1
|
Gao W, Bigham A, Ghomi M, Zarrabi A, Rabiee N, Saeb MR, Nuri Ertas Y, Goel A, Sharifi E, Ashrafizadeh M, Sethi G, Tambuwala MM, Wang Y, Ghaffarlou M, Jiao T. Micelle-engineered nanoplatforms for precision oncology. CHEMICAL ENGINEERING JOURNAL 2024; 495:153438. [DOI: 10.1016/j.cej.2024.153438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Shi F, Gong M, Adu-Frimpong M, Jiang X, Wang X, Hua Q, Li T, Li J, Yu J, Toreniyazov E, Cao X, Wang Q, Xu X. Isolation, Purification of Phenolic Glycoside 1 from Moringa oleifera Seeds and Formulation of Its Liposome Delivery System. AAPS PharmSciTech 2024; 25:196. [PMID: 39174848 DOI: 10.1208/s12249-024-02911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
In this study, N, N '-bis {4- [(α-L- rhamnosyloxy) benzyl]} thiourea (PG-1), a phenolic glycoside compound was purified from Moringa seed. The PG-1 has attracted extensive attention due to its anti-cancer, antioxidant, anti-inflammatory and hypoglycemic properties. However, some of its physicochemical properties such as oral bioavailability has not been studied. Herein, a highly purified PG-1 was extracted and incorporated in multiple layered liposomes (PG-1-L) to avoid its burst release and enhance oral bioavailability. After appropriate characterization, it was discovered that the obtained PG-1-L was stable, homogeneous and well dispersed with the average particle size being 89.26 ± 0.23 nm. Importantly, the in vitro release and in vivo oral bioavailability of PG-1-L were significantly improved compared with PG-1. In addition, MTT results showed that compared with the free PG-1, PG-1-L displayed obvious inhibitory effect on the HepG2 cells, while the inhibitory effect on healthy non-malignant 3T6 and LO-2 cells was not significant, indicating that PG-1-L had high safety. In conclusion, PG-1-L can be used as a promising delivery system and an ideal novel approach to improve the oral bioavailability and anticancer activity of PG-1.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingjie Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), UK 0215-5321, Navrongo, Ghana
| | - Xia Jiang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qinyang Hua
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingyuan Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Lim SH, Wong TW, Tay WX. Overcoming colloidal nanoparticle aggregation in biological milieu for cancer therapeutic delivery: Perspectives of materials and particle design. Adv Colloid Interface Sci 2024; 325:103094. [PMID: 38359673 DOI: 10.1016/j.cis.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
Nanoparticles as cancer therapeutic carrier fail in clinical translation due to complex biological environments in vivo consisting of electrolytes and proteins which render nanoparticle aggregation and unable to reach action site. This review identifies the desirable characteristics of nanoparticles and their constituent materials that prevent aggregation from site of administration (oral, lung, injection) to target site. Oral nanoparticles should ideally be 75-100 nm whereas the size of pulmonary nanoparticles minimally affects their aggregation. Nanoparticles generally should carry excess negative surface charges particularly in fasting state and exert steric hindrance through surface decoration with citrate, anionic surfactants and large polymeric chains (polyethylene glycol and polyvinylpyrrolidone) to prevent aggregation. Anionic as well as cationic nanoparticles are both predisposed to protein corona formation as a function of biological protein isoelectric points. Their nanoparticulate surface composition as such should confer hydrophilicity or steric hindrance to evade protein corona formation or its formation should translate into steric hindrance or surface negative charges to prevent further aggregation. Unexpectedly, smaller and cationic nanoparticles are less prone to aggregation at cancer cell interface favoring endocytosis whereas aggregation is essential to enable nanoparticles retention and subsequent cancer cell uptake in tumor microenvironment. Present studies are largely conducted in vitro with simplified simulated biological media. Future aggregation assessment of nanoparticles in biological fluids that mimic that of patients is imperative to address conflicting materials and designs required as a function of body sites in order to realize the future clinical benefits.
Collapse
Affiliation(s)
- Shi Huan Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Republic of Singapore 117543
| | - Tin Wui Wong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Republic of Singapore 117543; Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; UM-UiTM Excipient Development Research Unit (EXDEU), Faculty of Pharmacy, Universiti Malaya, Lembah Pantai 50603, Kuala Lumpur, Malaysia.
| | - Wei Xian Tay
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Republic of Singapore 117543
| |
Collapse
|
4
|
Ma M, Liu X, Ma C, Guo R, Zhang X, Zhang Z, Ren X. Enhancing the antitumor immunosurveillance of PD-L1-targeted gene therapy for metastatic melanoma using cationized Panax Notoginseng polysaccharide. Int J Biol Macromol 2023; 226:1309-1318. [PMID: 36442564 DOI: 10.1016/j.ijbiomac.2022.11.242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Improved curative effects with reduced toxicity has always been the ultimate goal of gene delivery vectors for tumor immunotherapy. Panax notoginseng polysaccharide (PNP), a natural plant-derived macromolecule, not only has antitumor immune activity but also has the typical structural characteristics useful for gene delivery. In this work, positively charged polyethyleneimine (PEI) was directly grafted to the backbone of PNP to induced its charge reversal and generate a functional gene vector (PNP-PEI). Moreover, a short hairpin RNA targeting the programmed death-ligand 1 (PD-L1) was loaded into PNP-PEI to generate a potentially therapeutic nanoparticle (PNP-PEI/shPD-L1). In vitro and in vivo experiments demonstrated that PNP-PEI could efficiently carry the therapeutic shPD-L1 into tumor cells and that PNP-PEI/shPD-L1 could significantly inhibit the expression of PD-L1 and growth of B16-F10 cells. Noteworthily, treatment with PNP-PEI reversed the phenotype of macrophages from M2 to M1 subtype and promoted dendritic cell maturation, which encouraged the host immunity and enhanced the therapeutic antitumor effects. In summary, this study describes a PNP-based gene delivery vector and highlights the beneficial immunopotentiating therapeutic outcomes of PNP-PEI for tumor immunotherapy.
Collapse
Affiliation(s)
- Mengya Ma
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaobin Liu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chaoqun Ma
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ruyue Guo
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xueling Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenzhong Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xueling Ren
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
5
|
Feyzizadeh M, Barfar A, Nouri Z, Sarfraz M, Zakeri-Milani P, Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: lessons for drug discovery. Expert Opin Drug Discov 2022; 17:1013-1027. [PMID: 35996765 DOI: 10.1080/17460441.2022.2112666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The argument around cancer therapy is an old one. Using chemotherapeutic drugs, as one of the most effective strategies in treatment of malignancies, is restricted by various issues that progress during therapy and avoid achieving clinical endpoints. Multidrug resistance (MDR), frequently mediated by ATP-binding cassette (ABC) transporters, is one of the most recognized obstacles in the success of pharmacological anticancer approaches. These transporters efflux diverse drugs to extracellular environment, causing MDR and responsiveness of tumor cells to chemotherapy diminishes. AREAS COVERED Several strategies have been used to overcome MDR phenomenon. Succession in this field requires complete knowledge about features and mechanism of ABC transporters. In this review, conventional synthetic and natural inhibitors are discussed first and then novel approaches including RNA, monoclonal antibodies, nanobiotechnology, and structural modification techniques are represented. EXPERT OPINION With increasing frequency of MDR in cancer cells, it is essential to develop new drugs to inhibit MDR. Using knowledge acquired about ABC transporter's structure, rational design of inhibitors is possible. Also, some herbal products have shown to be potential lead compounds in drug discovery for reversal of MDR.
Collapse
Affiliation(s)
- Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Barfar
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
6
|
Tumor-associated macrophage membrane-camouflaged pH-responsive polymeric micelles for combined cancer chemotherapy-sensitized immunotherapy. Int J Pharm 2022; 624:121911. [PMID: 35700870 DOI: 10.1016/j.ijpharm.2022.121911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
The low immunogenicity and tumor immunosuppressive microenvironment (TIM) are two major obstacles for cancer immunotherapy. Synergistically immunogenic cell death induction and tumor-associated macrophages depletion could perfectly overcome this limitation. Herein, a tumor-associated macrophage (TAMs) membrane-camouflaged pH-responsive doxorubicin (DOX) loaded hyaluronic acid (HA)-g-poly (histidine) polymeric micelles (DHP@M2) was fabricated for the first time. DHP@M2 could effectively accumulated into tumor regions via TAMs membrane mediated immune camouflage. In acidic tumor microenvironment, particle size of DHP was enlarged due to decrease hydrophobic interaction of inner core, which caused a "membrane escape effect" to expose inner HA residue. Together high expression of α4β1 integrin, DHP@M2 could reach CD44/VCAM-1 dual-targetability to facilitate intracellular DOX accumulation for efficient ICD induction. Meanwhile, TAMs membrane could absorb colony stimulating factor 1(CSF1) through high expression of its receptor (CSF1R) on TAMs membrane to deplete TAMs in tumor tissues and relieved TIM. This strategy could efficiently induce cytotoxic T lymphocyte (CTLs) infiltration for antitumor immune response and inhibit tumor progression in 4T1 tumor bearing Balb/c mice. Therefore, DHP@M2 is suitable for cancer chemotherapy-sensitized immunotherapy.
Collapse
|
7
|
Lu R, Zhou Y, Ma J, Wang Y, Miao X. Strategies and Mechanism in Reversing Intestinal Drug Efflux in Oral Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14061131. [PMID: 35745704 PMCID: PMC9228857 DOI: 10.3390/pharmaceutics14061131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Efflux transporters distributed at the apical side of human intestinal epithelial cells actively transport drugs from the enterocytes to the intestinal lumen, which could lead to extremely poor absorption of drugs by oral administration. Typical intestinal efflux transporters involved in oral drug absorption process mainly include P-glycoprotein (P-gp), multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP). Drug efflux is one of the most important factors resulting in poor absorption of oral drugs. Caco-2 monolayer and everted gut sac are sued to accurately measure drug efflux in vitro. To reverse intestinal drug efflux and improve absorption of oral drugs, a great deal of functional amphiphilic excipients and inhibitors with the function of suppressing efflux transporters activity are generalized in this review. In addition, different strategies of reducing intestinal drugs efflux such as silencing transporters and the application of excipients and inhibitors are introduced. Ultimately, various nano-formulations of improving oral drug absorption by inhibiting intestinal drug efflux are discussed. In conclusion, this review has significant reference for overcoming intestinal drug efflux and improving oral drug absorption.
Collapse
Affiliation(s)
- Rong Lu
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yun Zhou
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Jinqian Ma
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Yuchen Wang
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
- Correspondence:
| |
Collapse
|
8
|
Zhang J, Sun X, Zhao X, Liu L, Cheng X, Yang C, Hu H, Qiao M, Chen D, Zhao X. Watson-Crick Base Pairing-Inspired Laser/GSH Activatable miRNA-Coordination Polymer Nanoplexes for Combined Cancer Chemo-Immuno-Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20762-20777. [PMID: 35476413 DOI: 10.1021/acsami.2c03523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tumor immunosuppressive microenvironment (TIM) greatly hindered the efficacy of cancer immunotherapy. Overexpressed indoleamine 2,3-dioxygenase-1 (IDO1) in tumor tissues plays a vital role in TIM generation, and downregulation of IDO1 expression may reverse TIM. Inspired by the Watson-Crick base-pairing rule, a versatile noncationic miRNA vector (miDAC@PDA) is developed for cancer immunotherapy. Doxorubicin (DOX), adenosine triphosphate (ATP), and copper ions (Cu2+) are coassembled into coordination polymer nanoparticles (DAC) and bind miRNA via the hydrogen bond interaction (miDAC) between adenine residues (ATP) and uracil residues (miRNA). Polydopamine (PDA) is deposited onto the surface of miDAC for photothermal therapy. miDAC@PDA can efficiently accumulate into tumor tissues for cellular uptake. Under laser irradiation and high intracellular GSH levels, the PDA shell of miDAC@PDA can dissociate from miDAC for miRNA release due to local hyperthermia. Cu2+-mediated GSH consumption and intracellular ATP release can amplify the DOX-based immunogenic cell death (ICD) cascade, together with miR-448-mediated IDO1 inhibition, and these versatile nanoplexes will not only restrain primary tumor growth but also display a remarkable abscopal effect on distant tumors. Collectively, our study provides a unique strategy for intracellular gene delivery and an inspirational approach for multimechanism cancer management.
Collapse
Affiliation(s)
- Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiaoyan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiufeng Zhao
- Department of Oncology, Affiliated Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, P. R. China
| | - Lin Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xin Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Xinling Road, No. 22, Shantou 515041, P. R. China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
9
|
Zou L, Zhang Z, Feng J, Ding W, Li Y, Liang D, Xie T, Li F, Li Y, Chen J, Yang X, Tang L, Ding W. Case ReportPaclitaxel-loaded TPGS 2k/Gelatin-grafted Cyclodextrin/Hyaluronic acid-grafted Cyclodextrin nanoparticles for oral bioavailability and targeting enhancement. J Pharm Sci 2022; 111:1776-1784. [PMID: 35341722 DOI: 10.1016/j.xphs.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 01/20/2023]
Abstract
The clinical applications of paclitaxel (PTX), a natural compound with broad-spectrum antitumor effects, have been markedly limited owing to its poor oral bioavailability and lack of targeting ability. Recently, several drug carriers, such as TPGS2k, gelatin (Gel), cyclodextrin (CD), and hyaluronic acid (HA), have been identified as promising enhancers of drug efficacy. Therefore, Gel-grafted CD (GEL-CD) and HA-grafted CD (HA-CD) were synthesized via grafting, and PTX-loaded TPGS2k/GEL-CD/HA-CD nanoparticles (TGHC-PTX-NPs) were successfully prepared using the ultrasonic crushing method. The mean particles size, polydispersity index, and Zeta potential of TGHC-PTX-NPs were 253.57 ± 2.64 nm, 0.13 ± 0.03, and 0.087 ± 0.005 mV, respectively. TGHC-PTX-NPs with an encapsulation efficiency of 61.77 ± 0.47% and a loading capacity of 6.86 ± 0.32% appeared round and uniformly dispersed based on transmission electron microscopy. In vitro release data revealed that TGHC-PTX-NPs had good sustained-release properties. Further, TGHC-PTX-NPs had increased the targeted uptake by HeLa cells as HA can specifically bind to the CD44 receptor at the cell surface, and its intestinal absorption is related to caveolin-mediated endocytosis. The pharmacokinetic results indicated that TGHC-PTX-NPs significantly enhanced the absorption of PTX in vivo compared to the PTX suspension, with a relative bioavailability of 227.21%. Such findings indicate the potential of TGHC-PTX-NPs for numerous clinical applications.
Collapse
Affiliation(s)
- Linghui Zou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongbin Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; South China Branch of National Engineering Research Center for Manufacturing Technology of Traditional Chinese Medicine Solid Preparation, Nanning, China
| | - Wenyou Ding
- Basic Courses Department of Wuhan Donghu University
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University
| | - Dan Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Tanfang Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuyang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinqing Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Tang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wenya Ding
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; College of Veterinary Medicine, Northeast Agricultural University; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
10
|
Du J, Zong L, Li M, Yu K, Qiao Y, Yuan Q, Pu X. Two-Pronged Anti-Tumor Therapy by a New Polymer-Paclitaxel Conjugate Micelle with an Anti-Multidrug Resistance Effect. Int J Nanomedicine 2022; 17:1323-1341. [PMID: 35345783 PMCID: PMC8957348 DOI: 10.2147/ijn.s348598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cancerous tumors are still a major disease that threatens human life, with tumor multidrug resistance (MDR) being one of the main reasons for the failure of chemotherapy. Thus, reversing tumor MDR has become a research focus of medical scientists. Methods Here, a reduction-sensitive polymer prodrug micelle, mPEG-DCA-SS-PTX (PDSP), was manufactured with a new polymer inhibitor of drug resistance as a carrier to overcome MDR and improve the anti-tumor effect of PTX. Results The PDSP micelles display good stability, double-responsive drug release, and excellent biocompatibility. The PDSP micelles reduced the cytotoxicity of PTX to normal HL-7702 cells and enhanced that to SMMC-7721 and MCF-7 cells in vitro. Improved sensitivity of A549/ADR to PDSP was also observed in vitro. Furthermore, in vivo experiments show reduced systemic toxicity and enhanced therapeutic efficacy of PTX to H22 subcutaneous tumor-bearing mice. Conclusion This work proves that the reduction-sensitive polymer prodrug micelles carried by the new polymer inhibitor can be used as an alternative delivery system to target tumors and reverse MDR for paclitaxel and other tumor-resistant drugs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Lanlan Zong
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Mengmeng Li
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Keke Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yonghui Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Qi Yuan
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
11
|
Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm 2021; 608:121094. [PMID: 34534631 DOI: 10.1016/j.ijpharm.2021.121094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023]
Abstract
The treatment effect of chemotherapeutics is often impeded by nonspecific biodistribution and limited biocompatibility. Polymeric core-shell nanocarriers (PCS NCs) composed of a polymer core and at least one shell have been widely applied for cancer therapy and have shown great potential in selectively delivering chemotherapeutic drugs to tumor sites. These PCS NCs can effectively ameliorate the delivery efficiency and therapeutic index of anticarcinogens by prolonging drug residence in the bloodstream, enhancing tumor tissue drug penetration, facilitating cellular drug uptake, controlling the spatiotemporal release of payloads, or codelivering two or more bioactive agents. This review summarizes recently published literature on using PCS NCs to transport chemotherapeutic drugs with poor aqueous solubility and discusses their design principles, structural features, functional properties, and potential limitations.
Collapse
|
12
|
Correlation between the composition of PLA-based folate targeted micelles and release of phosphonate derivative of betulin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces 2021; 205:111914. [PMID: 34130211 DOI: 10.1016/j.colsurfb.2021.111914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Currently, multidrug resistance (MDR) is one of the major reasons for failure in clinical cancer chemotherapy. Overexpression of the ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which significantly increases the efflux of anticancer drugs from tumor cells, enhances MDR. In the past few decades, four generations of P-gp inhibitors have appeared. However, they are limited in clinical application due to their severe toxic side effects. As a P-gp inhibitor and carrier for loading chemotherapy agents, TPGS has received increasing attention due to its advantages and unique properties of reversing MDR. TPGS is an amphipathic agent that increases the solubility of most chemotherapy drugs and decreases severe side effects. In addition, TPGS is an excellent carrier with P-gp-inhibiting ability. In this review, we summarize the latest articles on TPGS-based nanodelivery systems to prevent MDR.
Collapse
|
14
|
Li X, Zhang W, Lin J, Wu H, Yao Y, Zhang J, Yang C. T cell membrane cloaking tumor microenvironment-responsive nanoparticles with a smart "membrane escape mechanism" for enhanced immune-chemotherapy of melanoma. Biomater Sci 2021; 9:3453-3464. [PMID: 33949434 DOI: 10.1039/d1bm00331c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of combination immune-chemotherapy makes up for the limitation of monotherapy and achieves superior antitumor activity against cancer. However, combinational therapy is always restricted by poor tumor targeted drug delivery efficacy. Herein, novel T cell membrane cloaking tumor microenvironment-responsive nanoparticles (PBA modified T cell membrane cloaking hyaluronic acid (HA)-disulfide bond-vitamin E succinate/curcumin, shortened as RCM@T) were developed. T cell membrane cloaking not only serves as a protection shell for sufficient drug delivery but also acts as a programmed cell death-1(PD-1) "antibody" to selectively bind the PD-L1 of tumor cells. When RCM@T is intravenously administrated into the blood stream, it accumulates at tumor sites and responds to an acidic pH to achieve a "membrane escape effect" and expose the HA residues of RCM for tumor targeted drug delivery. RCM accumulates in the cytoplasm via CD44 receptor mediated endocytosis and intracellularly releases antitumor drug in the intracellular redox microenvironment for tumor chemotherapy. T cell membrane debris targets the PD-L1of tumor cells for tumor immunotherapy, which not only directly kills tumor cells, but also improves the CD8+ T cell level and facilitates effector cytokine release. Taken together, the as-constructed RCM@T creates a new way for the rational design of a drug delivery system via the combination of stimuli-responsive drug release, chemotherapeutical agent delivery and cell membrane based immune checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Xiaofang Li
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Wen Zhang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Jing Lin
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Hao Wu
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Yucen Yao
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Jiayi Zhang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Chunrong Yang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| |
Collapse
|
15
|
Cao L, Zhou Y, Li X, Lin S, Tan Z, Guan F. Integrating transcriptomics, proteomics, glycomics and glycoproteomics to characterize paclitaxel resistance in breast cancer cells. J Proteomics 2021; 243:104266. [PMID: 34000456 DOI: 10.1016/j.jprot.2021.104266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a major factor driving breast cancer (BC) relapse and the high rates of cancer-related deaths. Aberrant levels of glycans are closely correlated with chemoresistance. The essential functions of glycans in chemoresistance is not systematically studied. In this study, an integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics was applied to explore the dysregulation of glycogenes, glycan structures and glycoproteins in chemoresistance of breast cancer cells. In paclitaxel (PTX) resistant MCF7 cells, 19 differentially expressed N-glycan-related proteins were identified, of which MGAT4A was the most significantly down-regulated, consistent with decrease in MGAT4A expression at mRNA level in PTX treated BC cells. Glycomic analysis consistently revealed suppressed levels of multi-antennary branching structures using MALDI-TOF/TOF-MS and lectin microarray. Several target glycoproteins bearing suppressed levels of multi-antennary branching structures were identified, and ERK signaling pathway was strongly suppressed in PTX resistant MCF7 cells. Our findings demonstrated the aberrant levels of multi-antennary branching structures and their target glycoproteins on PTX resistance. Systematically integrative multi-omic analysis is expected to facilitate the discovery of the aberrant glycosyltransferases, N-glycosylation and glycoproteins in tumor progression and chemoresistance. SIGNIFICANCE: An integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics is crucial to understand the association between glycans and chemoresistance in BC. In this multi-omic analysis, we identified unique glycan-related protein, glycan and glycoprotein signatures defining PTX chemoresistance in BC. This study might provide valuable information to understand molecular mechanisms underlying chemoresistance in BC.
Collapse
Affiliation(s)
- Lin Cao
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Yue Zhou
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China; The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an 710069, PR China
| | - Shuai Lin
- Department of Oncology, The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zengqi Tan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Feng Guan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
16
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Emerging nanotaxanes for cancer therapy. Biomaterials 2021; 272:120790. [PMID: 33836293 DOI: 10.1016/j.biomaterials.2021.120790] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
The clinical application of taxane (including paclitaxel, docetaxel, and cabazitaxel)-based formulations is significantly impeded by their off-target distribution, unsatisfactory release, and acquired resistance/metastasis. Recent decades have witnessed a dramatic progress in the development of high-efficiency, low-toxicity nanotaxanes via the use of novel biomaterials and nanoparticulate drug delivery systems (nano-DDSs). Thus, in this review, the achievements of nanotaxanes-targeted delivery and stimuli-responsive nano-DDSs-in preclinical or clinical trials have been outlined. Then, emerging nanotherapeutics against tumor resistance and metastasis have been overviewed, with a particular emphasis on synergistic therapy strategies (e.g., combination with surgery, chemotherapy, radiotherapy, biotherapy, immunotherapy, gas therapy, phototherapy, and multitherapy). Finally, the latest oral nanotaxanes have been briefly discussed.
Collapse
|
18
|
Ding Y, Ma Y, Du C, Wang C, Chen T, Wang Y, Wang J, Yao Y, Dong CM. NO-releasing polypeptide nanocomposites reverse cancer multidrug resistance via triple therapies. Acta Biomater 2021; 123:335-345. [PMID: 33476826 DOI: 10.1016/j.actbio.2021.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Multidrug resistance (MDR) induced by the overexpression of P-glycoprotein (P-gp) transporters mainly leads to chemotherapy (CT) failure. Herein, a NIR/pH dual-sensitive charge-reversal polypeptide nanocomposite (PDA-PLC) was developed for co-delivering a nitric oxide (NO) donor and doxorubicin (DOX). Under near-infrared (NIR) irradiation, the released high-concentration of NO gas inhibited the P-gp expression to sensitize the chemotherapeutic medicine DOX and assisted photothermal therapy (PTT) to eradicate cancer cells without skin scarring. Further, the distinctive charge-reversal capacity of PDA-PLC significantly facilitated cellular uptake in the tumor acidic microenvironment (pH 6.8) and enhanced its stability in the physiological environment (pH 7.4). This DOX-loading polypeptide nanocomposite (PDA-PLC/DOX) provides an effective strategy for the PTT-NO-CT triple-combination therapy to overcome MDR STATEMENT OF SIGNIFICANCE: Multidrug resistance (MDR) has been considered to be the paramount factor of chemotherapy (CT) failure in cancer. In this work, an NIR/pH dual-sensitive charge-reversal polypeptide nanomedicine (PDA-PLC/DOX) was developed to overcome MDR through the triple combination therapy of photothermal therapy (PTT), NO gas therapy, and CT. The distinctive charge-reversal capacity of PDA-PLC/DOX significantly facilitated cellular uptake in the tumor acidic microenvironment (pH 6.8) and enhanced its stability in the physiological environment (pH 7.4), while the NIR trigger-released NO gas greatly inhibited the expression of P-gp and synergistically enhanced PTT and CT efficacy. This polypeptide nanocomposite PDA-PLC/DOX provides an effective strategy of using the PTT-NO-CT triple combination therapy with charge-reversal property to completely eradicate the MCF-7/ADR tumor.
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| | - Yuxuan Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chenwei Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
19
|
Zhou C, Dong X, Song C, Cui S, Chen T, Zhang D, Zhao X, Yang C. Rational Design of Hyaluronic Acid-Based Copolymer-Mixed Micelle in Combination PD-L1 Immune Checkpoint Blockade for Enhanced Chemo-Immunotherapy of Melanoma. Front Bioeng Biotechnol 2021; 9:653417. [PMID: 33777920 PMCID: PMC7987940 DOI: 10.3389/fbioe.2021.653417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 01/10/2023] Open
Abstract
The application of combinational therapy breaks the limitation of monotherapy and achieves better clinical benefit for tumor therapy. Herein, a hyaluronic acid/Pluronic F68-based copolymer-mixed micelle was constructed for targeted delivery of chemotherapeutical agent docetaxel (PHDM) in combination with programmed cell death ligand-1(PD-L1) antibody. When PHDM+anti-PDL1 was injected into the blood system, PHDM could accumulate into tumor sites and target tumor cells via CD44-mediated endocytosis and possess tumor chemotherapy. While anti-PDL1 could target PD-L1 protein expressed on surface of tumor cells to the immune checkpoint blockade characteristic for tumor immunotherapy. This strategy could not only directly kill tumor cells but also improve CD8+ T cell level and facilitate effector cytokines release. In conclusion, the rational-designed PHDM+anti-PDL1 therapy strategy creates a new way for tumor immune-chemotherapy.
Collapse
Affiliation(s)
- Chaopei Zhou
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Xiuxiu Dong
- College Pharmacy, Jiamusi University, Jiamusi, China
| | | | - Shuang Cui
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Tiantian Chen
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Daji Zhang
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunrong Yang
- College Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
20
|
Chen R, Wang Z, Wu S, Kuang X, Wang X, Yan G, Tang R. Chemosensitizing micelles self-assembled from amphiphilic TPGS-indomethacin twin drug for significantly synergetic multidrug resistance reversal. J Biomater Appl 2020; 35:994-1004. [PMID: 33283586 DOI: 10.1177/0885328220975177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vitamin E d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) and indomethacin (IDM) can reverse multidrug resistance (MDR) via inhibiting P-glycoprotein (P-gp) and multidrug resistance associated protein 1 (MRP1) respectively, but their drawbacks in physicochemical properties limit their clinical application. To overcome these defects and enhance MDR reversal, the amphiphilic TPGS-IDM twin drug was successfully synthesized via esterification, and could self-assemble into free and paclitaxel-loaded (PTX-loaded) micelles. The micelles exhibited lower CMC values (5.2 × 10-5 mg/mL), long-term stability in PBS (pH 7.4) for 7 days and SDS solution (5 mg/mL) for 3 days, and effective drug release at esterase/pH 5.0. Moreover, the micelles could down-regulate ATP levels and promote ROS production in MCF-7/ADR via the mitochondrial impairment, therefore achieving MDR reversal and cell apoptosis. Additionally, the PTX-loaded micelles could significantly inhibit the cell proliferation and promote apoptosis for MCF-7/ADR via the synergistic chemosensitizing effect of TPGS and IDM, and synergistic cytotoxic effect of TPGS and PTX. Thus, the chemosensitizing micelles self-assembled from amphiphilic TPGS-indomethacin twin drug have the great potentials for reversing MDR in clinical cancer therapy.
Collapse
Affiliation(s)
- Ran Chen
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Zhexiang Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Shuo Wu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Xingyu Kuang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Xiu Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| |
Collapse
|
21
|
Chen S, Song Z, Feng R. Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel. Anticancer Agents Med Chem 2020; 20:2169-2189. [PMID: 32682385 DOI: 10.2174/1871520620666200719001038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Background:
Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic
effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse
pharmacokinetic property limit its clinical application.
Objective:
To review the recent progress on the PTX delivery systems.
Methods:
In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly
includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or
further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic
property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent
progress on the nano-drug delivery system for PTX since 2011.
Results:
The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic
property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its
activities against cancer are also comparable or high when compared with the commercial formulation.
Conclusion:
Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping
or enhancing its activity and improving its pharmacokinetic property.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| |
Collapse
|
22
|
Zhou H, Qi Z, Xue X, Wang C. Novel pH-Sensitive Urushiol-Loaded Polymeric Micelles for Enhanced Anticancer Activity. Int J Nanomedicine 2020; 15:3851-3868. [PMID: 32764919 PMCID: PMC7359855 DOI: 10.2147/ijn.s250564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of this study was to develop a means of improving the bioavailability and anticancer activity of urushiol by developing an urushiol-loaded novel tumor-targeted micelle delivery system based on amphiphilic block copolymer poly(ethylene glycol)-b-poly-(β-amino ester) (mPEG-PBAE). Materials and Methods We synthesized four different mPEG-PBAE copolymers using mPEG-NH2 with different molecular weights or hydrophobicity levels. Of these, we selected the mPEG5000-PBAE-C12 polymer and used it to develop an optimized means of preparing urushiol-loaded micelles. Response surface methodology was used to optimize this formulation process. The micellar properties, including particle size, pH sensitivity, drug release dynamics, and critical micelle concentrations, were characterized. We further used the MCF-7 human breast cancer cell line to explore the cytotoxicity of these micelles in vitro and assessed their pharmacokinetics, tissue distribution, and antitumor activity in vivo. Results The resulting micelles had a mean particle size of 160.1 nm, a DL value of 23.45%, and an EE value of 80.68%. These micelles were found to release their contents in a pH-sensitive manner in vitro, with drug release being significantly accelerated at pH 5.0 (98.74% in 72 h) without any associated burst release. We found that urushiol-loaded micelles were significantly better at inducing MCF-7 cell cytotoxicity compared with free urushiol, with an IC50 of 1.21 mg/L. When these micelles were administered to tumor model animals in vivo, pharmacokinetic analysis revealed that the total AUC and MRT of these micelles were 2.28- and 2.53-fold higher than that of free urushiol, respectively. Tissue distribution analyses further revealed these micelles to mediate significantly enhanced tumor urushiol accumulation. Conclusion The pH-responsive urushiol-loaded micelles described in this study may be ideally suited for clinical use for the treatment of breast cancer.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - Xingying Xue
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, People's Republic of China
| |
Collapse
|
23
|
Li Y, Xu X. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance. J Control Release 2020; 323:483-501. [DOI: 10.1016/j.jconrel.2020.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023]
|
24
|
Guan Y, Wang LY, Wang B, Ding MH, Bao YL, Tan SW. Recent Advances of D-α-tocopherol Polyethylene Glycol 1000 Succinate Based Stimuli-responsive Nanomedicine for Cancer Treatment. Curr Med Sci 2020; 40:218-231. [PMID: 32337683 DOI: 10.1007/s11596-020-2185-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/07/2020] [Indexed: 01/13/2023]
Abstract
D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA. It's widely applied as a multifunctional drug carrier for nanomedicine. The advantages of TPGS include P-glycoprotein (P-gp) inhibition, penetration promotion, apoptosis induction via mitochondrial-associated apoptotic pathways, multidrug resistant (MDR) reversion, metastasis inhibition and so on. TPGS-based drug delivery systems which are responding to external stimulus can combine the inhibitory functions of TPGS towards P-gp with the environmentally responsive controlled release property and thus exerts a synergistic anti-cancer effect, through increased intracellular drug concentration in tumors cells and well-controlled drug release behavior. In this review, TPGS-based nano-sized delivery systems responsive to different stimuli were summarized and discussed, including pH-responsive, redoxresponsive and multi-responsive systems in various formulations. The achievements, mechanisms and different characteristics of TPGS-based stimuli-responsive drug-delivery systems in tumor therapy were also outlined.
Collapse
Affiliation(s)
- Yang Guan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin-Yan Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bo Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mei-Hong Ding
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu-Ling Bao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Song-Wei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Khonkarn R, Daowtak K, Okonogi S. Chemotherapeutic Efficacy Enhancement in P-gp-Overexpressing Cancer Cells by Flavonoid-Loaded Polymeric Micelles. AAPS PharmSciTech 2020; 21:121. [PMID: 32337630 DOI: 10.1208/s12249-020-01657-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
Multidrug resistance is the major problem in cancer treatment nowadays. Compounds from plants are the new targets to solve this problem. Quercetin (QCT), quercetrin (QTR), and rutin (RUT) are potential anticancer flavonoids but their poor water solubility leads to less efficacy. In this study, the polymeric micelles of benzoylated methoxy-poly (ethylene glycol)-b-oligo(ε-caprolactone) or mPEG-b-OCL-Bz loading with the flavonoids were prepared to solve these problems. The flavonoid-loaded micelles showed an average size of 13-20 nm and maximum loading capacity of 35% (w/w). The release of QCT (21%, 3 h) was lower than that of QTR (51%, 3 h) and RUT (58%, 3 h). QCT (free and micelle forms) exhibited significantly higher cytotoxicity against P-glycoprotein-overexpressing leukemia (K562/ADR) cells than QTR and RUT (p < 0.05). The results demonstrated that QCT-loaded micelles effectively reversed cytotoxicity of both doxorubicin (multidrug resistant reversing (δ) values up to 0.71) and daunorubicin (δ values up to 0.74) on K562/ADR cells. It was found that QCT-loaded micelles as well as empty polymeric micelles inhibited P-gp efflux of tetrahydropyranyl Adriamycin. Besides, mitochondrial membrane potential was decreased by QCT (in its free form and micellar formation). Our results suggested that the combination effects of polymeric micelles (inhibiting P-gp efflux) and QCT (interfering mitochondrial membrane potential) might be critical factors contributing to the reversing multidrug resistance of K562/ADR cells by QCT-loaded micelles. We concluded that QCT-loaded mPEG-b-OCL-Bz micelles are the attractive systems for overcoming multidrug-resistant cancer cells.
Collapse
|
26
|
Yang Y, Li Y, Chen K, Zhang L, Qiao S, Tan G, Chen F, Pan W. Dual Receptor-Targeted and Redox-Sensitive Polymeric Micelles Self-Assembled from a Folic Acid-Hyaluronic Acid-SS-Vitamin E Succinate Polymer for Precise Cancer Therapy. Int J Nanomedicine 2020; 15:2885-2902. [PMID: 32425522 PMCID: PMC7188338 DOI: 10.2147/ijn.s249205] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Poor site-specific delivery and insufficient intracellular drug release in tumors are inherent disadvantages to successful chemotherapy. In this study, an extraordinary polymeric micelle nanoplatform was designed for the efficient delivery of paclitaxel (PTX) by combining dual receptor-mediated active targeting and stimuli response to intracellular reduction potential. Methods The dual-targeted redox-sensitive polymer, folic acid-hyaluronic acid-SS-vitamin E succinate (FHSV), was synthesized via an amidation reaction and characterized by 1H-NMR. Then, PTX-loaded FHSV micelles (PTX/FHSV) were prepared by a dialysis method. The physiochemical properties of the micelles were explored. Moreover, in vitro cytological experiments and in vivo animal studies were carried out to evaluate the antitumor efficacy of polymeric micelles. Results The PTX/FHSV micelles exhibited a uniform, near-spherical morphology (148.8 ± 1.4 nm) and a high drug loading capacity (11.28% ± 0.25). Triggered by the high concentration of glutathione, PTX/FHSV micelles could quickly release their loaded drug into the release medium. The in vitro cytological evaluations showed that, compared with Taxol or single receptor-targeted micelles, FHSV micelles yielded higher cellular uptake by the dual receptor-mediated endocytosis pathway, thus leading to significantly superior cytotoxicity and apoptosis in tumor cells but less cytotoxicity in normal cells. More importantly, in the in vivo antitumor experiments, PTX/FHSV micelles exhibited enhanced tumor accumulation and produced remarkable tumor growth inhibition with minimal systemic toxicity. Conclusion Our results suggest that this well-designed FHSV polymer has promising potential for use as a vehicle of chemotherapeutic drugs for precise cancer therapy.
Collapse
Affiliation(s)
- Yue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yunjian Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Kai Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Sen Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guoxin Tan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fen Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China.,Zhejiang Jingxin Pharmaceutical Co., Ltd, Zhejiang 312500, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
27
|
Liu S, Li R, Qian J, Sun J, Li G, Shen J, Xie Y. Combination Therapy of Doxorubicin and Quercetin on Multidrug-Resistant Breast Cancer and Their Sequential Delivery by Reduction-Sensitive Hyaluronic Acid-Based Conjugate/d-α-Tocopheryl Poly(ethylene glycol) 1000 Succinate Mixed Micelles. Mol Pharm 2020; 17:1415-1427. [PMID: 32159961 DOI: 10.1021/acs.molpharmaceut.0c00138] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The therapeutic efficacy of chemotherapy in many types of hematological malignancies and solid tumors is dramatically hindered by multidrug resistance (MDR). This work presents a combination strategy of pretreatment of MDA-MB-231/MDR1 cells with quercetin (QU) followed by doxorubicin (DOX) to overcome MDR, which can be delivered by mixed micelles composed of the reduction-sensitive hyaluronic acid-based conjugate and d-α-tocopheryl poly(ethylene glycol) 1000 succinate. The combination strategy can enhance the cytotoxicity of DOX on MDA-MB-231/MDR1 cells by increasing intracellular DOX accumulation and facilitating DOX-induced apoptosis. The probable MDR reversal mechanisms are that the pretreatment cells with QU-loaded mixed micelles downregulate P-glycoprotein expression to decrease DOX efflux as well as initiate mitochondria-dependent apoptotic pathways to accelerate DOX-induced apoptosis. In addition, this combination strategy can not only potentiate in vivo tumor-targeting efficiency but also enhance the antitumor effect in MDA-MB-231/MDR1-bearing nude mice without toxicity or side effects. This research suggests that the co-administration of natural compounds and chemotherapeutic drugs could be an effective strategy to overcome tumor MDR, which deserves further exploration.
Collapse
Affiliation(s)
- Shuo Liu
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Rui Li
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jin Qian
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jiabin Sun
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
28
|
Shi M, Zhang J, Huang Z, Chen Y, Pan S, Hu H, Qiao M, Chen D, Zhao X. Stimuli-responsive release and efficient siRNA delivery in non-small cell lung cancer by a poly(l-histidine)-based multifunctional nanoplatform. J Mater Chem B 2020; 8:1616-1628. [PMID: 32010914 DOI: 10.1039/c9tb02764e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Small interfering RNA (siRNA) has extensive potential for the treatment of non-small cell lung cancer (NSCLC). While both cationic lipids and polymers have demonstrated promise to facilitate siRNA encapsulation, they can also hamper cytosolic siRNA release and induce severe cytotoxicity. To address these issues, a unique polymer hybrid nanoparticle (NP) nanoplatform was developed for multistage siRNA delivery based on both pH-responsive and endo/lysosomal escape characteristics, which was formed via a combination of an electrostatic interactions between the copolymer methoxy poly(ethylene glycol)-poly(l-histidine)-poly(sulfadimethoxine) (mPEG-PHis-PSD, shortened to PHD), dendritic poly-l-lysine (PLL) and PLK1 siRNA (shortened to siPLK1). The biological composition of the proton sponge effect polymer of the PHis chain, which was in position to make efficient endo/lysosomal escape, and the pH-responsive polymer of the PSD fragment, which could accelerate the release of siPLK1. In the present study, the NP illustrated excellent physiochemical properties and rapid endo/lysosomal escape in vitro. Besides this, compared with the PD/PLL/siRNA formulation, the PHD/PLL/siRNA NP indicated higher cellular uptake, and higher cell cytotoxicity in vitro. The in vivo results demonstrated that the PHD/PLL/siRNA NP exhibited the strongest tumor growth inhibition rate and ideal safety compared with the control and other siPLK1-treated formulations, which can be mainly attributed to pH-induced instantaneous dissociation and efficient endo/lysosomal escape arising from the PHD copolymer. Consequently, the above evidence indicates that the PHD/PLL/siRNA NP is a favorable gene delivery system and provides a potential strategy for siRNA delivery.
Collapse
Affiliation(s)
- Menghao Shi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Ziyuan Huang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Yuying Chen
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Shuang Pan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| |
Collapse
|
29
|
Zhang J, Zhang H, Jiang J, Cui N, Xue X, Wang T, Wang X, He Y, Wang D. Doxorubicin-Loaded Carbon Dots Lipid-Coated Calcium Phosphate Nanoparticles for Visual Targeted Delivery and Therapy of Tumor. Int J Nanomedicine 2020; 15:433-444. [PMID: 32021189 PMCID: PMC6982446 DOI: 10.2147/ijn.s229154] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Carbon dots (CDs) have attracted extensive attention in recent years because of their high biocompatibility and unique optical property. But they could not be well applied in the drug delivery system to enable distribution in tumor sites with their low pH sensitivity. They are barriers for drug delivery. CDs as an imaging proper were conjugated with doxorubicin (DOX) lipid-coated calcium phosphate (LCP) nanoparticle, for a pH-sensitive nanocarrier and delivery of the antitumor drugs. Materials and Methods CDs were prepared by one-step hydrothermal treatment of citric acid and ethylenediamine. The nanoparticles were simply prepared by using microemulsion technology to form calcium phosphate (CaP) core and further coated with cationic lipids. Results The structure was characterized by FTIR, XRD and TEM. In vitro release study revealed that DOX-CDs@LCP was pH dependent. The cytotoxicity assay demonstrated that it exhibited enhanced efficiency compared to the control group (DOX-CDs), but weaker than free DOX. The cellular uptake revealed that these pH-sensitive nanoparticles could be taken up effectively and deliver DOX into the cytoplasm to reach antitumor effect. The fluorescence imaging indicated that DOX-CDs@LCP mostly distributed in the tumor region due to the enhanced permeability and retention effect (EPR) to reduce its systematical toxicity. Importantly, an antitumor activity study demonstrated that the DOX-CDs@LCP nanoparticles had higher antitumor activity than any other groups and lower toxicity. The results showed that LCP could significantly promote the release in tumor microenvironment due to pH-response. The DOX-CDs could enhance load capacity and reduce drug premature releasing; real-time tracking of efficacy as confocal imaging contrast agent. Thus, DOX-CDs@LCP had antitumor capacity and lower systematic toxicity in tumor therapy. Conclusion DOX-CDs@LCP were proven as a promising tumor pH-sensitive and imaging-guided drug delivery system for liver cancer chemotherapy.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chinese Medicine Pharmacology, School of Traditional Chinese Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hongyan Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jianqi Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Nan Cui
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao Xue
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Tianying Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoqiang Wang
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yunpeng He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
30
|
Liu J, Tang M, Zhou Y, Long Y, Cheng Y, Zheng H. A siramesine-loaded metal organic framework nanoplatform for overcoming multidrug resistance with efficient cancer cell targeting. RSC Adv 2020; 10:6919-6926. [PMID: 35493908 PMCID: PMC9049735 DOI: 10.1039/c9ra09923a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/07/2020] [Indexed: 01/06/2023] Open
Abstract
ZIF-8@Sira/FA induces the cancer cells apoptosis and then eliminates cancer cells from the inside through the lysosomal death pathway.
Collapse
Affiliation(s)
- Jiahui Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Menghuan Tang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Yanghao Zhou
- Department of Neurosurgery
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing
- P. R. China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Yuan Cheng
- Department of Neurosurgery
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing
- P. R. China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| |
Collapse
|
31
|
Wei G, Yang G, Wei B, Wang Y, Zhou S. Near-infrared light switching nitric oxide nanoemitter for triple-combination therapy of multidrug resistant cancer. Acta Biomater 2019; 100:365-377. [PMID: 31586724 DOI: 10.1016/j.actbio.2019.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
The multidrug resistance (MDR) of tumor cells often leads to the failure of chemotherapy against cancer. It is urgently needed to develop a safe and effective strategy of overcoming MDR for enhancing chemotherapy efficiency. In this work, one type of new folic acid-polyethylene glycol (FA-PEG) modified polydopamine nanoparticles (FAPPs) was synthesized for gas/chemo/photothermal triple-combination therapy of multidrug resistant cancer. The nanoparticles loaded nitric oxide (NO) donor act as a NO nanoemitter to generate NO via a NIR light irradiation switch, which has a great capacity of reversing MDR via inhibiting the overexpression of P-glycoprotein (P-gp) and cell respiration with the reduction of both the adenosine triphosphate (ATP) content and mitochondrial membrane potential (ΔΨm) in MDR tumor cells. Moreover, the amount of generated NO can be regulated by changing the action time of the nanoparticles. After that, the nanoparticles loaded chemotherapeutic agent (DOX) act as a photothermal-chemotherapy nanomedicine, which can release DOX with a high concentration in tumor cell for chemotherapy and simultaneously produce a large amount of heat for photothermal therapy under NIR irradiation. Finally, the gas/chemo/photothermal triple-combination therapy with the nanomedicines displays an excellent therapeutic efficacy in nude mice bearing MDR tumors. STATEMENT OF SIGNIFICANCE: The multidrug resistance (MDR) of tumor cells frequently leads to the failure of chemotherapy against cancer. It is urgently needed to develop a safe and effective strategy of overcoming MDR for enhancing chemotherapy efficiency. In this paper, a NIR light switching nitric oxide nanoemitter is successfully developed for gas/chemo/photothermal triple-combination therapy of multidrug resistant cancer. The controllably generated NO under NIR irradiation can effectively reverse multidrug resistance by inhibiting the overexpression of P-gp and cell respiration, significantly enhancing the chemotherapeutic agent concentration in tumor cells, and simultaneously a large amount of heat is produced for photothermal therapy.
Collapse
|
32
|
Abstract
Dextran has become a hot research topic in drug vehicle material because of its biodegradable, nonspecific cell adhesion, resistance to protein adsorption, low price and ease of structural modification. The fate and changes of dextran in vivo are not fully understood. It is helpful to guide the design and modification of dextran drug vehicles to clarify the changes in the morphology, metabolism and function of drug targets. With the deep understanding of dextran and the emergence of new functional dextran derivatives, its application in nanodrug delivery systems will be more and more, clinically applicable delivery systems may also be available.
Collapse
|
33
|
Comparison of paclitaxel solid dispersion and polymeric micelles for improved oral bioavailability and in vitro anti-cancer effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:247-259. [DOI: 10.1016/j.msec.2019.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/24/2022]
|
34
|
Huang C, Hu X, Hou Z, Ji J, Li Z, Luan Y. Tailored graphene oxide-doxorubicin nanovehicles via near-infrared dye-lactobionic acid conjugates for chemo-photothermal therapy. J Colloid Interface Sci 2019; 545:172-183. [DOI: 10.1016/j.jcis.2019.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/21/2023]
|
35
|
Sun X, Zhang J, Yang C, Huang Z, Shi M, Pan S, Hu H, Qiao M, Chen D, Zhao X. Dual-Responsive Size-Shrinking Nanocluster with Hierarchical Disassembly Capability for Improved Tumor Penetration and Therapeutic Efficacy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11865-11875. [PMID: 30830746 DOI: 10.1021/acsami.8b21580] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is generally known that, for nanoparticles in cancer therapy, sufficient tumor penetration needs a minor particle size, while long in vivo circulation time needs a larger particle size. It is hard to balance them because they are standing on either side of a seesaw. To address these two different requirements, a dual-responsive size-shrinking nanocluster can self-adaptively respond to a complicated tumor microenvironment and transform its particulate property to overcome sequential in vivo barriers and reach a preferable antitumor activity. The nanocluster (RPSPT@SNCs) could preferentially accumulate into tumor tissue and dissociate under extracellular matrix metalloproteinase-2 (MMP-2) to release small-sized micelle formulations (RPSPTs). RPSPT possesses favorable tumor penetration and tumor targeting capability to deliver the antitumor agent paclitaxel (PTX) into deep regions of solid tumor. The intracellular redox microenvironment can also accelerate drug accumulation. The prepared RPSPT@SNCs possesses enhanced cell cytotoxicity and tumor penetration capability on MCF-7 cells and a favorable antitumor activity on the xenograft tumor mouse model.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Jiulong Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Chunrong Yang
- College of Pharmacy , Jiamusi University , 148 Xuefu Street , Jiamusi 154007 , Heilongjiang , P.R. China
| | - Ziyuan Huang
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Menghao Shi
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Shuang Pan
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Haiyang Hu
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Mingxi Qiao
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Dawei Chen
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Xiuli Zhao
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| |
Collapse
|
36
|
Lather V, Saini V, Pandita D. Polymeric Micelles of Modified Chitosan Block Copolymer as Nanocarrier for Delivery of Paclitaxel. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2468187308666180426120050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Polymeric micelles are being used as successful nanocarriers for
the delivery of diverse drug molecules due to properties like solubilization, selective targeting,
P-glycoprotein inhibition, altered drug internalization route and subcellular localization
etc.
Objective:
The present investigation was planned to prepare and characterize novel polymeric
micelles derived from self assembly of amphiphilic chitosan-bile salt derivative
(CS-mPEG-DA) as nanocarrier and evaluate their potential in delivery of an anticancer
drug, paclitaxel.
Method:
Paclitaxel, a diterpenoid compound, useful in clinical treatment of several solid
tumors such as ovarian cancer, breast cancer and lung cancer suffers from limitations like
low aqueous solubility and bioavailability and subsequently was used as the model drug.
Results:
Paclitaxel was successfully incorporated into polymeric micelles using dialysis
and emulsion method with encapsulation efficiency up to 95% having particle size in
nanometer range (<200 nm). Paclitaxel loaded micelles were found to release the drug in
a sustained manner up to 96 h in PBS containing 0.1% (w/v) tween 80 at 37°C. The micelles
powders subjected to stability studies for a period of 90 days were found to be stable
at 4 ± 2°C with respect to particle size and drug content. In vivo cytotoxicity assay
confirmed that paclitaxel encapsulated in polymeric micelles showed higher cytotoxicity
against cultured MCF-7 breast cancer cells than paclitaxel alone.
Conclusion:
Polymeric micellar systems derived from copolymerization of chitosan exhibit
a great potential in successful delivery of poorly water soluble or low bioavailable
drugs like paclitaxel.
Collapse
Affiliation(s)
- V. Lather
- Department of Pharmaceutical Chemistry, JCDM College of Pharmacy, Sirsa-125055, Haryana, India
| | - V. Saini
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa-125055, Haryana, India
| | - D. Pandita
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa-125055, Haryana, India
| |
Collapse
|
37
|
Chen M, Song F, Liu Y, Tian J, Liu C, Li R, Zhang Q. A dual pH-sensitive liposomal system with charge-reversal and NO generation for overcoming multidrug resistance in cancer. NANOSCALE 2019; 11:3814-3826. [PMID: 30600823 DOI: 10.1039/c8nr06218h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In cancer therapy, chemotherapeutic drugs frequently encounter multidrug resistance (MDR) induced by the overexpression of drug transporters such as P-glycoprotein (P-gp). Herein, in order to overcome MDR and improve the effectiveness of chemotherapy, we developed a novel pH-sensitive charge-reversal and NO generation liposomal system by modifying a pH-sensitive polymer (PEG-PLL-DMA) on the surface of cationic liposomes for delivering a NO donor (DETA NONOate) and a chemotherapy drug (paclitaxel, PTX) into MDR cells. The proposed liposomal system (PTX/NO/DMA-L) exhibited a distinctive charge-reversal capacity, which was negatively charged under physiological conditions (pH 7.4) but could reverse to positive charge in a tumor microenvironment (pH 6.5) due to the cleavable amide linkages formed between PEG-PLL and DMA, leading to the improvement of cell uptake. Once arrived in the endosomes and lysosomes (pH 5.0), DETA NONOate was triggered to decompose and release NO, which further promoted the quick release of PTX and inhibited the P-gp mediated efflux. The charge-reversal, NO generation and NO-triggered rapid release of drugs could significantly increase the accumulation of PTX in tumors and eventually improve the antitumor efficacy. These results indicate that this dual pH-sensitive liposomal system is a highly promising approach for chemotherapy and may pave a new avenue for overcoming MDR in cancer.
Collapse
MESH Headings
- A549 Cells
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Cell Survival/drug effects
- Drug Resistance, Neoplasm/drug effects
- Humans
- Hydrogen-Ion Concentration
- Liposomes/chemistry
- Mice
- Mice, Nude
- Microscopy, Confocal
- Neoplasms/drug therapy
- Neoplasms/pathology
- Nitric Oxide/metabolism
- Paclitaxel/chemistry
- Paclitaxel/metabolism
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Polymers/chemistry
- Tissue Distribution
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Mingmao Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Feifei Song
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Yan Liu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jia Tian
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Chun Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Ruyue Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China. and Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
38
|
Qu G, Hou S, Qu D, Tian C, Zhu J, Xue L, Ju C, Zhang C. Self-assembled micelles based on N-octyl-N’-phthalyl-O-phosphoryl chitosan derivative as an effective oral carrier of paclitaxel. Carbohydr Polym 2019; 207:428-439. [DOI: 10.1016/j.carbpol.2018.11.099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
|
39
|
Chatterjee S, Ooya T. Hydrophobic Nature of Methacrylate-POSS in Combination with 2-(Methacryloyloxy)ethyl Phosphorylcholine for Enhanced Solubility and Controlled Release of Paclitaxel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1404-1412. [PMID: 30424607 DOI: 10.1021/acs.langmuir.8b01588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amphiphilic copolymers consisting of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and hydrophobic monomers are known as biomaterials for the administration of poorly water-soluble drugs such as paclitaxel (PTX). However, the hydrophobic monomers to be copolymerized with MPC have not been optimized for PTX solubilization and its dosage forms. Here, we show the enhanced PTX solubility by only an MPC-based amphiphilic copolymer using a polyhedral oligomeric silsesquioxane (POSS) methacrylate (MA) bearing an ethyl (C2H5) group as a vertex group. MPC was copolymerized with POSS methacrylates bearing different vertex groups of ethyl (C2H5), hexyl (C6H13), and octyl (C8H17) via radical polymerization. We found that the strong interaction between C2H5-POSS and PTX contributed to the slow release of PTX without any burst release. The C2H5-POSS-MA MPC copolymer was internalized into the cultured HeLa cells, which was confirmed by using a fluorescein-4-isothiocyanate (FITC)-labeled PTX, and the PTX-dissolved copolymer induced cell death. We anticipate that the C2H5-POSS-MA MPC copolymer is a good solubilizer bearing a controlled release function for PTX.
Collapse
Affiliation(s)
- Suchismita Chatterjee
- Graduate School of Engineering, Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada-Ku, Kobe 657 8501 , Japan
| | - Tooru Ooya
- Graduate School of Engineering, Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada-Ku, Kobe 657 8501 , Japan
| |
Collapse
|
40
|
Banerjee P, Geng T, Mahanty A, Li T, Zong L, Wang B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. Int J Pharm 2019; 557:374-389. [DOI: 10.1016/j.ijpharm.2018.12.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022]
|
41
|
Yang Y, Wang Z, Peng Y, Ding J, Zhou W. A Smart pH-Sensitive Delivery System for Enhanced Anticancer Efficacy via Paclitaxel Endosomal Escape. Front Pharmacol 2019; 10:10. [PMID: 30733675 PMCID: PMC6353802 DOI: 10.3389/fphar.2019.00010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Micelles are highly attractive nano-drug delivery systems for targeted cancer therapy. While they have been demonstrated to significantly alleviate the side-effects of their cargo drugs, the therapy outcomes are usually suboptimal partially due to ineffective drug release and endosome entrapment. Stimulus-responsive nanoparticles have allowed controlled drug release in a smart fashion, and we want to use this concept to design novel micelles. Herein, we reported pH-sensitive paclitaxel (PTX)-loaded poly (ethylene glycol)-phenylhydrazone-dilaurate (PEG-BHyd-dC12) micelles (PEG-BHyd-dC12/PTX). The micelles were spherical, with an average particle size of ∼135 nm and a uniform size distribution. The pH-responsive properties of the micelles were certified by both colloidal stability and drug release profile, where the particle size was strikingly increased accompanied by faster drug release as pH decreased from 7.4 to 5.5. As a result, the micelles exhibited much stronger cytotoxicity than the pH-insensitive counterpart micelles against various types of cancer cells due to the hydrolysis of the building block polymers and subsequent rapid PTX release. Overall, these results demonstrate that the PEG-BHyd-dC12 micelle is a promising drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Yihua Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmaceutical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Ying Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
42
|
Shi M, Zhao X, Zhang J, Pan S, Yang C, Wei Y, Hu H, Qiao M, Chen D, Zhao X. pH-responsive hybrid nanoparticle with enhanced dissociation characteristic for siRNA delivery. Int J Nanomedicine 2018; 13:6885-6902. [PMID: 30498349 PMCID: PMC6207255 DOI: 10.2147/ijn.s180119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Specific polo-like kinase (PLK1) silencing with small interface RNA (siRNA) may be an effective approach for PLK1-overexpressed lung cancer. However, low siRNA concentration into cytoplasm of tumor tissue severely limits its application. MATERIALS AND METHODS In this study, a novel triblock copolymer methoxy poly(ethylene glycol)-poly(histidine)-poly(sulfadimethoxine) (mPEG-PHis-PSD, shorten as PHD) was synthesized and used to construct novel nonviral gene vector with cationic liposomes. RESULTS The resulting hybrid nanoparticles (PHD/LR) loaded with siPLK1 possessed excellent physiochemical properties. In vitro study indicated that PHD/LR could be efficiently internalized into human lung adenocarcinoma A549 cells and downregulated PLK1 protein expression to induce cell apoptosis, which was attributed to pH-induced instantaneous dissociation, efficient endo/lysosomal escape arose from PHD copolymer. Furthermore, in vivo antitumor activity demonstrated that PHD/LR could efficiently accumulated into tumor tissue and silenced PLK1 expression to possess antitumor activity. CONCLUSION Taken all these together, PHD/LR was expected to be a suitable carrier for specific delivering siRNA for lung cancer therapy.
Collapse
Affiliation(s)
- Menghao Shi
- Department of pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China,
| | - Xiufeng Zhao
- Oncology Department, Affiliated Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157000, PR China
| | - Jiulong Zhang
- Department of pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China,
| | - Shuang Pan
- Department of pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China,
| | - Chunrong Yang
- Department of pharmaceutics, School of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Ying Wei
- Department of pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China,
| | - Haiyang Hu
- Department of pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China,
| | - Mingxi Qiao
- Department of pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China,
| | - Dawei Chen
- Department of pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China,
| | - Xiuli Zhao
- Department of pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China,
| |
Collapse
|
43
|
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin Drug Deliv 2018; 15:1127-1142. [DOI: 10.1080/17425247.2018.1537261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Siddharth S. Kesharwani
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Shamandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Abhay T. Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| |
Collapse
|
44
|
Shi M, Zhang J, Li X, Pan S, Li J, Yang C, Hu H, Qiao M, Chen D, Zhao X. Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. Int J Nanomedicine 2018; 13:4209-4226. [PMID: 30140154 PMCID: PMC6054761 DOI: 10.2147/ijn.s163858] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Multidrug resistance (MDR) of breast cancer is the major challenge to successful chemotherapy while mitochondria-targeting therapy was a promising strategy to overcome MDR. Materials and methods In this study, HER-2 peptide-PEG2000-Schiff base-cholesterol (HPSC) derivate was synthesized successfully and incorporated it on the surface of the doxorubicin (DOX)-loaded dequalinium (DQA) chloride vesicle (HPS-DQAsomes) to treat drug-resistant breast cancer. Evaluations were performed using human breast cancer cell and DOX-resistant breast cancer cell lines (MCF-7 and MCF-7/ADR). Results The particle size of HPS-DQAsomes was ~110 nm with spherical shape. In vitro cytotoxicity assay indicated that HPS-DQAsomes could increase the cytotoxicity against MCF-7/ADR cell line. Cellular uptake and mitochondria-targeting assay demonstrated that HPS-DQAsomes could target delivering therapeutical agent to mitochondria and inducing mitochondria-driven apoptosis process. In vivo antitumor assay suggested that HPS-DQAsomes could reach favorable antitumor activity due to both tumor targetability and sub-organelles’ targetability. Histological assay also indicated that HPS-DQAsomes showed a strong apoptosis-inducing effect. No obvious systematic toxicity of HPS-DQAsomes could be observed. Conclusion In summary, multifunctional HPS-DQAsomes provide a novel and versatile approach for overcoming MDR via mitochondrial pathway in cancer treatment.
Collapse
Affiliation(s)
- Menghao Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Xiaowei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Shuang Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Jie Li
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, People's Republic of China
| | - Chunrong Yang
- College Pharmacy of Jiamusi University, Jiamusi, Heilongjiang 154007, People's Republic of China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| |
Collapse
|
45
|
pH-sensitive charge-conversional and NIR responsive bubble-generating liposomal system for synergetic thermo-chemotherapy. Colloids Surf B Biointerfaces 2018; 167:104-114. [DOI: 10.1016/j.colsurfb.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 11/22/2022]
|
46
|
A vascular disrupting agent overcomes tumor multidrug resistance by skewing macrophage polarity toward the M1 phenotype. Cancer Lett 2018; 418:239-249. [PMID: 29337108 DOI: 10.1016/j.canlet.2018.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/01/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transporters is the major obstacle for chemotherapeutic success. Although attempts have been made to circumvent ABC transporter-mediated MDR in past decades, there is still no effective agent in clinic. Here, we identified a vascular disrupting agent, Z-GP-DAVLBH, that significantly inhibited the growth of multidrug-resistant human hepatoma HepG2/ADM and human breast cancer MCF-7/ADR tumor xenografts, although these cells were insensitive to Z-GP-DAVLBH in vitro. Z-GP-DAVLBH increased the secretion of granulocyte-macrophage colony-stimulating factor in tumor tissues and serum of tumor-bearing mice to skew tumor-associated macrophages from the pro-tumor M2 phenotype to the antitumor M1 phenotype, thereby contributing to the induction of HepG2/ADM and MCF-7/ADR cell apoptosis. Our findings shed new light on the underlying mechanisms of VDAs in the treatment of drug-resistant tumors and provide strong evidence that Z-GP-DAVLBH should be a promising agent for overcoming MDR.
Collapse
|
47
|
Chen X, Sun J, Zhao H, Yang K, Zhu Y, Luo H, Yu K, Fan H, Zhang X. Theranostic system based on NaY(Mn)F4:Yb/Er upconversion nanoparticles with multi-drug resistance reversing ability. J Mater Chem B 2018; 6:3586-3599. [DOI: 10.1039/c8tb00416a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An innovative theranostic system (D-UNT) for MDR tumors diagnosis and therapy based on the red emitter NaY(Mn)F4:Yb/Er with optimized luminescence was developed.
Collapse
Affiliation(s)
- Xiaoqin Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jing Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Huan Zhao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Ke Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yuda Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Kui Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
48
|
Liu X, Xie Y, Liu R, Zhang R, Yan H, Yang X, Huang Q, He W, Yu B, Feng Q, Mi S, Cai Q. A cyclo-trimer of acetonitrile combining fluorescent property with ability to induce osteogenesis and its potential as multifunctional biomaterial. Acta Biomater 2018; 65:163-173. [PMID: 29061377 DOI: 10.1016/j.actbio.2017.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/17/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022]
Abstract
A biomaterial combining fluorescent property with ability to induce osteogenesis can serve as an ideal multifunctional scaffold in bone tissue engineering. However, the frequently used fluorescent agents can only serve as imaging probes. The polymer or oligomer with a conjugated system containing nitrogen atoms will fulfill these criteria. In this study, a cyclo-trimer of acetonitrile is synthesized using a facile method, which is proved to be 4-amino-2,6-dimethylpyrimidine. The cyclo-trimer of acetonitrile demonstrates strong intrinsic photoluminescence and has the potential for in vivo imaging. The cyclo-trimer of acetonitrile shows no toxicity both in vitro and in vivo. Moreover, the cyclo-trimer of acetonitrile significantly promotes the osteogenesis of SaOS-2 cells by improving alkaline phosphatase activity, collagen type I and osteocalcin expression, as well as expressions of osteoblastic genes, and enhances the matrix mineralization of rBMSCs. Thus, the cyclo-trimer of acetonitrile synthesized in present study illustrates the employment of this kind multifunctional biomaterial in bone tissue engineering and may offer great potential in biomedical applications where bioimaging and osteogenesis are both required. STATEMENT OF SIGNIFICANCE A conjugated cyclo-trimer of acetonitrile combining intrinsic fluorescent property with ability to induce osteogenesis was reported. Different from the traditional fluorescent dye or quantum dots, which are just "imaging agents", the cyclo-trimer of acetonitrile can serve as a multifunctional biomaterial and offer great potential in biomedical applications where bioimaging and osteogenesis are both required. To our best knowledge, the fluorescent property, especially fluorescent property in vivo and the ability of this molecule to induce osteogenesis have not been reported before. Our work illustrates the employment of this kind multifunctional biomaterial in bone tissue engineering and will highlight the importance of multifunctional biomaterial in biomedical applications.
Collapse
|
49
|
Chen S, Fan JX, Qiu WX, Liu LH, Cheng H, Liu F, Yan GP, Zhang XZ. Self-Assembly Drug Delivery System Based on Programmable Dendritic Peptide Applied in Multidrug Resistance Tumor Therapy. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Si Chen
- School of Material Science and Engineering; Wuhan Institute of Technology; Wuhan 430074 PR China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| | - Li-Han Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| | - Fan Liu
- School of Material Science and Engineering; Wuhan Institute of Technology; Wuhan 430074 PR China
| | - Guo-Ping Yan
- School of Material Science and Engineering; Wuhan Institute of Technology; Wuhan 430074 PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| |
Collapse
|
50
|
Li Z, Cai Y, Zhao Y, Yu H, Zhou H, Chen M. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy. Int J Nanomedicine 2017; 12:6595-6604. [PMID: 28919756 PMCID: PMC5593416 DOI: 10.2147/ijn.s138235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitoxantrone (MIT) is an anticancer agent with photosensitive properties that is commonly used in various cancers. Multidrug resistance (MDR) effect has been an obstacle to using MIT for cancer therapy. Photochemical internalization, on account of photodynamic therapy, has been applied to improve the therapeutic effect of cancers with MDR effect. In this study, an MIT-poly(ε-caprolactone)-pluronic F68-poly(ε-caprolactone)/poly(d,l-lactide-co-glycolide)–poly(ethylene glycol)–poly(d,l-lactide-co-glycolide) (MIT-PFP/PPP) mixed micelles system was applied to reverse the effect of MDR in MCF-7/ADR cells via photochemical reaction when exposed to near-infrared light. MIT-PFP/PPP mixed micelles showed effective interaction with near-infrared light at the wavelength of 660 nm and exerted great cytotoxicity in MCF-7/ADR cells with irradiation. Furthermore, MIT-PFP/PPP mixed micelles could improve reactive oxygen species (ROS) levels, decrease P-glycoprotein activity, and increase the cellular uptake of drugs with improved intracellular drug concentrations, which induced cell apoptosis in MCF-7/ADR cells under irradiation, despite MDR effect, as indicated by the increased level of cleaved poly ADP-ribose polymerase. These findings suggested that MIT-PFP/PPP mixed micelles may become a promising strategy to effectively reverse the MDR effect via photodynamic therapy in breast cancer.
Collapse
Affiliation(s)
- Zeyong Li
- Department of Laboratory Medicine, Guangdong No 2 Provincial People's Hospital, Guangzhou, China
| | - Yuee Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yiqiao Zhao
- Department of Laboratory Medicine, Guangdong No 2 Provincial People's Hospital, Guangzhou, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, South China University of Technology, Guangzhou, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|