1
|
Lu Y, Cao Y, Guo X, Gao Y, Chen X, Zhang Z, Ge Z, Chu D. Notch-Targeted Therapeutic in Colorectal Cancer by Notch1 Attenuation Via Tumor Microenvironment-Responsive Cascade DNA Delivery. Adv Healthc Mater 2024; 13:e2400797. [PMID: 38726796 DOI: 10.1002/adhm.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Indexed: 06/04/2024]
Abstract
The Notch signaling is a key molecular pathway that regulates cell fate and development. Aberrant Notch signaling can lead to carcinogenesis and progression of malignant tumors. However, current therapies targeting Notch pathway lack specificity and induce high toxicity. In this report, a tumor microenvironment-responsive and injectable hydrogel is designed to load plasmid DNA complexes as a cascade gene delivery system to achieve precise Notch-targeted gene therapy of colorectal cancer (CRC). The hydrogels are prepared through cross-linking between phenylboric acid groups containing poly(oligo(ethylene glycol)methacrylate) (POEGMA) and epigallocatechin gallate (EGCG), used to load the complexes between plasmid DNA encoding short hairpin RNAs of Notch1 (shNotch1) and fluorinated polyamidoamine (PAMAM-F) (PAMAM-F/shNotch1). In response to low pH and H2O2 in tumor microenvironment, the hydrogel can be dissociated and release the complexes for precise delivery of shNotch1 into tumor cells and inhibit Notch1 activity to suppress malignant biological behaviors of CRC. In the subcutaneous tumor model of CRC, PAMAM-F/shNotch1-loaded hydrogels can accurately attenuate Notch1 activity and significantly inhibit tumor growth without affecting Notch signal in adjacent normal tissues. Therefore, this therapeutic system can precisely inhibit Notch1 signal in CRC with high responsiveness and low toxicity, providing a promising Notch-targeted gene therapeutic for human malignancy.
Collapse
Affiliation(s)
- Yan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yufei Cao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaowen Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yijie Gao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
2
|
Jogdeo CM, Siddhanta K, Das A, Ding L, Panja S, Kumari N, Oupický D. Beyond Lipids: Exploring Advances in Polymeric Gene Delivery in the Lipid Nanoparticles Era. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404608. [PMID: 38842816 PMCID: PMC11384239 DOI: 10.1002/adma.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The recent success of gene therapy during the COVID-19 pandemic has underscored the importance of effective and safe delivery systems. Complementing lipid-based delivery systems, polymers present a promising alternative for gene delivery. Significant advances have been made in the recent past, with multiple clinical trials progressing beyond phase I and several companies actively working on polymeric delivery systems which provides assurance that polymeric carriers can soon achieve clinical translation. The massive advantage of structural tunability and vast chemical space of polymers is being actively leveraged to mitigate shortcomings of traditional polycationic polymers and improve the translatability of delivery systems. Tailored polymeric approaches for diverse nucleic acids and for specific subcellular targets are now being designed to improve therapeutic efficacy. This review describes the recent advances in polymer design for improved gene delivery by polyplexes and covalent polymer-nucleic acid conjugates. The review also offers a brief note on novel computational techniques for improved polymer design. The review concludes with an overview of the current state of polymeric gene therapies in the clinic as well as future directions on their translation to the clinic.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ashish Das
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
3
|
Xin J, Lu X, Cao J, Wu W, Liu Q, Wang D, Zhou X, Ding D. Fluorinated Organic Polymers for Cancer Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404645. [PMID: 38678386 DOI: 10.1002/adma.202404645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/22/2024] [Indexed: 04/30/2024]
Abstract
In the realm of cancer therapy, the spotlight is on nanoscale pharmaceutical delivery systems, especially polymer-based nanoparticles, for their enhanced drug dissolution, extended presence in the bloodstream, and precision targeting achieved via surface engineering. Leveraging the amplified permeation and retention phenomenon, these systems concentrate therapeutic agents within tumor tissues. Nonetheless, the hurdles of systemic toxicity, biological barriers, and compatibility with living systems persist. Fluorinated polymers, distinguished by their chemical idiosyncrasies, are poised for extensive biomedical applications, notably in stabilizing drug metabolism, augmenting lipophilicity, and optimizing bioavailability. Material science heralds the advent of fluorinated polymers that, by integrating fluorine atoms, unveil a suite of drug delivery merits: the hydrophobic traits of fluorinated alkyl chains ward off lipid or protein disruption, the carbon-fluorine bond's stability extends the drug's lifecycle in the system, and a lower alkalinity coupled with a diminished ionic charge bolsters the drug's ability to traverse cellular membranes. This comprehensive review delves into the utilization of fluorinated polymers for oncological pharmacotherapy, elucidating their molecular architecture, synthetic pathways, and functional attributes, alongside an exploration of their empirical strengths and the quandaries they encounter in both experimental and clinical settings.
Collapse
Affiliation(s)
- Jingrui Xin
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Lu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Weihui Wu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Ma M, Zhang C, Zhong Z, Wang Y, He X, Zhu D, Qian Z, Yu B, Kang X. siRNA incorporated in slow-release injectable hydrogel continuously silences DDIT4 and regulates nucleus pulposus cell pyroptosis through the ROS/TXNIP/NLRP3 axis to alleviate intervertebral disc degeneration. Bone Joint Res 2024; 13:247-260. [PMID: 38771134 PMCID: PMC11107476 DOI: 10.1302/2046-3758.135.bjr-2023-0320.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Aims In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. Methods An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel's mechanism in IVDD. Results A correlation between DDIT4 expression levels and disc degeneration was shown with human nucleus pulposus and needle-punctured rat disc specimens. We confirmed that DDIT4 was responsible for activating the ROS-TXNIP-NLRP3 axis during oxidative stress-induced pyroptosis in rat nucleus pulposus in vitro. Mitochondria were damaged during oxidative stress, and DDIT4 contributed to mitochondrial damage and ROS production. In addition, siDDIT4@G5-P-HA hydrogels showed good delivery activity of siDDIT4 to NPCs. In vitro studies illustrated the potential of the siDDIT4@G5-P-HA hydrogel for alleviating IVDD in rats. Conclusion DDIT4 is a key player in mediating pyroptosis and IVDD in NPCs through the ROS-TXNIP-NLRP3 axis. Additionally, siDDIT4@G5-P-HA hydrogel has been found to relieve IVDD in rats. Our research offers an innovative treatment option for IVDD.
Collapse
Affiliation(s)
- Miao Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongjing Zhang
- Department of Sports Medicine, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, China
| | - Zeyuan Zhong
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yajun Wang
- Department of Oncology, Zhangye People’s Hospital Affiliated to Hexi University, Zhangye, China
| | - Xuegang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhi Qian
- Department of Joint and Sports Medicine, Institute of Orthopaedic Diseases, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Baoqing Yu
- Shanghai Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
5
|
Zou Y, Shen S, Karpus A, Sun H, Laurent R, Caminade AM, Shen M, Mignani S, Shi X, Majoral JP. Unsymmetrical Low-Generation Cationic Phosphorus Dendrimers as a Nonviral Vector to Deliver MicroRNA for Breast Cancer Therapy. Biomacromolecules 2024; 25:1171-1179. [PMID: 38181417 DOI: 10.1021/acs.biomac.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The development of nonviral dendritic polymers with a simple molecular backbone and great gene delivery efficiency to effectively tackle cancer remains a great challenge. Phosphorus dendrimers or dendrons are promising vectors due to their structural uniformity, rigid molecular backbones, and tunable surface functionalities. Here, we report the development of a new low-generation unsymmetrical cationic phosphorus dendrimer bearing 5 pyrrolidinium groups and one amino group as a nonviral gene delivery vector. The created AB5-type dendrimers with simple molecular backbone can compress microRNA-30d (miR-30d) to form polyplexes with desired hydrodynamic sizes and surface potentials and can effectively transfect miR-30d to cancer cells to suppress the glycolysis-associated SLC2A1 and HK1 expression, thus significantly inhibiting the migration and invasion of a murine breast cancer cell line in vitro and the corresponding subcutaneous tumor mouse model in vivo. Such unsymmetrical low-generation phosphorus dendrimers may be extended to deliver other genetic materials to tackle other diseases.
Collapse
Affiliation(s)
- Yu Zou
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, Cedex 4, France
- LCC-CNRS, Université de Toulouse CNRS, 31077 Toulouse, France
| | - Siyan Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, Cedex 4, France
- LCC-CNRS, Université de Toulouse CNRS, 31077 Toulouse, France
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Regis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, Cedex 4, France
- LCC-CNRS, Université de Toulouse CNRS, 31077 Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, Cedex 4, France
- LCC-CNRS, Université de Toulouse CNRS, 31077 Toulouse, France
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Medicament de Normandie (5CERMN), 14000 Caen, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, Cedex 4, France
- LCC-CNRS, Université de Toulouse CNRS, 31077 Toulouse, France
| |
Collapse
|
6
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Wang C, Pan C, Yong H, Wang F, Bo T, Zhao Y, Ma B, He W, Li M. Emerging non-viral vectors for gene delivery. J Nanobiotechnology 2023; 21:272. [PMID: 37592351 PMCID: PMC10433663 DOI: 10.1186/s12951-023-02044-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Gene therapy holds great promise for treating a multitude of inherited and acquired diseases by delivering functional genes, comprising DNA or RNA, into targeted cells or tissues to elicit manipulation of gene expression. However, the clinical implementation of gene therapy remains substantially impeded by the lack of safe and efficient gene delivery vehicles. This review comprehensively outlines the novel fastest-growing and efficient non-viral gene delivery vectors, which include liposomes and lipid nanoparticles (LNPs), highly branched poly(β-amino ester) (HPAE), single-chain cyclic polymer (SCKP), poly(amidoamine) (PAMAM) dendrimers, and polyethyleneimine (PEI). Particularly, we discuss the research progress, potential development directions, and remaining challenges. Additionally, we provide a comprehensive overview of the currently approved non-viral gene therapeutics, as well as ongoing clinical trials. With advances in biomedicine, molecular biology, materials science, non-viral gene vectors play an ever-expanding and noteworthy role in clinical gene therapy.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Chaolan Pan
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Feifei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Tao Bo
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
| | - Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei He
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
8
|
Li J, Wu Y, Xiang J, Wang H, Zhuang Q, Wei T, Cao Z, Gu Q, Liu Z, Peng R. Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 456:140930. [PMID: 36531858 PMCID: PMC9743697 DOI: 10.1016/j.cej.2022.140930] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Messenger RNA (mRNA) vaccines, while demonstrating great successes in the fight against COVID-19, have been extensively studied in other areas such as personalized cancer immunotherapy based on tumor neoantigens. In addition to the design of mRNA sequences and modifications, the delivery carriers are also critical in the development of mRNA vaccines. In this work, we synthesized fluoroalkane-grafted polyethylenimine (F-PEI) for mRNA delivery. Such F-PEI could promote intracellular delivery of mRNA and activate the Toll-like receptor 4 (TLR4)-mediated signaling pathway. The nanovaccine formed by self-assembly of F-PEI and the tumor antigen-encoding mRNA, without additional adjuvants, could induce the maturation of dendritic cells (DCs) and trigger efficient antigen presentation, thereby eliciting anti-tumor immune responses. Using the mRNA encoding the model antigen ovalbumin (mRNAOVA), our F-PEI-based mRNAOVA cancer vaccine could delay the growth of established B16-OVA melanoma. When combined with immune checkpoint blockade therapy, the F-PEI-based MC38 neoantigen mRNA cancer vaccine was able to suppress established MC38 colon cancer and prevent tumor reoccurrence. Our work presents a new tool for mRNA delivery, promising not only for personalized cancer vaccines but also for other mRNA-based immunotherapies.
Collapse
Affiliation(s)
- Junyan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Yuanyuan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Jian Xiang
- WuXi AppTec (Suzhou) Co., Ltd., 1336 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Ting Wei
- InnoBM Pharmaceuticals Co., Ltd., Suzhou, Jiangsu 215000, China
| | - Zhiqin Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Qingyang Gu
- WuXi AppTec (Suzhou) Co., Ltd., 1336 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| |
Collapse
|
9
|
Silver Nanoparticles Modified by Carbosilane Dendrons and PEG as Delivery Vectors of Small Interfering RNA. Int J Mol Sci 2023; 24:ijms24010840. [PMID: 36614277 PMCID: PMC9820844 DOI: 10.3390/ijms24010840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The fact that cancer is one of the leading causes of death requires researchers to create new systems of effective treatment for malignant tumors. One promising area is genetic therapy that uses small interfering RNA (siRNA). These molecules are capable of blocking mutant proteins in cells, but require specific systems that will deliver RNA to target cells and successfully release them into the cytoplasm. Dendronized and PEGylated silver nanoparticles as potential vectors for proapoptotic siRNA (siMCL-1) were used here. Using the methods of one-dimensional gel electrophoresis, the zeta potential, dynamic light scattering, and circular dichroism, stable siRNA and AgNP complexes were obtained. Data gathered using multicolor flow cytometry showed that AgNPs are able to deliver (up to 90%) siRNAs efficiently to some types of tumor cells, depending on the degree of PEGylation. Analysis of cell death showed that complexes of some AgNP variations with siMCL-1 lead to ~70% cell death in the populations that uptake these complexes due to apoptosis.
Collapse
|
10
|
Wang Z, Tang C, Huang M, Rong X, Lin H, Su R, Wang Y, Qi W. One-Step Synthesis of Peptide-Gold Nanoclusters with Tunable Fluorescence and Enhanced Gene Delivery Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14799-14807. [PMID: 36408767 DOI: 10.1021/acs.langmuir.2c02465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, peptide-gold nanoclusters with tunable fluorescence were prepared by a simple "one-pot" method, which were used for gene localization and delivery in vivo to achieve efficient intracellular colocalization, uptake, and transfection. The efficiency of pDNA transfection was up to 70.6%, and there was no obvious cytotoxicity. This study proves that the simple-composition and bio-friendly peptide-gold nanoclusters are promising gene delivery carriers and can provide a powerful theoretical and experimental basis for the application of peptide-metal nanocomplexes in gene delivery and other biomedicine fields.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chuanmei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Meimei Huang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Hanqi Lin
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
11
|
Abstract
INTRODUCTION Gene delivery vectors are a crucial determinant for gene therapeutic efficacy. Usually, it is necessary to use an excess of cationic vectors to achieve better transfection efficiency. However, it will cause severe cytotoxicity. In addition, cationic vectors are not resistant to serum, suffering from reduced transfection efficiency by forming large aggregates. Therefore, there is an urgent need to develop optimized gene delivery vectors. Recently, fluorination of vectors has been extensively applied to increase the gene delivery performance because of the unique properties of both hydrophobicity and lipophobicity, and chemical and biological inertness. AREAS COVERED This review will discuss the fluorophilic effects that impact gene delivery efficiency, and chemical modification approaches for fluorination. Next, recent advances and applications of fluorinated polymeric and lipidic vectors in gene therapy and gene editing are summarized. EXPERT OPINION Fluorinated vectors are a promising candidate for gene delivery. However, it still needs further studies to obtain pure and well-defined fluorinated polymers, guarantee the biosafety, and clarify the detailed mechanism. Apart from the improvements in gene delivery, exploiting other versatility of fluorinated vectors, such as oxygen-carrying ability, high affinity with fluorine-containing drugs, and imaging property upon introducing 19F, will further facilitate their applications in gene therapy.
Collapse
Affiliation(s)
- Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhan Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
12
|
Yu A, Tang S, Ding L, Foley J, Tang W, Jia H, Panja S, Holbert CE, Hang Y, Stewart TM, Smith LM, Sil D, Casero RA, Oupický D. Hyaluronate-coated perfluoroalkyl polyamine prodrugs as bioactive siRNA delivery systems for the treatment of peritoneal cancers. BIOMATERIALS ADVANCES 2022; 136:212755. [PMID: 35813988 PMCID: PMC9268001 DOI: 10.1016/j.bioadv.2022.212755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
RNA interference (RNAi) is an emerging therapeutic modality for cancer, which remains in critical need of effective delivery vectors due to the unfavorable biopharmaceutical properties of small RNAs. Polyamines are essential for functioning of mammalian cells. Dysregulated polyamine metabolism is found in many cancers and has been an attractive therapeutic target in combination therapies. Combination therapies based on drugs that affect polyamine metabolism and nucleic acids promise to enhance anticancer activity due to a cooperative effect on multiple oncogenic pathways. Here, we report bioactive polycationic prodrug (F-PaP) based on an anticancer polyamine analog bisethylnorspermine (BENSpm) modified with perfluoroalkyl moieties. Following encapsulation of siRNA, F-PaP/siRNA nanoparticles were coated with hyaluronic acid (HA) to form ternary nanoparticles HA@F-PaP/siRNA. The presence of perfluoroalkyl moieties and HA reduced cell membrane toxicity and improved stability of the particles with cooperatively enhanced siRNA delivery in pancreatic and colon cancer cell lines. We then tested a therapeutic hypothesis that combining BENSpm with siRNA silencing of polo-like kinase 1 (PLK1) would result in cooperative cancer cell killing. HA@F-PaP/siPLK1 induced polyamine catabolism and cell cycle arrest, leading to enhanced apoptosis in the tested cell lines. The HA-coated nanoparticles facilitated tumor accumulation and contributed to strong tumor inhibition and favorable modulation of the immune tumor microenvironment in orthotopic pancreatic cancer model. Combination anticancer therapy with polyamine prodrug-mediated delivery of siRNA. Hyaluronate coating of the siRNA nanoparticles facilitates selective accumulation in orthotopic pancreatic tumors. Perfluoroalkyl conjugation reduces toxicity and improves gene silencing effect. Nanoparticle treatment induces polyamine catabolism and cell cycle arrest leading to strong tumor inhibition and favorable modulation of immune tumor microenvironment.
Collapse
Affiliation(s)
- Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Jackson Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Huizhen Jia
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Cassandra E. Holbert
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha NE, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| |
Collapse
|
13
|
Lv J, Wang H, Rong G, Cheng Y. Fluorination Promotes the Cytosolic Delivery of Genes, Proteins, and Peptides. Acc Chem Res 2022; 55:722-733. [PMID: 35175741 DOI: 10.1021/acs.accounts.1c00766] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytosolic delivery of biomolecules such as genes, proteins, and peptides is of great importance for biotherapy but usually limited by multiple barriers during the process. Cell membrane with high hydrophobic character is one of the representative biological barriers for cytosolic delivery. The introduction of hydrophobic ligands such as aliphatic lipids onto materials or biomolecules could improve their membrane permeability. However, these ligands are lipophilic and tend to interact with the phospholipids in the membrane as well as serum proteins, which may hinder efficient intracellular delivery. To solve this issue, our research group proposed the use of fluorous ligands with both hydrophobicity and lipophobicity as ideal alternatives to aliphatic lipids to promote cytosolic delivery.In our first attempt, fluorous ligands were conjugated onto cationic polymers to increase their gene delivery efficacy. The fluorination dramatically increased the gene delivery performance at low polymer doses. In addition, the strategy greatly improved the serum tolerance of cationic polymers, which is critical for efficient gene delivery in vivo. Besides serum tolerance, mechanism studies revealed that fluorination increases multiple steps such as cellular uptake and endosomal escape. Fluorination also allowed the assembly of low-molecular-weight polymers and achieved highly efficient gene delivery with minimal material toxicity. The method showed robust efficiency for polymers, including linear polymers, branched polymers, dendrimers, bola amphiphilies, and dendronized polymers.Besides gene delivery, fluorinated polymers were also used for intracellular protein delivery via a coassembly strategy. For this purpose, two lead fluoropolymers were screened from a library of amphiphilic materials. The fluoropolymers are greatly superior to their nonfluorinated analogues conjugated with aliphatic lipids. The fluorous lipids are beneficial for polymer assembly and protein encapsulation, reduced protein denaturation, facilitated endocytosis, and decreased polymer toxicity compared to nonfluorinated lipids. The materials exhibited potent efficacy in therapeutic protein and peptide delivery to achieve cancer therapy and were able to fabricate a personalized nanovaccine for cancer immunotherapy. Finally, the fluorous lipids were directly conjugated to peptides via a disulfide bond for cytosolic peptide delivery. Fluorous lipids drive the assembly of cargo peptides into uniform nanoparticles with much improved proteolytic stability and promote their delivery into various types of cells. The delivery efficacy of this strategy is greatly superior to traditional techniques such as cell-penetrating peptides both in vitro and in vivo. Overall, the fluorination techniques provide efficient and promising strategies for the cytosolic delivery of biomolecules.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
14
|
Baoum AA. The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid 2022; 119-120:102619. [DOI: 10.1016/j.plasmid.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
|
15
|
Song T, Gao Y, Song M, Qian J, Zhang H, Zhou J, Ding Y. Fluoropolymers-mediated efficient biomacromolecule drug delivery. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Gong G, Tang X, Zhang J, Liang X, Yang J, Li Q. Phenylboronic Acid-Modified Polyamidoamine Mediated the Transfection of Polo-Like Kinase-1 siRNA to Achieve an Anti-Tumor Efficacy. Int J Nanomedicine 2021; 16:8037-8048. [PMID: 34934312 PMCID: PMC8680781 DOI: 10.2147/ijn.s329433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background The construction of tumor-targeting carriers with favorable transfection efficiency was of great significance to achieve the tumor gene therapy. The phenylboronic acid-modified polyamidoamine (namely PP) was employed as a carrier for the delivery of Polo-like kinase-1 siRNA (siPlk-1), inducing an obvious anti-tumor response. Materials and Methods The interaction between PP and siPlk-1 was evaluated by gel retardation assay. The transfection efficiency and tumor-targeting ability were analyzed by flow cytometry and confocal laser scanning microscopy, using hepatocarcinoma cell line HepG2 as a model. The anti-proliferation effect of PP/siPlk-1 and related mechanism were studied using the strategies of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis and cell cycle arrest. The anti-migration effect induced by PP/siPlk-1 delivery was assayed by wound healing and Transwell migration techniques. Finally, quantitative real-time PCR and Western blotting were performed to measure the expression level of Plk-1 and other key targets. Results The derivative PP could achieve the condensation of siPlk-1 into stable nanoparticles at nitrogen/phosphate groups ratio (N/P ratio) of >3.0, and it could facilitate the transfection of siPk-1 in a phenylboronic acid-dependent manner. The PP/siPlk-1 nanoparticles exhibited obvious anti-proliferation effect owing to the gene silence of Plk-1, which was identified to be associated with the cell apoptosis and cell cycle arrest at G2 phase. Meanwhile, PP/siPlk-1 transfection could efficiently suppress the migration and invasion of tumor cells. Conclusion The derivative PP has been demonstrated to be an ideal tumor-targeting carrier for the delivery of Plk-1 siRNA, exhibiting great potential in the gene therapy of malignant tumors.
Collapse
Affiliation(s)
- Gu Gong
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130031, People's Republic of China
| | - Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
17
|
Zhu F, Xu L, Li X, Li Z, Wang J, Chen H, Li X, Gao Y. Co-delivery of gefitinib and hematoporphyrin by aptamer-modified fluorinated dendrimer for hypoxia alleviation and enhanced synergistic chemo-photodynamic therapy of NSCLC. Eur J Pharm Sci 2021; 167:106004. [PMID: 34520834 DOI: 10.1016/j.ejps.2021.106004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023]
Abstract
Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs)-based molecular targeted therapy are proved to be effective in the treatment of non-small cell lung cancer (NSCLC) with EGFR mutation, its efficacy is limited by the acquired drug resistance. The combination of EGFR-TKIs with photodynamic therapy (PDT) has been explored to combat NSCLC with promising synergistic results. However, hypoxic tumor microenvironment is associated with the development of EGFR-TKIs resistance and severely limits the efficacy of PDT. Here, we synthesized an aptamer modified fluorinated dendrimer (APF) as a drug carrier and prepared nanocomplexes APFHG by encapsulation of gefitinib (Gef) and hematoporphyrin (Hp). APF has good oxygen-carrying capacity, high drug entrapment efficiency, and could release Gef and Hp in response to intracellular pH. APF can specifically recognize EGFR-positive NSCLC cells and effectively improve the tumor hypoxic microenvironment due to the targeting effect of aptamer and the good oxygen-carrying capacity of the fluorinated dendrimer. Under the laser irradiation, APFHG can significantly increase the production of the intracellular reactive oxygen species and produce a synergistic therapeutic effect in inhibition of cellular growth and induction of cell cycle arrest and apoptosis on both Gef-sensitive and Gef-resistant EGFR-mutant NSCLC cells through PDT/molecular targeted therapy. This work indicates that fluorinated dendrimer could be a potent drug delivery platform to overcome hypoxia-related resistance and the co-delivery of EGFR-TKI and photosensitizer by the fluorinated dendrimer could be a promising therapeutic approach for reversal of EGFR-TKIs resistance in EGFR mutation-positive NSCLC.
Collapse
Affiliation(s)
- Fangyin Zhu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Liang Xu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Jun Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Xiumei Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
18
|
Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021; 26:5976. [PMID: 34641519 PMCID: PMC8512881 DOI: 10.3390/molecules26195976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been intensively studied as a promising new strategy of prodrug delivery, with its main advantages being represented by an enhanced efficacy and a reduced off-target toxicity of the active drug. In recent years, numerous therapeutic systems based on GDEPT strategy have entered clinical trials. In order to deliver the desired gene at a specific site of action, this therapeutic approach uses vectors divided in two major categories, viral vectors and non-viral vectors, with the latter being represented by chemical delivery agents. There is considerable interest in the development of non-viral vectors due to their decreased immunogenicity, higher specificity, ease of synthesis and greater flexibility for subsequent modulations. Dendrimers used as delivery vehicles offer many advantages, such as: nanoscale size, precise molecular weight, increased solubility, high load capacity, high bioavailability and low immunogenicity. The aim of the present work was to provide a comprehensive overview of the recent advances regarding the use of dendrimers as non-viral carriers in the GDEPT therapy.
Collapse
Affiliation(s)
| | | | | | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences East China Normal University Shanghai 200241 China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
20
|
Wang S, Xing J, Xiong B, Han H, Hu M, Li Q. Fluoropolymer-Mediated Intracellular Delivery of miR-23b for the Osteocyte Differentiation in Osteoblasts. Macromol Biosci 2021; 21:e2100024. [PMID: 33713529 DOI: 10.1002/mabi.202100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Indexed: 11/06/2022]
Abstract
Emerging evidence suggests that microRNAs (miRNAs) play key roles in the regulation of multiple biological processes, including the differentiation of osteoblasts. Although miRNA-based gene therapy holds immense potential in the treatment of a variety of diseases, the intracellular delivery of miRNA remains challenging owing to the lack of efficient and safe gene carriers. In this study, a fluoropolymer (FP) is constructed through the modification of polyamidoamine (PAMAM) using heptafluorobutyric anhydride and then is used as a carrier for miR-23b transfection to induce osteocyte differentiation of osteoblasts. The derivative FP is found to facilitate miR-23b transfection due to its favorable endosomal escape from the "proton sponge" effect. Compared to PAMAM/miR-23b, the FP/miR-23b nanocomplex efficiently promotes the differentiation of osteoblasts and formation of calcified nodules, attributable to enhanced expression of various osteogenesis genes (runt-related transfection factor 2 [RUNX2], alkaline phosphatase [ALP], osteopontin [OPN], and osteocalcin [OCN]). Thus, FP-mediated miR-23b transfection may be used as an effective strategy to facilitate osteogenic differentiation.
Collapse
Affiliation(s)
- Sihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Boyu Xiong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
21
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
22
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
23
|
Miller MA, Sletten EM. Perfluorocarbons in Chemical Biology. Chembiochem 2020; 21:3451-3462. [PMID: 32628804 PMCID: PMC7736518 DOI: 10.1002/cbic.202000297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Indexed: 01/10/2023]
Abstract
Perfluorocarbons, saturated carbon chains in which all the hydrogen atoms are replaced with fluorine, form a separate phase from both organic and aqueous solutions. Though perfluorinated compounds are not found in living systems, they can be used to modify biomolecules to confer orthogonal behavior within natural systems, such as improved stability, engineered assembly, and cell-permeability. Perfluorinated groups also provide handles for purification, mass spectrometry, and 19 F NMR studies in complex environments. Herein, we describe how the unique properties of perfluorocarbons have been employed to understand and manipulate biological systems.
Collapse
Affiliation(s)
- Margeaux A Miller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| |
Collapse
|
24
|
Wang X, Rong G, Yan J, Pan D, Wang L, Xu Y, Yang M, Cheng Y. In Vivo Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45763-45771. [PMID: 32940028 DOI: 10.1021/acsami.0c11967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorinated polymers have attracted increasing attention in gene delivery and cytosolic protein delivery in recent years. In vivo tracking of fluorinated polymers will be of great importance to evaluate their biodistribution, clearance, and safety. However, tracking of polymeric carriers without changing their chemical structures remains a huge challenge. Herein, we reported a series of fluorinated poly-l-(lysine) (F-PLL) with high gene transfection efficiency and excellent biodegradation. Radionuclide 18F was radiolabeled on F-PLL by halogen replacement without chemical modification. The radiolabeling of F-PLL offers positron emission tomography (PET) imaging for in vivo tracking of the polymers. The biodistribution of F-PLL and the DNA complexes revealed by micro-PET imaging illustrated the rapid clearance of fluorinated polymers from liver and intestine after intravenous administration. The results demonstrated that the polymer F-PLL will not be accumulated in the liver and spleen when administrated as a gene carrier. This work presents a new strategy for in vivo tracking fluorinated polymers via PET imaging.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
25
|
Abstract
Polyethyleneimine (PEI) has been extensively investigated as an efficient carrier for nucleic acid delivery. Yet, it suffers from a high toxicity profile that hinders clinical translation. Fluorination has proven to be a valid approach to reduce the cytotoxicity of PEI and improve the in vitro siRNA delivery potency. Hydrophobicity and lipophobicity can be controllably introduced into the side chains of PEI. However, the effect of fluorination on siRNA delivery in vivo, particularly the biodistribution of siRNA polyplex nanoparticles with fluorinated PEIs, has not been extensively explored. Here, we introduce two series of fluorinated PEIs via amidation with ethyl trifluoroacetate and perfluorobutyryl chloride. Fluorination substantially improved the performance of PEI for siRNA delivery by reducing the cytotoxicity to MDA-MB-231 cells. Importantly, fluorinated PEI enabled the major accumulation of siRNA polyplex nanoparticles in the liver while non-fluorinated PEI delivered siRNA nanoparticles mainly to the lungs after intravenous administration to mice. It is envisioned that fluorination may be an important general strategy for lowering toxicity of cationic polymers, and that the fluorination-induced alteration of biodistribution may be applicable for improved delivery to different organs. Graphical abstract.
Collapse
|
26
|
Zhang JH, He X, Xiao YP, Zhang J, Wu XR, Yu XQ. Cationic Heteropolymers with Various Functional Groups as Efficient and Biocompatible Nonviral Gene Vectors. ACS APPLIED BIO MATERIALS 2020; 3:3526-3534. [DOI: 10.1021/acsabm.0c00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xi He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Ru Wu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
27
|
Wu P, Luo X, Wu H, Zhang Q, Wang K, Sun M, Oupicky D. Combined Hydrophobization of Polyethylenimine with Cholesterol and Perfluorobutyrate Improves siRNA Delivery. Bioconjug Chem 2020; 31:698-707. [PMID: 31967460 DOI: 10.1021/acs.bioconjchem.9b00834] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyethylenimine (PEI) is a promising delivery vector of nucleic acids, but cytotoxicity and only moderate transfection efficacy with small RNAs limit its applications. Here we hypothesized that hydrophobization of PEI by combined modification with perfluorinated moieties (F) and cholesterol (Ch) will help in addressing both the cytotoxicity and siRNA delivery efficacy. To test the hypothesis, we synthesized a series of copolymers (F-PEI-Ch) by modifying PEI by reaction with heptafluorobutyric anhydride and cholesteryl chloroformate. We investigated and compared the effect of the modifications on siRNA delivery in vitro and in vivo. We found that the F-PEI-Ch copolymers assembled into micellar structures and that the copolymer with the highest Ch content exhibited the best siRNA delivery performance, including lower cytotoxicity, enhanced cell uptake, improved endosomal escape, and the best siRNA silencing efficacy in vitro and in vivo when compared with control PEI, F-PEI, and PEI-Ch. Overall, hydrophobization of PEI with a combination of cholesterol and superhydrophobic perfluorinated moieties represents a promising approach to the design of siRNA delivery vectors with decreased toxicity and enhanced transfection efficacy.
Collapse
Affiliation(s)
- Pengkai Wu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.,Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xinping Luo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Wu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qingyan Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
28
|
Gao B, Wang X, Wang M, Ren XK, Guo J, Xia S, Zhang W, Feng Y. From single to a dual-gene delivery nanosystem: coordinated expression matters for boosting the neovascularization in vivo. Biomater Sci 2020; 8:2318-2328. [DOI: 10.1039/c9bm02000d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A dual-gene delivery system with coordinated expression function boosted the neovascularization.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Meiyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300309
- China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
29
|
In vitro siRNA delivery via diethylenetriamine- and tetraethylenepentamine-modified carboxyl group-terminated Poly(amido)amine generation 4.5 dendrimers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110245. [PMID: 31753357 DOI: 10.1016/j.msec.2019.110245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022]
Abstract
The recent discovery of small interfering RNAs (siRNAs) has opened new avenues for designing personalized treatment options for various diseases. However, the therapeutic application of siRNAs has been confronted with many challenges because of short half-life in circulation, poor membrane penetration, difficulty in escaping from endosomes, and insufficient release into the cytosol. To overcome these challenges, we designed a diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA)-modified polyamidoamine dendrimer generation 4.5 (PDG4.5), and characterized it using 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy (COSY), heteronuclear single-quantum correlation spectroscopy (HSQC), and Fourier transform infrared (FTIR) spectroscopy followed by conjugation with siRNA. The PDG4.5-DETA and PDG4.5-TEPA polyplexes exhibited spherical nanosize, ideal zeta potential, and effective siRNA binding ability, protected the siRNA from nuclease attack, and revealed less cytotoxicity of PDG4.5-DETA and PDG4.5-TEPA in HeLa cells. More importantly, the polyplexes also revealed good cellular internalization and facilitated translocation of the siRNA into the cytosol. Thus, PDG4.5-DETA and PDG4.5-TEPA can act as potential siRNA carriers in future medical and pharmaceutical applications.
Collapse
|
30
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
31
|
Saluja V, Mankoo A, Saraogi GK, Tambuwala MM, Mishra V. Smart dendrimers: Synergizing the targeting of anticancer bioactives. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 2019; 21:e3101. [PMID: 31170324 DOI: 10.1002/jgm.3101] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Micelles have demonstrated an excellent ability to deliver several different types of therapeutic agents, including chemotherapy drugs, proteins, small-interfering RNA and DNA, into tumor cells. Cationic micelles, comprising self-assemblies of amphiphilic cationic polymers, have exhibited tremendous promise with respect to the delivery of therapy genes and gene transfection. To date, research in the field has focused on achieving an enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the gene. This review focuses on the micelles as a nanosized carrier system for gene delivery, the system-related modifications for cytoplasm release, stability and biocompatibility, and clinic trials. In accordance with the development of synthetic chemistry and self-assembly technology, the structures and functionalities of micelles can be precisely controlled, and hence the synthetic micelles not only efficiently condense DNA, but also facilitate DNA endocytosis, endosomal escape, DNA uptake and nuclear transport, resulting in a comparable gene transfection of virus.
Collapse
Affiliation(s)
- Haili Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Longhai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
33
|
Lee GJ, Kim TI. Fluorination effect to intermediate molecular weight polyethylenimine for gene delivery systems. J Biomed Mater Res A 2019; 107:2468-2478. [PMID: 31276293 DOI: 10.1002/jbm.a.36753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023]
Abstract
Fluorinated intermediate molecular weight polyethylenimine (FP2ks) with various fluorination degrees was synthesized by conjugation with heptafluorobutyric anhydride and the fluorination effect for gene delivery systems was examined. FP2ks could condense pDNA, forming compact, positively charged, and nano-sized spherical particles. It was thought that their decreased electrostatic interaction with pDNA would be compensated by hydrophobic interaction. The cytotoxicity of FP2ks was increased with the increase of fluorination degree, probably due to the cellular membrane disruption via hydrophobic interaction with FP2ks. The transfection efficiency of highly fluorinated FP2ks was not severely affected in serum condition, assuming their good serum-compatibility. Discrepancy between their higher cellular uptake efficiency and lower transfection efficiency than PEI25k was thought to arise from the formation of compact polyplexes followed by the decreased dissociation of pDNA. It was also suggested that multiple energy-dependent cellular uptake mechanisms and endosome buffering would mediate the transfection of FP2ks.
Collapse
Affiliation(s)
- Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Tae-Il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
34
|
Xing H, Lu M, Yang T, Liu H, Sun Y, Zhao X, Xu H, Yang L, Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomater 2019; 86:15-40. [PMID: 30590184 DOI: 10.1016/j.actbio.2018.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
Abstract
In recent years, substantial advances have been achieved in the design and synthesis of nonviral gene vectors. However, lack of effective and biocompatible vectors still remains a major challenge that hinders their application in clinical settings. In the past decade, there has been a rapid expansion of cationic antimicrobial polymers, due to their potent, rapid, and broad-spectrum biocidal activity against resistant microbes, and biocompatible features. Given that antimicrobial polymers share common features with nonviral gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. Building off these observations, we provide here an overview of the structure-function relationships of polymers for both antimicrobial applications and gene delivery by elaborating some key structural parameters, including functional groups, charge density, hydrophobic/hydrophilic balance, MW, and macromolecular architectures. By borrowing a leaf from antimicrobial agents, great advancement in the development of newer nonviral gene vectors with high transfection efficiency and biocompatibility will be more promising. STATEMENT OF SIGNIFICANCE: The development of gene delivery is still in the preclinical stage for the lack of effective and biocompatible vectors. Given that antimicrobial polymers share common features with gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. In this review, we systematically summarized the structure-function relationships of antimicrobial polymers and gene vectors, with which the design of more advanced nonviral gene vectors is anticipated to be further boosted in the future.
Collapse
Affiliation(s)
- Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
35
|
Wang M, Xue H, Gao M, Wang Q, Yang H. Synthetic fluorinated polyamides as efficient gene vectors. J Biomed Mater Res B Appl Biomater 2019; 107:2132-2139. [DOI: 10.1002/jbm.b.34307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Mian Wang
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| | - Han Xue
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| | - Min Gao
- Lianyungang Technical College; Chenguang Road 2, Lianyungang 222000 China
| | - Qingli Wang
- Jinyuan Mineral Co. Ltd; Lingbao 472500 China
| | - Haijie Yang
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| |
Collapse
|
36
|
Xiao YP, Zhang J, Liu YH, Zhang JH, Yu QY, Huang Z, Yu XQ. Low molecular weight PEI-based fluorinated polymers for efficient gene delivery. Eur J Med Chem 2018; 162:602-611. [PMID: 30472606 DOI: 10.1016/j.ejmech.2018.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 02/02/2023]
Abstract
Fluorinated biomaterials have been reported to have promising features as non-viral gene carriers. In this study, a series of fluorinated polymeric gene carriers were synthesized via Michael addition from low molecular weight polyethyleneimine (PEI) and fluorobenzoic acids (FBAs)-based linking compounds with different numbers of fluorine atoms. The structure-activity relationship (SAR) of these materials was systematically investigated. SAR studies showed that fluorine could screen the positive charge of these polymers. However, this shielding effect of fluorine would endow fluorinated polymers with good balance between DNA condensation and release. In vitro transfection results suggested that these fluorinated polymers could mediate efficient gene delivery. Flow cytometry and confocal microscopy studies demonstrated that more efficient cell uptake could be achieved by fluorinated materials with more fluorine atoms. Cytotoxicity assays showed that these fluorinated materials exhibited very low cytotoxicity even at high mass ratios. This study demonstrates that FBA-based fluorinated biopolymers have the potential for practical application.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
37
|
Oztuna A, Nazir H. Pentafluoropropionic Anhydride Functionalized PAMAM Dendrimer as miRNA Delivery Reagent. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.463855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
38
|
Lv J, He B, Yu J, Wang Y, Wang C, Zhang S, Wang H, Hu J, Zhang Q, Cheng Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials 2018; 182:167-175. [DOI: 10.1016/j.biomaterials.2018.08.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 01/31/2023]
|
39
|
The fluorination effect of fluoroamphiphiles in cytosolic protein delivery. Nat Commun 2018; 9:1377. [PMID: 29636457 PMCID: PMC5893556 DOI: 10.1038/s41467-018-03779-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/08/2018] [Indexed: 11/18/2022] Open
Abstract
Direct delivery of proteins into cells avoids many drawbacks of gene delivery, and thus has emerging applications in biotherapy. However, it remains a challenging task owing to limited charges and relatively large size of proteins. Here, we report an efficient protein delivery system via the co-assembly of fluoroamphiphiles and proteins into nanoparticles. Fluorous substituents on the amphiphiles play essential roles in the formation of uniform nanoparticles, avoiding protein denaturation, efficient endocytosis, and maintaining low cytotoxicity. Structure-activity relationship studies reveal that longer fluorous chain length and higher fluorination degree contribute to more efficient protein delivery, but excess fluorophilicity on the polymer leads to the pre-assembly of fluoroamphiphiles into stable vesicles, and thus failed protein encapsulation and cytosolic delivery. This study highlights the advantage of fluoroamphiphiles over other existing strategies for intracellular protein delivery. Proteins can serve as means of medical treatment, but their efficient delivery to cells is difficult. Here, the authors present a type of polymers, fluoroamphiphiles, acting as chemical chaperones that can facilitate the import of proteins into the inner compartment, i.e. cytosol, of cells.
Collapse
|
40
|
Tan E, Lv J, Hu J, Shen W, Wang H, Cheng Y. Statistical versus block fluoropolymers in gene delivery. J Mater Chem B 2018; 6:7230-7238. [DOI: 10.1039/c8tb01470a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A statistical fluorocopolymer shows dramatically higher transfection efficiency in gene delivery than a block one.
Collapse
Affiliation(s)
- Echuan Tan
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Jingjing Hu
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Wanwan Shen
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
41
|
Han H, Chen W, Yang J, Zhang J, Li Q, Yang Y. 2-Amino-6-chloropurine-modified polyamidoamine-mediated p53 gene transfection to achieve anti-tumor efficacy. NEW J CHEM 2018. [DOI: 10.1039/c8nj01870g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modification of 2-amino-6-chloropurine on polyamidoamine was performed to synthesize a derivative, AP-PAMAM, which was then employed as a carrier for p53 gene delivery to achieve anti-tumor efficacy.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
42
|
Şologan M, Boccalon M, Bidoggia S, Gentilini C, Pasquato L, Pengo P. Self-sorting in mixed fluorinated/hydrogenated assemblies. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1386307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Maria Şologan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Mariangela Boccalon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Silvia Bidoggia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Cristina Gentilini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Lucia Pasquato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
43
|
Fabrication of Low-Generation Dendrimers into Nanostructures for Efficient and Nontoxic Gene Delivery. Top Curr Chem (Cham) 2017; 375:62. [DOI: 10.1007/s41061-017-0151-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/18/2017] [Indexed: 01/12/2023]
|
44
|
Figueroa E, Bugga P, Asthana V, Chen AL, Stephen Yan J, Evans ER, Drezek RA. A mechanistic investigation exploring the differential transfection efficiencies between the easy-to-transfect SK-BR3 and difficult-to-transfect CT26 cell lines. J Nanobiotechnology 2017; 15:36. [PMID: 28464829 PMCID: PMC5414217 DOI: 10.1186/s12951-017-0271-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Gold–polyamidoamine (AuPAMAM) has previously been shown to successfully transfect cells with high efficiency. However, we have observed that certain cell types are more amenable to Au–PAMAM transfection than others. Here we utilized two representative cell lines—a “difficult to transfect” CT26 cell line and an “easy to transfect” SK-BR3 cell line—and attempted to determine the underlying mechanism for differential transfection in both cell types. Using a commonly established poly-cationic polymer similar to PAMAM (polyethyleneimine, or PEI), we additionally sought to quantify the relative transfection efficiencies of each vector in CT26 and SK-BR3 cells, in the hopes of elucidating any mechanistic differences that may exist between the two transfection vectors. Results A comparative time course analysis of green fluorescent protein reporter-gene expression and DNA uptake was conducted to quantitatively compare PEI- and AuPAMAM-mediated transfection in CT26 and SK-BR3, while flow cytometry and confocal microscopy were used to determine the contribution of cellular uptake, endosomal escape, and cytoplasmic transport to the overall gene delivery process. Results from the time course analysis and flow cytometry studies revealed that initial complex uptake and cytoplasmic trafficking to the nucleus are likely the two main factors limiting CT26 transfectability. Conclusions The cell type-dependent uptake and intracellular transport mechanisms impacting gene therapy remain largely unexplored and present a major hurdle in the application-specific design and efficiency of gene delivery vectors. This systematic investigation offers insights into the intracellular mechanistic processes that may account for cell-to-cell differences, as well as vector-to-vector differences, in gene transfectability. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0271-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Pallavi Bugga
- Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | | | - Allen L Chen
- Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - J Stephen Yan
- Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | | | | |
Collapse
|
45
|
Abstract
Gene therapy is an important therapeutic strategy in the treatment of a wide range of genetic disorders. Polymers forming stable complexes with nucleic acids (NAs) are non-viral gene carriers. The self-assembly of polymers and nucleic acids is typically a complex process that involves many types of interaction at different scales. Electrostatic interaction, hydrophobic interaction, and hydrogen bonds are three important and prevalent interactions in the polymer/nucleic acid system. Electrostatic interactions and hydrogen bonds are the main driving forces for the condensation of nucleic acids, while hydrophobic interactions play a significant role in the cellular uptake and endosomal escape of polymer-nucleic acid complexes. To design high-efficiency polymer candidates for the DNA and siRNA delivery, it is necessary to have a detailed understanding of the interactions between them in solution. In this chapter, we survey the roles of the three important interactions between polymers and nucleic acids during the formation of polyplexes and summarize recent understandings of the linear polyelectrolyte-NA interactions and dendrimer-NA interactions. We also review recent progress optimizing the gene delivery system by tuning these interactions.
Collapse
|
46
|
Xiao YP, Zhang J, Liu YH, Huang Z, Wang B, Zhang YM, Yu XQ. Cross-linked polymers with fluorinated bridges for efficient gene delivery. J Mater Chem B 2017; 5:8542-8553. [DOI: 10.1039/c7tb02158e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new strategy for the construction of fluorinated cationic polymers for gene delivery was introduced.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|