIALS ADVANCES 2022; 137:212833. [PMID: 35929265 DOI: 10.1016/j.bioadv.2022.212833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The field of bone tissue engineering seeks to mimic the bone extracellular matrix composition, balancing the organic and inorganic components. In this regard, additive manufacturing (AM) of high content calcium phosphate (CaP)-polymer composites holds great promise towards the design of bioactive scaffolds. Yet, the biological performance of such scaffolds is still poorly characterized. In this study, melt extrusion AM (ME-AM) was used to fabricate poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT)-nanohydroxyapatite (nHA) scaffolds with up to 45 wt% nHA, which presented significantly enhanced compressive mechanical properties, to evaluate their in vitro osteogenic potential as a function of nHA content. While osteogenic gene upregulation and matrix mineralization were observed on all scaffold types when cultured in osteogenic media, human mesenchymal stromal cells did not present an explicitly clear osteogenic phenotype, within the evaluated timeframe, in basic media cultures (i.e. without osteogenic factors). Yet, due to the adsorption of calcium and inorganic phosphate ions from cell culture media and simulated body fluid, the formation of a CaP layer was observed on PEOT/PBT-nHA 45 wt% scaffolds, which is hypothesized to account for their bone forming ability in the long term in vitro, and osteoconductivity in vivo.
Collapse
Affiliation(s)
- Maria Cámara-Torres
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Ravi Sinha
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Alberto Sanchez
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain
| | - Pamela Habibovic
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Instructive Biomaterial Engineering Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Alessandro Patelli
- Department of Physics and Astronomy, Padova University, Via Marzolo, 8, 35131 Padova, Italy
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
9
|
Li B, Wang M, Liu Y, Zhou Y, Tang L, You P, Deng Y. Independent effects of structural optimization and resveratrol functionalization on extracellular matrix scaffolds for bone regeneration. Colloids Surf B Biointerfaces 2022; 212:112370. [PMID: 35144132 DOI: 10.1016/j.colsurfb.2022.112370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/26/2022]
Abstract
Due to their natural biological activity and low immunogenicity, decellularized extracellular matrix (ECM) materials have aroused interest as potential scaffold materials in tissue engineering. Decellularized small intestinal submucosa (SIS) is one ECM biomaterial that can be easily sourced. In the present study, we tested whether the osteogenesis of SIS scaffolds was enhanced via structural optimization and resveratrol (RSV) functionalization and explored the independent effects of these modifications. We obtained SIS scaffolds with different pore structures by controlling the preparation concentration. The group with superior osteogenic properties was further RSV-functionalized via covalent immobilization. We conducted a series of in vitro and in vivo studies to explore the effects of these two optimization strategies on the osteogenic properties of SIS scaffolds. The results showed that pore structure and RSV functionalization significantly affected the osteogenic properties of SIS scaffolds. With a fabrication concentration of 1%, the SIS scaffolds had superior osteogenic properties. Through covalent coupling, RSV was successfully grafted onto SIS scaffolds, where it was slowly released. The most significant improvements in osteogenic properties were obtained with a coupling concentration of 1%. Furthermore, in in vivo experiments, vascular and new bone tissue formation was enhanced with RSV/SIS scaffolds compared with SIS scaffolds and the blank control group at 4 weeks after implantation. These findings indicate that the RSV/SIS scaffolds obtained via dual optimization strategies show promise as biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Bowen Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; Department of Stomatology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Mei Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yuhua Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| | - Lin Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Pengyue You
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yi Deng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| |
Collapse
|
10
|
Liu Z, Chu W, Zhang L, Wang Y, Zhai Z, Liu F. The effect of enhanced bone marrow in conjunction with 3D-printed PLA-HA in the repair of critical-sized bone defects in a rabbit model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1134. [PMID: 34430575 PMCID: PMC8350715 DOI: 10.21037/atm-20-8198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/16/2021] [Indexed: 01/28/2023]
Abstract
Background Traditionally, the iliac crest has been the most common harvesting site for autologous bone grafts; however, it has some limitations, including poor bone availability and donor-site morbidity. This study sought to explore the effect of enhanced bone marrow (eBM) in conjunction with three-dimensional (3D)-printed polylactide–hydroxyapatite (PLA-HA) scaffolds in the repair of critical-sized bone defects in a rabbit model. Methods First, 3D-printed PLA-HA scaffolds were fabricated and evaluated using micro-computed tomography (µCT) and scanning electron microscopy (SEM). Twenty-seven New Zealand white rabbits were randomly divided into 3 groups (n=9 per group), and the defects were treated using 3D-printed PLA-HA scaffolds (the PLA-HA group) or eBM in conjunction with 3D-printed PLA-HA scaffolds (the PLA-HA/eBM group), or were left untreated (the control group). Radiographic, µCT, and histological analyses were performed to evaluate bone regeneration in the different groups. Results The 3D-printed PLA-HA scaffolds were cylindrical, and had a mean pore size of 500±47.1 µm and 60%±3.5% porosity. At 4 and 8 weeks, the lane-sandhu X-ray score in the PLA-HA/eBM group was significantly higher than that in the PLA-HA group and the control group (P<0.01). At 8 weeks, the µCT analysis showed that the bone volume (BV) and bone volume/tissue volume (BV/TV) in the PLA-HA/eBM group were significantly higher than those in the PLA-HA group and the control group (P<0.01). Hematoxylin and eosin staining indicated that the new bone area in the PLA-HA/eBM group was significantly higher than that in the PLA-HA group and the control group (P<0.01). Conclusions The group that was treated with eBM in conjunction with 3D-printed PLA-HA showed enhanced bone repair compared to the other 2 groups. PLA-HA/eBM scaffolds represent a promising way to treat critical-sized bone defects.
Collapse
Affiliation(s)
- Zhiqing Liu
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxiang Chu
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Linyuan Zhang
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueting Wang
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zanjing Zhai
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiang Liu
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
12
|
Effects of electromagnetic fields treatment on rat critical-sized calvarial defects with a 3D-printed composite scaffold. Stem Cell Res Ther 2020; 11:433. [PMID: 33023631 PMCID: PMC7542469 DOI: 10.1186/s13287-020-01954-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Current strategies for craniofacial defect are faced with unmet outcome. Combining 3D-printing with safe, noninvasive magnetic therapy could be a promising breakthrough. METHODS In this study, polylactic acid/hydroxyapatite (PLA/HA) composite scaffold was fabricated. After seeding rat bone marrow mesenchymal stem cells (BMSCs) on scaffolds, the effects of electromagnetic fields (EMF) on the proliferation and osteogenic differentiation capacity of BMSCs were investigated. Additionally, 6-mm critical-sized calvarial defect was created in rats. BMSC-laden scaffolds were implanted into the defects with or without EMF treatment. RESULTS Our results showed that PLA/HA composite scaffolds exhibited uniform porous structure, high porosity (~ 70%), suitable compression strength (31.18 ± 4.86 MPa), modulus of elasticity (10.12 ± 1.24 GPa), and excellent cyto-compatibility. The proliferation and osteogenic differentiation capacity of BMSCs cultured on the scaffolds were enhanced with EMF treatment. Mechanistically, EMF exposure functioned partly by activating mitogen-activated protein kinase (MAPK) or MAPK-associated ERK and JNK pathways. In vivo, significantly higher new bone formation and vascularization were observed in groups involving scaffold, BMSCs, and EMF treatment, compared to scaffold alone. Furthermore, after 12 weeks of implanting, craniums in groups including scaffold, BMSCs, and EMF exposure showed the greatest biomechanical properties. CONCLUSION In conclusion, EMF treatment combined with 3D-printed scaffold has great potential applications in craniofacial regeneration.
Collapse
|
13
|
Cheng CC, Yang XJ, Fan WL, Lee AW, Lai JY. Cytosine-Functionalized Supramolecular Polymer-Mediated Cellular Behavior and Wound Healing. Biomacromolecules 2020; 21:3857-3866. [DOI: 10.1021/acs.biomac.0c00938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Xiu-Jing Yang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wen-Lu Fan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| |
Collapse
|
14
|
Jiang N, Guo Z, Sun D, Ay B, Li Y, Yang Y, Tan P, Zhang L, Zhu S. Exploring the mechanism behind improved osteointegration of phosphorylated titanium implants with hierarchically structured topography. Colloids Surf B Biointerfaces 2019; 184:110520. [PMID: 31590052 DOI: 10.1016/j.colsurfb.2019.110520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 02/05/2023]
Abstract
Titanium (Ti) and its alloys have been frequently used in dental and orthopedic implants, but the undesired oxide layer easily formed on the surface tends to be the cause of implant failure for Ti-based implants. To address this problem, we herein prepared a phosphorylated Ti coating (TiP-Ti) with a micro/nano hierarchically structured topography on commercially pure Ti implants by a hydrothermal method to improve its osteointegration capacity. The surface morphology, chemical composition, and biological activity were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact-angle measurement, and protein adsorption assay. Osteointegration of TiP-Ti implants in rat tibia was investigated by biomechanical testing, micro-CT and histological analyses. We further explored the proposed mechanism which improves osteointegration of TiP-Ti implants by proliferation, adhesion, and differentiation assays of rat bone marrow mesenchymal stem cells (BMSCs). Our results demonstrated that the improved osteointegration mainly benefited from the better spread and adhesion of BMSCs on the micro/nano hierarchically structured TiP-Ti surfaces compared to hydroxyapatite coated Ti (HA-Ti), the positive control, and untreated Ti (untreated-Ti), the negative control. In conclusion, TiP-Ti surface is a promising candidate implant surface design to accelerate the osteointegration of Ti-based implants in biomedical applications.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Zhijun Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Dan Sun
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast BT7 1NN, UK
| | - Birol Ay
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E3, Canada
| | - Yubao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
15
|
Shi M, Xuan L, Zhang Y, Wang D, Ye F, Shi X, Li Y. Synergistic effects of thermal treatment and encapsulation of calcium phosphate nanoparticles on enhancing dimensional stability and osteogenic induction potential of free-standing PLGA electrospun membranes. Colloids Surf B Biointerfaces 2019; 183:110437. [PMID: 31445359 DOI: 10.1016/j.colsurfb.2019.110437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/27/2019] [Accepted: 08/10/2019] [Indexed: 12/27/2022]
Abstract
Limited dimensional stability and osteogenic induction property of poly (lactide-co-glycolide) (PLGA) electrospun membranes hampered their applications in bone tissue engineering. Thermal treatment of fixed PLGA membranes at 50 °C for 2 h and further immersion in 75% ethanol at free-standing state were adopted in order to obtain a high stability and well-maintained fiber morphology. After the process, free-standing membranes were stable during incubation in PBS at 37 °C, the volumetric ratio was 59.0%, fibers became curved, and the average diameter was 816 nm. For as-electrospun PLGA membranes, the volumetric ratio was only 35.3%, showing that thermal treatment was effective to improve the dimensional stability. The addition of calcium phosphate nanoparticles in P5-T-F further increased the volumetric ratio (64.0%) and significantly improved the mechanical properties. The mineralization capacity of PLGA membranes was enhanced because of thermal treatment. Hemolysis ratios of all samples were ∼2% indicating good hemocompatibility of PLGA electrospun membranes. Proliferation of adipose derived stem cells from rats (rADSCs) on treated PLGA membranes was significantly faster than that on untreated one, especially for sample P-T-F. In addition to thermal treatment, the addition of calcium phosphate nanoparticles showed synergistic effects on improving mineralization property and osteogenic differentiation of rADSCs. When compared with P-T-F, P5-T-F had 153.0% higher ALP activity and 518% higher calcium mineral deposition based on alizarin red assay. Thermal treatment along with encapsulation of calcium phosphate nanoparticles in PLGA electrospun membranes demonstrated a great prospect for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ming Shi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Liuyang Xuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yiling Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Dandan Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Feng Ye
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing PR China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
16
|
Li F, Zhao H, Yue Y, Yang Z, Zhang Y, Guo L. Dual-Phase Super-Strong and Elastic Ceramic. ACS NANO 2019; 13:4191-4198. [PMID: 30694049 DOI: 10.1021/acsnano.8b09195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ceramic materials exhibit very high stiffness and extraordinary strength, but they typically suffer from brittleness. Amorphization and size confinement are commonly used to reinforce materials. However, the inverse Hall-Petch effect and the shear-band softening effect usually limit further improvement of their performance under a critical size. With an optimum structure design, we demonstrate that dual-phase zirconia nanowires (DP-ZrO2 NWs) with nanocrystals embedded in an amorphous matrix as a strengthening phase can overcome these problems simultaneously. As a result of this structure, in situ tensile tests demonstrate that the mechanical properties have been enormously improved in a way that does not follow both the inverse Hall-Petch effect and the shear band softening effect. The elastic strain approaches ∼7%, and the ultimate strength is 3.52 GPa, accompanied by a high toughness of ∼151 MJ m-3, making the DP-ZrO2 NW composite the strongest and toughest ZrO2 ever achieved. The findings provide a way to improve the mechanical properties of ceramics in a controllable manner, which may serve as a pervasive approach to be broadly applied to a variety of materials.
Collapse
Affiliation(s)
- Fengshi Li
- School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Hewei Zhao
- School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Yonghai Yue
- School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Zhao Yang
- School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Youwei Zhang
- School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Lin Guo
- School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , Donghua University , Shanghai 201620 , P. R. China
| |
Collapse
|
17
|
Othman Z, Fernandes H, Groot AJ, Luider TM, Alcinesio A, Pereira DDM, Guttenplan APM, Yuan H, Habibovic P. The role of ENPP1/PC-1 in osteoinduction by calcium phosphate ceramics. Biomaterials 2019; 210:12-24. [PMID: 31048198 DOI: 10.1016/j.biomaterials.2019.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
In the past decade, calcium phosphate (CaP) ceramics have emerged as alternatives to autologous bone grafts for the treatment of large, critical-sized bone defects. In order to be effective in the regeneration of such defects, ceramics must show osteoinductive behaviour, defined as the ability to induce de novo heterotopic bone formation. While a set of osteoinductive CaP ceramics has been developed, the exact processes underlying osteoinduction, and the role of the physical and chemical properties of the ceramics, remain largely unknown. Previous studies have focused on the role of the transcriptome to shed light on the mechanism of osteoinduction at the mRNA level. To complement these studies, a proteomic analysis was performed to study the behaviour of hMSCs on osteoinductive and non-osteoinductive CaPs. The results of this analysis suggest that plasma cell glycoprotein 1 (PC-1), encoded by the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene, plays a key role in the process of osteoinduction by CaP ceramics. Validation experiments have confirmed that indeed, the mRNA expression of ENPP1 and the production of PC-1 are higher on osteoinductive than on non-osteoinductive CaP ceramics, a trend that was also observed for other osteogenic markers such as bone morphogenetic protein 2 (BMP2) and osteopontin (OPN), but not for alkaline phosphatase (ALP). Our results also showed that the expression of PC-1 is restricted to those cells which are in direct contact with the CaP ceramic surface, plausibly due to the localised depletion of calcium and inorganic phosphate ions from the supersaturated cell culture medium as CaP crystallises on the ceramic surface. Replicating the surface of the osteoinductive ceramic in polystyrene resulted in a significant decrease in ENPP1 expression, suggesting that surface structural properties alone are not sufficient to induce ENPP1 expression. Finally, knocking down ENPP1 expression in hMSCs resulted in increased BMP2 expression, both at the mRNA and protein level, suggesting that ENPP1 is a negative regulator of BMP-2 signalling. Taken together, this study shows, for the first time, that ENPP1/PC-1 plays an important role in CaP-induced osteogenic differentiation of hMSCs and thus possibly osteoinduction by CaP ceramics. Furthermore, we have identified a crucial role for the interfacial (chemical) events occurring on the CaP ceramic surface in the process of osteoinduction. This knowledge can contribute to the development of new bone graft substitutes, with improved osteoinductive potential.
Collapse
Affiliation(s)
- Ziryan Othman
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Hugo Fernandes
- Faculty of Medicine, University of Coimbra, Health Science Campus, Central Unit, Azinhaga de Santa Comba, 3000-354, Coimbra, Portugal
| | - Arjan J Groot
- Department of Radiation Oncology (MaastRO), GROW - School for Oncology & Developmental Biology, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology and Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Alessandro Alcinesio
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, OX1 3TA, Oxford, UK
| | - Daniel de Melo Pereira
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Alexander P M Guttenplan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Huipin Yuan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
18
|
Baptista D, Teixeira L, van Blitterswijk C, Giselbrecht S, Truckenmüller R. Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends Biotechnol 2019; 37:838-854. [PMID: 30885388 DOI: 10.1016/j.tibtech.2019.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
Abstract
In biological systems, form and function are inherently correlated. Despite this strong interdependence, the biological effect of curvature has been largely overlooked or underestimated, and consequently it has rarely been considered in the design of new cell-material interfaces. This review summarizes current understanding of the interplay between the curvature of a cell substrate and the related morphological and functional cellular response. In this context, we also discuss what is currently known about how, in the process of such a response, cells recognize curvature and accordingly reshape their membrane. Beyond this, we highlight state-of-the-art microtechnologies for engineering curved biomaterials at cell-scale, and describe aspects that impair or improve readouts of the pure effect of curvature on cells.
Collapse
Affiliation(s)
- Danielle Baptista
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Liliana Teixeira
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; These authors contributed equally to this work
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; These authors contributed equally to this work.
| |
Collapse
|
19
|
Zhang X, Yin X, Luo J, Zheng X, Wang H, Wang J, Xi Z, Liao X, Machuki JO, Guo K, Gao F. Novel Hierarchical Nitrogen-Doped Multiwalled Carbon Nanotubes/Cellulose/Nanohydroxyapatite Nanocomposite As an Osteoinductive Scaffold for Enhancing Bone Regeneration. ACS Biomater Sci Eng 2018; 5:294-307. [PMID: 33405875 DOI: 10.1021/acsbiomaterials.8b00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomaterials based on hybrid scaffolds have shown a high potential to promote osteointegration and bone regeneration. In this study, a novel nanocomposite scaffold was synthesized via a cross-linking/hydrothermal/freeze-drying method, resulting in layer-by-layer structures with functional and structural properties mimicking the natural bone. The hierarchical structures of the scaffold were reinforced with nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs), cellulose, and nanohydroxyapatite. The N-MWCNT/Cel/nHA scaffolds were characterized and evaluated in terms of structure, morphology, biocompatibility, cellular responses, and bone repair efficiency in vivo. The resulting scaffolds showed that incorporation of 1 wt % N-MWCNTs into the hybrid scaffold with micropores (∼5 μm) significantly improved its mechanical properties, although the surface morphology of the scaffold tended to be rough and porous. Importantly, the resulting scaffolds supported in vitro cellular attachment, proliferation, viability, and mineralization of bone mesenchymal stem cells (BMSCs). On the other hand, incorporation of N-MWCNTs into the scaffold induced preferential differentiation of BMSCs to osteogenic lineage accompanied by increased alkaline phosphatase activity and expression of key osteogenic genes. Furthermore, 12 weeks after implantation, the 1%N-MWCNT/Cel/nHA porous scaffolds successfully cicatrized a distal femoral condyle critical size defect in rabbit without obvious inflammatory responses, as indicated by the results of the Micro-CT and histological analyses. In vitro and in vivo experiments confirmed that the scaffolds not only improved the interface bonding with bone tissue but also accelerated the new bone formation and regeneration by up-regulating signaling molecules that are involved in cell proliferation and differentiation. These results indicated that the novel N-MWCNT/Cel/nHA scaffold is an efficient platform for osteogenesis research and bone regeneration medicine.
Collapse
Affiliation(s)
- Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Xianyong Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,College of Clinical Medical Science, Taishan Medical University, Taian 271000, Shangdong, China
| | - Jianjun Luo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Xin Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Huiying Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Zhongqian Xi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Kaijin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
20
|
Onat B, Ozcubukcu S, Banerjee S, Erel-Goktepe I. Osteoconductive layer-by-layer films of Poly(4-hydroxy-L-proline ester) (PHPE) and Tannic acid. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Leach JK, Whitehead J. Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2018; 4:1115-1127. [PMID: 30035212 PMCID: PMC6052883 DOI: 10.1021/acsbiomaterials.6b00741] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-based therapies are a promising alternative to grafts and organ transplantation for treating tissue loss or damage due to trauma, malfunction, or disease. Over the past two decades, mesenchymal stem cells (MSCs) have attracted much attention as a potential cell population for use in regenerative medicine. While the proliferative capacity and multilineage potential of MSCs provide an opportunity to generate clinically relevant numbers of transplantable cells, their use in tissue regenerative applications has met with relatively limited success to date apart from secreting paracrine-acting factors to modulate the defect microenvironment. Presently, there is significant effort to engineer the biophysical properties of biomaterials to direct MSC differentiation and further expand on the potential of MSCs in tissue engineering, regeneration, and repair. Biomaterials can dictate MSC differentiation by modulating features of the substrate including composition, mechanical properties, porosity, and topography. The purpose of this review is to highlight recent approaches for guiding MSC fate using biomaterials and provide a description of the underlying characteristics that promote differentiation toward a desired phenotype.
Collapse
Affiliation(s)
- J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Medical Center, Sacramento, C 95817
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| |
Collapse
|
22
|
Zarrintaj P, Bakhshandeh B, Rezaeian I, Heshmatian B, Ganjali MR. A Novel Electroactive Agarose-Aniline Pentamer Platform as a Potential Candidate for Neural Tissue Engineering. Sci Rep 2017; 7:17187. [PMID: 29215076 PMCID: PMC5719440 DOI: 10.1038/s41598-017-17486-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022] Open
Abstract
Neuronal disorder is an important health challenge due to inadequate natural regeneration, which has been responded by tissue engineering, particularly with conductive materials. A bifunctional electroactive scaffold having agarose biodegradable and aniline pentamer (AP) conductive parts was designed that exhibits appropriate cell attachment/compatibility, as detected by PC12 cell seeding. The developed carboxyl-capped aniline-pentamer improved agarose cell adhesion potential, also the conductivity of scaffold was in the order 10-5 S/cm reported for cell membrane. Electrochemical impedance spectroscopy was applied to plot the Nyquist graph and subsequent construction of the equivalent circuit model based on the neural model, exhibiting an appropriate cell signaling and an acceptable consistency between the components of the scaffold model with neural cell model. The ionic conductivity was also measured; exhibiting an enhanced ionic conductivity, but lower activation energy upon a temperature rise. Swelling behavior of the sample was measured and compared with pristine agarose; so that aniline oligomer due to its hydrophobic nature decreased water uptake. Dexamethasone release from the developed electroactive scaffold was assessed through voltage-responsive method. Proper voltage-dependent drug release could be rationally expected because of controllable action and elimination of chemically responsive materials. Altogether, these characteristics recommended the agarose/AP biopolymer for neural tissue engineering.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Iraj Rezaeian
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behnam Heshmatian
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Zhu Y, Zhang K, Zhao R, Ye X, Chen X, Xiao Z, Yang X, Zhu X, Zhang K, Fan Y, Zhang X. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs. Biomaterials 2017; 147:133-144. [DOI: 10.1016/j.biomaterials.2017.09.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 01/07/2023]
|
24
|
Barata D, Provaggi E, van Blitterswijk C, Habibovic P. Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactions. LAB ON A CHIP 2017; 17:4134-4147. [PMID: 29114689 DOI: 10.1039/c7lc00802c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microfluidic screening platforms offer new possibilities for performing in vitro cell-based assays with higher throughput and in a setting that has the potential to closely mimic the physiological microenvironment. Integrating functional biomaterials into such platforms is a promising approach to obtain a deeper insight into the interactions occurring at the cell-material interface. The success of such an approach is, however, largely dependent on the ability to miniaturize the biomaterials as well as on the choice of the assay used to study the cell-material interactions. In this work, we developed a microfluidic device, the main component of which is made of a widely used biocompatible polymer, polylactic acid (PLA). This device enabled cell culture under different fluidic regimes, including perfusion and diffusion. Through a combination of photolithography, two-photon polymerization and hot embossing, it was possible to microstructure the surface of the cell culture chamber of the device with highly defined geometrical features. Furthermore, using pyramids with different heights and wall microtopographies as an example, adhesion, morphology and distribution of human MG63 osteosarcoma cells were studied. The results showed that both the height of the topographical features and the microstructural properties of their walls affected cell spreading and distribution. This proof-of-concept study shows that the platform developed here is a useful tool for studying interactions between cells and clinically relevant biomaterials under controlled fluidic regimes.
Collapse
Affiliation(s)
- D Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | | | | | | |
Collapse
|
25
|
Zhang J, Dalbay MT, Luo X, Vrij E, Barbieri D, Moroni L, de Bruijn JD, van Blitterswijk CA, Chapple JP, Knight MM, Yuan H. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis. Acta Biomater 2017; 57:487-497. [PMID: 28456657 PMCID: PMC5489417 DOI: 10.1016/j.actbio.2017.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 12/26/2022]
Abstract
The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. STATEMENT OF SIGNIFICANCE The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation.
Collapse
|
26
|
Galván-Chacón VP, Habibovic P. Deconvoluting the Bioactivity of Calcium Phosphate-Based Bone Graft Substitutes: Strategies to Understand the Role of Individual Material Properties. Adv Healthc Mater 2017; 6. [PMID: 28544743 DOI: 10.1002/adhm.201601478] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP)-based ceramics are the most widely applied synthetic biomaterials for repair and regeneration of damaged and diseased bone. CaP bioactivity is regulated by a set of largely intertwined physico-chemical and structural properties, such as the surface microstructure, surface energy, porosity, chemical composition, crystallinity and stiffness. Unravelling the role of each individual property in the interaction between the biomaterial and the biological system is a prerequisite for evolving from a trial-and-error approach to a design-driven approach in the development of new functional biomaterials. This progress report critically reviews various strategies developed to decouple the roles of the individual material properties in the biological performance of CaP ceramics. It furthermore emphasizes on the importance of a comprehensive and adequate material characterization that is needed to enhance our knowledge of the property-function relationship of biomaterials used in bone regeneration, and in regenerative medicine in general.
Collapse
Affiliation(s)
| | - Pamela Habibovic
- MERLN Institute; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| |
Collapse
|
27
|
Shao XR, Lin SY, Peng Q, Shi SR, Li XL, Zhang T, Lin YF. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1809-1819. [PMID: 28259801 DOI: 10.1016/j.nano.2017.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 02/05/2023]
Abstract
Adipose-derived stem cells (ADSCs) are considered to be ideal stem cell sources for bone regeneration owing to their ability to differentiate into osteo-like cells. Therefore, they have attracted increasing attention in recent years. Tetrahedral DNA nanostructures (TDNs), a new type of DNA-based biomaterials, have shown great potential for biomedical applications. In the present work, we aimed to investigate the role played by TDNs in osteogenic differentiation and proliferation of ADSCs and tried to explore if the canonical Wnt signal pathway could be the vital biological mechanism driving these cellular responses. Upon exposure to TDNs, ADSCs proliferation and osteogenic differentiation were significantly enhanced, accompanied by the up-regulation of genes correlated with the Wnt/β-catenin pathway. In conclusion, our results indicate that TDNs are crucial regulators of the increase in osteogenic potential and ADSCs proliferation, and this noteworthy discovery could provide a promising novel approach toward ADSCs-based bone defect regeneration.
Collapse
Affiliation(s)
- Xiao-Ru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Yu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si-Rong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Long Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Sun L, Pereira D, Wang Q, Barata DB, Truckenmüller R, Li Z, Xu X, Habibovic P. Controlling Growth and Osteogenic Differentiation of Osteoblasts on Microgrooved Polystyrene Surfaces. PLoS One 2016; 11:e0161466. [PMID: 27571520 PMCID: PMC5003369 DOI: 10.1371/journal.pone.0161466] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/05/2016] [Indexed: 01/06/2023] Open
Abstract
Surface topography is increasingly being recognized as an important factor to control the response of cells and tissues to biomaterials. In the current study, the aim was to obtain deeper understanding of the effect of microgrooves on shape and orientation of osteoblast-like cells and to relate this effect to their proliferation and osteogenic differentiation. To this end, two microgrooved polystyrene (PS) substrates, differing in the width of the grooves (about 2 μm and 4 μm) and distance between individual grooves (about 6 μm and 11 μm, respectively) were fabricated using a combination of photolithography and hot embossing. MG-63 human osteosarcoma cells were cultured on these microgrooved surfaces, with unpatterned hot-embossed PS substrate as a control. Scanning electron- and fluorescence microscopy analyses showed that on patterned surfaces, the cells aligned along the microgrooves. The cells cultured on 4 μm-grooves / 11 μm-ridges surface showed a more pronounced alignment and a somewhat smaller cell area and cell perimeter as compared to cells cultured on surface with 2 μm-grooves / 6 μm-ridges or unpatterned PS. PrestoBlue analysis and quantification of DNA amounts suggested that microgrooves used in this experiment did not have a strong effect on cell metabolic activity or proliferation. However, cell differentiation towards the osteogenic lineage was significantly enhanced when MG-63 cells were cultured on the 2/6 substrate, as compared to the 4/11 substrate or unpatterned PS. This effect on osteogenic differentiation may be related to differences in cell spreading between the substrates.
Collapse
Affiliation(s)
- Lanying Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China
- Oral Implantology Center, Stomatology Hospital of Jinan, Jinan, Shandong Province, China
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | - Daniel Pereira
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Qibao Wang
- Oral Implantology Center, Stomatology Hospital of Jinan, Jinan, Shandong Province, China
| | - David Baião Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Roman Truckenmüller
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Zhaoyuan Li
- Oral Implantology Center, Stomatology Hospital of Jinan, Jinan, Shandong Province, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Limburg, The Netherlands
| |
Collapse
|