1
|
Kyser AJ, Greiner A, Harris V, Patel R, Frieboes HB, Gilbert NM. 3D-Bioprinted Urinary Catheters Enable Sustained Probiotic Recovery Under Flow and Improve Bladder Colonization In Vivo. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10428-8. [PMID: 39757344 DOI: 10.1007/s12602-024-10428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Catheter-associated urinary tract infections (CAUTIs) account for a large proportion of healthcare-associated infections. CAUTIs, caused by colonization of the catheter surface by uropathogens, are challenging to treat, especially when compounded by antibiotic resistance. One prophylactic strategy that could reduce pathogen colonization is bacterial interference, whereby the catheter surface is coated with non-pathogenic bacteria. Current challenges include identifying appropriate bacterial interference strains that maintain stable association with the catheter and are viable, but not pathogenic, in the urinary tract environment. This study evaluated the stability of probiotic Lactobacillus rhamnosus in 3D bioprints mimicking urinary catheter tubing under urine flow and assessed viability and safety in an in vivo mouse model. Bioprints underwent hydraulic flow testing in vitro with artificial urine media (AUM), followed by evaluation of catheter structure, L. rhamnosus recovery, and biofilm formation. Mice were inoculated with free L. rhamnosus bacteria or implanted with L. rhamnosus-containing bioprints to measure urinary tract colonization and assess effects on the bladder tissue. Bioprinted segments exhibited minimal mass change while maintaining an intact shape and demonstrated viable L. rhamnosus recovery throughout 7 days. L. rhamnosus formed biofilms on the bioprint surface that were not disrupted by urinary flow conditions. Encouragingly, L. rhamnosus viability was maintained in bioprints in a mouse urinary tract catheterization model. Bioprints released L. rhamnosus in vivo and did not cause histological inflammation beyond that generated by standard silicone catheters. In summary, L. rhamnosus bioprints exhibited key desirable characteristics, including maintenance of probiotic viability, probiotic growth on the catheter surface, and enhanced probiotic colonization of the bladder. This study supports the development of bioprinted probiotic catheters as a new strategy to prevent CAUTI.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA
| | - Arielle Greiner
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA
| | - Victoria Harris
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA
| | - Rudra Patel
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, 40292, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
- UofL Health - Brown Cancer Center, University of Louisville, Louisville, KY, 40292, USA.
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Wu J, Yan J, Xu S, Zou X, Xu Y, Jin X, Lu X, Gui S. Novel Nano Drug-Loaded Hydrogel Coatings for the Prevention and Treatment of CAUTI. Adv Healthc Mater 2024; 13:e2401745. [PMID: 39180266 PMCID: PMC11616261 DOI: 10.1002/adhm.202401745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Catheter-associated urinary tract infection (CAUTI) is a prevalent type of hospital-acquired infection, affecting approximately 15% to 25% of patients with urinary catheters. Long-term use of the catheter can lead to colonization of microorganisms and biofilm formation, and may develop into bacterial CAUTI. However, the frequent replacement of catheters in clinical settings can result in tissue damage, inflammation, ulceration, and additional complications, causing discomfort and pain for patients. In light of these challenges, a novel nanodrug-supported hydrogel coating called NP-AM/FK@OMV-P/H has been developed in this study. Through in vitro experiments, it is confirmed that OMV nano-loaded liquid gel coating has an effective reaction against E.coli HAase and releases antibacterial drugs. This coating has also demonstrated strong inhibition of E.coli and has shown the ability to inhibit the formation of bacterial biofilm. These findings highlight the potential of the OMV nanoparticle gel coating in preventing and treating bacterial infections. Notably, NP-AM/FK@OMV-P/H has exhibited greater efficacy against multidrug-resistant E.coli associated with UTIs compared to coatings containing single antimicrobial peptides or antibiotics. Additionally, it has demonstrated good biosecurity. In conclusion, the NP-AM/FK@OMV-P/H coating holds great potential in providing benefits to patients with CAUTI.
Collapse
Affiliation(s)
- Jibin Wu
- Intensive Care Unit, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhen518031P. R. China
- Shenzhen Center for Disease Control and PreventionShenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Institute of Pharmaceutical Bioactive Substances, School of Basic Medical SciencesGuangdong Pharmaceutical UniversityGuangzhou510006P. R. China
| | - Jianling Yan
- Intensive Care Unit, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhen518031P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Institute of Pharmaceutical Bioactive Substances, School of Basic Medical SciencesGuangdong Pharmaceutical UniversityGuangzhou510006P. R. China
| | - Sijia Xu
- Intensive Care Unit, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhen518031P. R. China
- Shenzhen Center for Disease Control and PreventionShenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Institute of Pharmaceutical Bioactive Substances, School of Basic Medical SciencesGuangdong Pharmaceutical UniversityGuangzhou510006P. R. China
| | - Xuan Zou
- Shenzhen Center for Disease Control and PreventionShenzhen518055P. R. China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech ProductsNational Institutes for Food and Drug ControlBeijing102629P. R. China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Institute of Pharmaceutical Bioactive Substances, School of Basic Medical SciencesGuangdong Pharmaceutical UniversityGuangzhou510006P. R. China
| | - Xuemei Lu
- Shenzhen Center for Disease Control and PreventionShenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Institute of Pharmaceutical Bioactive Substances, School of Basic Medical SciencesGuangdong Pharmaceutical UniversityGuangzhou510006P. R. China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhen518031P. R. China
| |
Collapse
|
3
|
Zhao N, Liu Z, Chen X, Yu T, Yan F. Microbial biofilms: a comprehensive review of their properties, beneficial roles and applications. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39579053 DOI: 10.1080/10408398.2024.2432474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Biofilms are microbial communities nested in self-secreted extracellular polymeric substances that can provide microorganisms with strong tolerance and a favorable living environment. Deepening the understanding and research on positive effects of microbial biofilms is consequently necessary, since most researches focuses on how to control biofilms formation to reduce food safety issues. This paper highlights beneficial roles of biofilms including the formation mechanism, influencing factors, health benefits, strategies to improve its film-forming efficiency, as well as applications especially in fields of food industry, agriculture and husbandry, and environmental management. Beneficial biofilms can be affected by multiple factors such as strain characteristics, media composition, signal molecules, and carrier materials. The biofilm barrier composed of beneficial bacteria provides a more favorable microecological environment, keeping bacteria survival longer, and its derived metabolites are better conducive to health. However, in the practical application of biofilms, there are still significant challenges, especially in terms of film-forming efficiency, stability, and safety assessment. Continuous research is needed to discover innovative methods of utilizing biofilms for sustainable food development in the future, in order to fully unleash its potential and promote its application in the food industry.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Giliazeva A, Akosah Y, Noack J, Mardanova A. Adhesion of Klebsiella oxytoca to bladder or lung epithelial cells is promoted by the presence of other opportunistic pathogens. Microb Pathog 2024; 190:106642. [PMID: 38599551 DOI: 10.1016/j.micpath.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.
Collapse
Affiliation(s)
- Adeliia Giliazeva
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Building 15, 01968, Senftenberg, Germany.
| | - Yaw Akosah
- Department of Molecular Pathobiology, College of Dentistry, New York University, 345 E. 24th St., 10010, New York, USA
| | - Jonas Noack
- Medipan GmbH, Computer Science, Ludwig-Erhard-Ring 3, 15827, Dahlewitz, Germany
| | - Ayslu Mardanova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kremlyovskaya 18, 420008, Kazan, Russia
| |
Collapse
|
5
|
Hu M, Zhang T, Miao M, Li K, Luan Q, Sun G. Expectations for employing Escherichia coli Nissle 1917 in food science and nutrition. Crit Rev Food Sci Nutr 2024:1-9. [PMID: 38189668 DOI: 10.1080/10408398.2023.2301416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
As a promising probiotic strain, Escherichia coli Nissle 1917 (EcN) has been demonstrated to confer beneficial effects on intestinal health, immune function, and pathogen prevention. Additionally, EcN has also been widely studied due to its clear genomic information, tractable gene regulation, and simple growth conditions. This review summarizes the various applications potential of EcN in food science and nutrition, including inflammation prevention, tumor-targeting therapy, antibacterial agents for food, and nutrient production with a focus on specific case studies. Moreover, we highlight the major challenges of employing EcN in food science and nutrition, including regulatory approval, stability during food processing, and consumer acceptance. Finally, we conclude with a discussion on perspectives related to employing EcN in food science and nutrition.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Kewen Li
- Baolingbao Biology Co., Ltd, Yucheng, Shandong, China
| | - Qingmin Luan
- Baolingbao Biology Co., Ltd, Yucheng, Shandong, China
| | - Guilian Sun
- Baolingbao Biology Co., Ltd, Yucheng, Shandong, China
| |
Collapse
|
6
|
Chen H, Lei P, Ji H, Yang Q, Peng B, Ma J, Fang Y, Qu L, Li H, Wu W, Jin L, Sun D. Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies. Mater Today Bio 2023; 18:100543. [PMID: 36647536 PMCID: PMC9840185 DOI: 10.1016/j.mtbio.2023.100543] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
With the in-depth and comprehensive study of bacteria and their related ecosystems in the human body, bacterial-based drug delivery system has become an emerging biomimetic platform that can retain the innate biological functions. Benefiting from its good biocompatibility and ideal targeting ability as a biological carrier, Escherichia coli Nissle 1917 (ECN) has been focused on the treatment strategies of inflammatory bowel disease and tumor. The advantage of a bacterial carrier is that it can express exogenous protein while also acting as a natural capsule by releasing drug slowly as a result of its own colonization impact. In order to survive in harsh environments such as the digestive tract and tumor microenvironment, ECN can be modified or genetically engineered to enhance its function and host adaptability. The adoption of ECN carries or expresses drugs which are essential for accurate diagnosis and treatment. This review briefly describes the properties of ECN, the relationship between ECN and inflammation and tumor, and the strategy of using surface modification and genetic engineering to modify ECN as a delivery carrier for disease treatment.
Collapse
Affiliation(s)
- Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Hao Ji
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Hua Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Wenzhou City and WenZhouOuTai Medical Laboratory Co.,Ltd Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou, 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Wenzhou City and Kunlong Technology Co., Ltd., Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou, 325000, China
| |
Collapse
|
7
|
Gagné MJ, Savard T, Brassard J. Interactions Between Infectious Foodborne Viruses and Bacterial Biofilms Formed on Different Food Contact Surfaces. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:267-279. [PMID: 36030359 PMCID: PMC9458689 DOI: 10.1007/s12560-022-09534-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Bacterial biofilms contribute to contamination, spoilage, persistence, and hygiene failure in the food industry, but relatively little is known about the behavior of foodborne viruses evolving in the complex communities that make up biofilm. The aim of this study was to evaluate the association between enteric viruses and biofilms on food contact surfaces. Formed biofilms of mono- and multispecies cultures were prepared on glass, stainless steel, and polystyrene coupons and 105 pfu/ml of murine norovirus, rotavirus, and hepatitis A virus were added and incubated for 15 min, 90 min, and 24 h. The data obtained clearly demonstrate that the presence of biofilms generally influences the adhesion of enteric viruses to different surfaces. Many significant increases in attachment rates were observed, particularly with rotavirus whose rate of viral infectious particles increased 7000 times in the presence of Pseudomonas fluorescens on polystyrene after 24 h of incubation and with hepatitis A virus, which seems to have an affinity for the biofilms formed by lactic acid bacteria. Murine norovirus seems to be the least influenced by the presence of biofilms with few significant increases. However, the different factors surrounding this association are unknown and seem to vary according to the viruses, the environmental conditions, and the composition of the biofilm.
Collapse
Affiliation(s)
- Marie-Josée Gagné
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Tony Savard
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Julie Brassard
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada.
| |
Collapse
|
8
|
Mekky AF, Hassanein WA, Reda FM, Elsayed HM. Anti-biofilm potential of Lactobacillus plantarum Y3 culture and its cell-free supernatant against multidrug-resistant uropathogen Escherichia coli U12. Saudi J Biol Sci 2022; 29:2989-2997. [PMID: 35531251 PMCID: PMC9073023 DOI: 10.1016/j.sjbs.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Uropathogens develop biofilms on urinary catheters, resulting in persistent and chronic infections that are associated with resistance to antimicrobial therapy. Therefore, the current study was performed to control biofilm-associated urinary tract infections through assaying the anti-biofilm ability of lactic acid bacteria (LAB) against multidrug-resistant (MDR) uropathogens. Twenty LAB were obtained from pickles and fermented dairy products, and screened for their anti-biofilm and antimicrobial effects against MDR Escherichia coli U12 (ECU12). Lactobacillus plantarum Y3 (LPY3) (MT498405), showed the highest inhibitory effect and biofilm production. Pre-coating of a microtitre plate with LPY3 culture was more potent than co-incubation. Pre-coating with LPY3 culture generated a higher anti-biofilm effect with an adherence of 14.5% than cell free supernatant (CFS) (31.2%). Anti-biofilm effect of CFS was heat stable up to 100 °C with higher effect at pH 4-6. Pre-coating urinary catheter with LPY3 culture reduced the CFU/cm2 of ECU12 attached to the catheter for up to seven days. Meanwhile, CFS reduced the ECU12 CFU/cm2 for up to four days. Scanning electron microscope confirmed the reduction of ECU12 adherence to catheters after treatment with CFS. Therefore, Lactobacillus plantarum can be applied in medical devices as prophylactic agent and as a natural biointervention to treat urinary tract infections.
Collapse
Key Words
- Adherence
- BHI, brain heart infusion
- Biofilms
- CAUTI, catheter associated urinary tract infection
- CFU, colony forming unit
- CRA, congo red agar
- CV, crystal violet
- LAB, Lactic acid bacteria
- LPY3, Lactobacillus plantarum Y3
- Lactic acid bacteria
- MRS, De Man, Rogosa, and Sharpe
- PBS, phosphate-buffered saline
- SEM, scanning electron microscope
Collapse
Affiliation(s)
- Asmaa F. Mekky
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Wesam A. Hassanein
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fifi M. Reda
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Hanan M. Elsayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Using Lactobacilli to Fight Escherichia coli and Staphylococcus aureus Biofilms on Urinary Tract Devices. Antibiotics (Basel) 2021; 10:antibiotics10121525. [PMID: 34943738 PMCID: PMC8698619 DOI: 10.3390/antibiotics10121525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The low efficacy of conventional treatments and the interest in finding natural-based approaches to counteract biofilm development on urinary tract devices have promoted the research on probiotics. This work evaluated the ability of two probiotic strains, Lactobacillus plantarum and Lactobacillus rhamnosus, in displacing pre-formed biofilms of Escherichia coli and Staphylococcus aureus from medical-grade silicone. Single-species biofilms of 24 h were placed in contact with each probiotic suspension for 6 h and 24 h, and the reductions in biofilm cell culturability and total biomass were monitored by counting colony-forming units and crystal violet assay, respectively. Both probiotics significantly reduced the culturability of E. coli and S. aureus biofilms, mainly after 24 h of exposure, with reduction percentages of 70% and 77% for L. plantarum and 76% and 63% for L. rhamnosus, respectively. Additionally, the amount of E. coli biofilm determined by CV staining was maintained approximately constant after 6 h of probiotic contact and significantly reduced up to 67% after 24 h. For S. aureus, only L. rhamnosus caused a significant effect on biofilm amount after 6 h of treatment. Hence, this study demonstrated the potential of lactobacilli to control the development of pre-established uropathogenic biofilms.
Collapse
|
10
|
Surface Modification to Modulate Microbial Biofilms-Applications in Dental Medicine. MATERIALS 2021; 14:ma14226994. [PMID: 34832390 PMCID: PMC8625127 DOI: 10.3390/ma14226994] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022]
Abstract
Recent progress in materials science and nanotechnology has led to the development of advanced materials with multifunctional properties. Dental medicine has benefited from the design of such materials and coatings in providing patients with tailored implants and improved materials for restorative and functional use. Such materials and coatings allow for better acceptance by the host body, promote successful implantation and determine a reduced inflammatory response after contact with the materials. Since numerous dental pathologies are influenced by the presence and activity of some pathogenic microorganisms, novel materials are needed to overcome this challenge as well. This paper aimed to reveal and discuss the most recent and innovative progress made in the field of materials surface modification in terms of microbial attachment inhibition and biofilm formation, with a direct impact on dental medicine.
Collapse
|
11
|
Carvalho FM, Teixeira-Santos R, Mergulhão FJM, Gomes LC. Effect of Lactobacillus plantarum Biofilms on the Adhesion of Escherichia coli to Urinary Tract Devices. Antibiotics (Basel) 2021; 10:antibiotics10080966. [PMID: 34439016 PMCID: PMC8388885 DOI: 10.3390/antibiotics10080966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/12/2023] Open
Abstract
Novel technologies to prevent biofilm formation on urinary tract devices (UTDs) are continually being developed, with the ultimate purpose of reducing the incidence of urinary infections. Probiotics have been described as having the ability to displace adhering uropathogens and inhibit microbial adhesion to UTD materials. This work aimed to evaluate the effect of pre-established Lactobacillus plantarum biofilms on the adhesion of Escherichia coli to medical-grade silicone. The optimal growth conditions of lactobacilli biofilms on silicone were first assessed in 12-well plates. Then, biofilms of L. plantarum were placed in contact with E. coli suspensions for up to 24 h under quasi-static conditions. Biofilm monitoring was performed by determining the number of culturable cells and by confocal laser scanning microscopy (CLSM). Results showed significant reductions of 76%, 77% and 99% in E. coli culturability after exposure to L. plantarum biofilms for 3, 6 and 12 h, respectively, corroborating the CLSM analysis. The interactions between microbial cell surfaces and the silicone surface with and without L. plantarum biofilms were also characterized using contact angle measurements, where E. coli was shown to be thermodynamically less prone to adhere to L. plantarum biofilms than to silicone. Thus, this study suggests the use of probiotic cells as potential antibiofilm agents for urinary tract applications.
Collapse
|
12
|
Abou-Hassan A, Barros A, Buchholz N, Carugo D, Clavica F, de Graaf P, de La Cruz J, Kram W, Mergulhao F, Reis RL, Skovorodkin I, Soria F, Vainio S, Zheng S. Potential strategies to prevent encrustations on urinary stents and catheters - thinking outside the box: a European network of multidisciplinary research to improve urinary stents (ENIUS) initiative. Expert Rev Med Devices 2021; 18:697-705. [PMID: 34085555 DOI: 10.1080/17434440.2021.1939010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Urinary stents have been around for the last 4 decades, urinary catheters even longer. They are associated with infections, encrustation, migration, and patient discomfort. Research efforts to improve them have shifted onto molecular and cellular levels. ENIUS brought together translational scientists to improve urinary implants and reduce morbidity.Methods & materials: A working group within the ENIUS network was tasked with assessing future research lines for the improvement of urinary implants.Topics were researched systematically using Embase and PubMed databases. Clinicaltrials.gov was consulted for ongoing trials.Areas covered: Relevant topics were coatings with antibodies, enzymes, biomimetics, bioactive nano-coats, antisense molecules, and engineered tissue. Further, pH sensors, biodegradable metals, bactericidal bacteriophages, nonpathogenic uropathogens, enhanced ureteric peristalsis, electrical charges, and ultrasound to prevent stent encrustations were addressed.Expert opinion: All research lines addressed in this paper seem viable and promising. Some of them have been around for decades but are yet to proceed to clinical application (i.e. tissue engineering). Others are very recent and, at least in urology, still only conceptual (i.e. antisense molecules). Perhaps the most important learning point resulting from this pan-European multidisciplinary effort is that collaboration between all stakeholders is not only fruitful but also truly essential.
Collapse
Affiliation(s)
- Ali Abou-Hassan
- Physico-chimie des Électrolytes Et Nanosystèmes Interfaciaux, Sorbonne Université, Paris, France
| | - Alexandre Barros
- 3B's Research Group, University of Minho, BarcoGuimaraes, Portugal
| | | | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London, London, UK
| | - Francesco Clavica
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Petra de Graaf
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julia de La Cruz
- U-merge, Scientific Office, Athens, Greece.,Jesus Uson Minimally Invasive Surgery Centre Foundation. Caceres, Spain
| | - Wolfgang Kram
- Department Of Urology, University Medical Center Rostock, Germany
| | - Filipe Mergulhao
- LEPABE, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, University of Minho, BarcoGuimaraes, Portugal
| | - Ilya Skovorodkin
- Organogenesis Laboratory, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Federico Soria
- Jesus Uson Minimally Invasive Surgery Centre Foundation. Caceres, Spain
| | - Seppo Vainio
- Flagship GeneCellNano, Infotech Oulu - Kvantum Institut, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Shaokai Zheng
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Carvalho FM, Teixeira-Santos R, Mergulhão FJM, Gomes LC. The Use of Probiotics to Fight Biofilms in Medical Devices: A Systematic Review and Meta-Analysis. Microorganisms 2020; 9:microorganisms9010027. [PMID: 33374844 PMCID: PMC7824608 DOI: 10.3390/microorganisms9010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022] Open
Abstract
Medical device-associated infections (MDAI) are a critical problem due to the increasing usage of medical devices in the aging population. The inhibition of biofilm formation through the use of probiotics has received attention from the medical field in the last years. However, this sparse knowledge has not been properly reviewed, so that successful strategies for biofilm management can be developed. This study aims to summarize the relevant literature about the effect of probiotics and their metabolites on biofilm formation in medical devices using a PRISMA-oriented (Preferred Reporting Items for Systematic reviews and Meta-Analyses) systematic search and meta-analysis. This approach revealed that the use of probiotics and their products is a promising strategy to hinder biofilm growth by a broad spectrum of pathogenic microorganisms. The meta-analysis showed a pooled effect estimate for the proportion of biofilm reduction of 70% for biosurfactants, 76% for cell-free supernatants (CFS), 77% for probiotic cells and 88% for exopolysaccharides (EPS). This review also highlights the need to properly analyze and report data, as well as the importance of standardizing the in vitro culture conditions to facilitate the comparison between studies. This is essential to increase the predictive value of the studies and translate their findings into clinical applications.
Collapse
|
14
|
Wu D, Li X, Yu Y, Gong B, Zhou X. Heparin stimulates biofilm formation of Escherichia coli strain Nissle 1917. Biotechnol Lett 2020; 43:235-246. [PMID: 33011901 DOI: 10.1007/s10529-020-03019-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Escherichia coli strain Nissle 1917 (EcN), a gut probiotic competing with pathogenic bacteria, has been used to attenuate various intestinal dysfunctions. Heparin is a sulfated glycosaminoglycan enriched in the human and animal intestinal mucosa, which has a close connection with bacterial biofilm formation. However, the characteristics of heparin affecting bacterial biofilm formation remain obscure. In this study, we investigated the influence of heparin and its derivatives on EcN biofilm formation. RESULTS Here, we found that heparin stimulated EcN biofilm formation in a dose-dependent manner. With the addition of native heparin, the EcN biofilm formation increased 6.9- to 10.8-fold than that without heparin, and was 1.4-, 3.1-, 3.0-, and 3.8-fold higher than that of N-desulfated heparin (N-DS), 2-O-desulfated heparin (2-O-DS), 6-O-desulfated heparin (6-O-DS), and N-/2-O-/6-O-desulfated heparin (N-/2-O-/6-O-DS), respectively. Depolymerization of heparin produced chain-shortened heparin fragments with decreased molecular weight. The depolymerized heparins did not stimulate EcN biofilm formation. The OD570 value of EcN biofilm with the addition of chain-shortened heparin fragments was 8.7-fold lower than that of the native heparin. Furthermore, the biofilm formation of Salmonella enterica serovar Typhimurium was also investigated with the addition of heparin derivatives, and the results were consistent with that of EcN biofilm formation. CONCLUSIONS We conclude that heparin stimulated EcN biofilm formation. Both the sulfation and chain-length of heparin contributed to the enhancement of EcN biofilm formation. This study increases the understanding of how heparin affects biofilm formation, indicating the potential role of heparin in promoting intestinal colonization of probiotics that antagonize pathogen infections.
Collapse
Affiliation(s)
- Dandan Wu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaomei Li
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yanying Yu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Bingxue Gong
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xianxuan Zhou
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
15
|
Young TD, Liau WT, Lee CK, Mellody M, Wong GCL, Kasko AM, Weiss PS. Selective Promotion of Adhesion of Shewanella oneidensis on Mannose-Decorated Glycopolymer Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35767-35781. [PMID: 32672931 DOI: 10.1021/acsami.0c04329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using glycopolymer surfaces, we have stimulated Shewanella oneidensis bacterial colonization and induced where the bacteria attach on a molecular pattern. When adherent bacteria were rinsed with methyl α-d-mannopyranoside, the glycopolymer-functionalized surfaces retained more cells than self-assembled monolayers terminated by a single mannose unit. These results suggest that the three-dimensional multivalency of the glycopolymers both promotes and retains bacterial attachment. When the methyl α-d-mannopyranoside competitor was codeposited with the cell culture, however, the mannose-based polymer was not significantly different from bare gold surfaces. The necessity for equilibration between methyl α-d-mannopyranoside and the cell culture to remove the enhancement suggests that the retention of cells on glycopolymer surfaces is kinetically controlled and is not a thermodynamic result of the cluster glycoside effect. The MshA lectin appears to facilitate the improved adhesion observed. Our findings that the surfaces studied here can induce stable initial attachment and influence the ratio of bacterial strains on the surface may be applied to harness useful microbial communities.
Collapse
Affiliation(s)
- Thomas D Young
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Walter T Liau
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Calvin K Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Gerard C L Wong
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Xu J, Xia K, Li P, Qian C, Li Y, Liang X. Functional investigation of the chromosomal ccdAB and hipAB operon in Escherichia coli Nissle 1917. Appl Microbiol Biotechnol 2020; 104:6731-6747. [PMID: 32535695 PMCID: PMC7293176 DOI: 10.1007/s00253-020-10733-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/23/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022]
Abstract
Toxin-antitoxin systems (TASs) have attracted much attention due to their important physiological functions. These small genetic factors have been widely studied mostly in commensal Escherichia coli strains, whereas the role of TASs in the probiotic E. coli Nissle 1917 (EcN) is still elusive. Here, the physiological role of chromosomally encoded type II TASs in EcN was examined. We showed that gene pair ECOLIN_00240-ECOLIN_00245 and ECOLIN_08365-ECOLIN_08370 were two functional TASs encoding CcdAB and HipAB, respectively. The homologs of CcdAB and HipAB were more conserved in E. coli species belonging to pathogenic groups, suggesting their important roles in EcN. CRISPRi-mediated repression of ccdAB and hipAB significantly reduced the biofilm formation of EcN in the stationary phase. Moreover, ccdAB and hipAB were shown to be responsible for the persister formation in EcN. Biofilm and persister formation of EcN controlled by the ccdAB and hipAB were associated with the expression of genes involved in DNA synthesis, SOS response, and stringent response. Besides, CRISPRi was proposed to be an efficient tool in annotating multiple TASs simultaneously. Collectively, our results advance knowledge and understanding of the role of TASs in EcN, which will enhance the utility of EcN in probiotic therapy. Key points • Two TASs in EcN were identified as hipAB and ccdAB. • Knockdown of HipAB and CcdAB resulted in decreased biofilm formation of EcN. • Transcriptional silencing of hipAB and ccdAB affected the persister formation of EcN. • An attractive link between TASs and stress response was unraveled in EcN. • CRISPRi afforded a fast and in situ annotation of multiple TASs simultaneously.
Collapse
Affiliation(s)
- Jun Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Pinyi Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chenggong Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
17
|
Barzegari A, Kheyrolahzadeh K, Hosseiniyan Khatibi SM, Sharifi S, Memar MY, Zununi Vahed S. The Battle of Probiotics and Their Derivatives Against Biofilms. Infect Drug Resist 2020; 13:659-672. [PMID: 32161474 PMCID: PMC7049744 DOI: 10.2147/idr.s232982] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
Biofilm-related infections have been a major clinical problem and include chronic infections, device-related infections and malfunction of medical devices. Since biofilms are not fully available for the human immune system and antibiotics, they are difficult to eradicate and control; therefore, imposing a global threat to human health. There have been avenues to tackle biofilms largely based on the disruption of their adhesion and maturation. Nowadays, the use of probiotics and their derivatives has gained a growing interest in battling against pathogenic biofilms. In the present review, we have a close look at probiotics with the ultimate objective of inhibiting biofilm formation and maturation. Overall, insights into the mechanisms by which probiotics and their derivatives can be used in the management of biofilm infections would be warranted.
Collapse
Affiliation(s)
- Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Azad University, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
18
|
Yunda E, Quilès F. In situ spectroscopic analysis of Lactobacillus rhamnosus GG flow on an abiotic surface reveals a role for nutrients in biofilm development. BIOFOULING 2019; 35:494-507. [PMID: 31177828 DOI: 10.1080/08927014.2019.1617279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
In this work, infrared spectroscopy was used to monitor the changes in the biochemical composition of biofilms of the probiotic bacterium Lactobacillus rhamnosus GG (LGG) in three nutritive media (10-fold diluted MRS, AOAC, and mTSB), in situ and under flow conditions. Epifluorescence microscopy was used to observe the shape of LGG cells and their distribution on the surface. Spectroscopic fingerprints recorded as a function of time revealed a medium-dependent content of nucleic acids, phospholipids and polysaccharides in the biofilms. In addition, time-dependent synthesis of lactic acid was observed in MRS/10 and AOAC/10. Polysaccharides were produced to the highest extent in mTSB/10, and the biofilms obtained were the densest in this medium. The rod shape of the cells was preserved in MRS/10, whereas acidic stress induced in AOAC/10 and the nutritional quality of mTSB/10 led to strong morphological changes. These alterations due to the nutritive environment are important to consider in research and use of LGG biofilms.
Collapse
Affiliation(s)
- Elena Yunda
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, Université de Lorraine , Villers-lès-Nancy , France
- Institut Jean Lamour, Université de Lorraine , Nancy , France
| | - Fabienne Quilès
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, Université de Lorraine , Villers-lès-Nancy , France
| |
Collapse
|
19
|
Zhu Z, Wang Z, Li S, Yuan X. Antimicrobial strategies for urinary catheters. J Biomed Mater Res A 2018; 107:445-467. [PMID: 30468560 DOI: 10.1002/jbm.a.36561] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023]
Abstract
Over 75% of hospital-acquired or nosocomial urinary tract infections are initiated by urinary catheters, which are used during the treatment of 16% of hospitalized patients. Taking the United States as an example, the costs of catheter-associated urinary tract infections (CAUTI) are in excess of $451 million dollars/year. The biofilm formation by pathogenic microbes that protects pathogens from host immune defense and antimicrobial agents is the leading cause for CAUTI. Thus, tremendous efforts have been devoted to antimicrobial coating for urinary catheters in the past few decades, and it has been demonstrated to be one of the most direct and efficient strategies to reduce infections. In this article, we briefly summarize the current methods for preparation of antimicrobial coatings based on different stages in the biofilm formation, highlight recent progress in the urinary catheter coating material design and selection, discuss approaches to improving their long-term antimicrobial efficacy, biocompatibility, multidrug resistance and recurrent infections, and finally outline future requirements and prospects in antimicrobial coating material design. The scope of the works surveyed is confined to antimicrobial urinary catheters. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 445-467, 2019.
Collapse
Affiliation(s)
- Zhiling Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, Shandong 262700, China
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
20
|
Xie S, Chen M, Song X, Zhang Z, Zhang Z, Chen Z, Li X. Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy. Acta Biomater 2018; 78:198-210. [PMID: 30036720 DOI: 10.1016/j.actbio.2018.07.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
Bacteria have inherent properties of self-propelled navigation and specific infiltration into solid tumors. In the current study, we investigate a novel type of bacterial microbots for delivery of hybrid micelles to promote the synergistic antitumor efficacy. Escherichia coli Nissle 1917 (EcN) is used as a bacterial carrier to immobilize amphiphilic copolymers through acid-labile 2-propionic-3-methylmaleic anhydride (CDM) linkers. Doxorubicin (DOX) and α-tocopheryl succinate (TOS) are conjugated with poly(ethylene glycol) through disulfide linkers to obtain amphiphilic promicelle polymers (PMTOS and PMDOX). Tetrazine and norbornene terminals are grafted on EcN and PMTOS/PMDOX copolymers, respectively, and the mild and site-specific bioorthogonal reaction between them maintains the viability, motion ability, and tumor accumulation capability of the conjugated EcN. The PMTOS/PMDOX copolymers are released from bacterial microbots in response to the slightly acidic tumor microenvironment, followed by in situ formation of these copolymers as hybrid micelles (MD/T). The self-assembled micelles from PMTOS/PMDOX with a ratio of 1:2 demonstrate the most significant synergistic efficacy, and the released MD/T hybrid micelles exhibit cellular uptake efficiency, glutathione (GSH)-sensitive drug release, and cytotoxicities similar to those exhibited by micelles prepared by solvent evaporation. Because of the consecutive process of the self-propelling nature of bacteria and preferential accumulation of EcN in tumors, in situ formation of MD/T hybrid micelles, and intracellular drug release, bacterial microbots have shown remarkable antitumor efficacy with regard to animal survival, tumor growth, and apoptosis induction in tumor cells. Therefore, we demonstrate a feasible strategy for the construction of bacterial microbots to achieve tumor accumulation and on-demand release of multiple therapeutic agents for synergistic antitumor efficacy. STATEMENT OF SIGNIFICANCE Challenges remain in the targeted delivery of nanoparticles to solid tumors and the realization of synergistic efficacy in cancer chemotherapy. In the current study, we explore a novel class of bacterial microbots to load, deliver, and release hybrid micelles. Escherichia coli Nissle 1917 (EcN) is used as a bacterial carrier to immobilize amphiphilic copolymers through acid-labile linkers, and the released copolymers are self-assembled into micelles. The resulting bacterial microbots integrate self-propelling bacteria and self-assembling amphiphilic polymers into micelles and realize pH-responsive release of promicelle polymers from bacterial microbots and glutathione-responsive intracellular release of drugs. A synergistic antitumor efficacy is achieved using hybrid micelles, which release both doxorubicin and α-tocopheryl succinate to display toxicities in the nucleus and mitochondria, respectively.
Collapse
|