1
|
van Kampen KA, Olaret E, Stancu IC, Moroni L, Mota C. Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111472. [PMID: 33321595 DOI: 10.1016/j.msec.2020.111472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/21/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022]
Abstract
Many tubular tissues such as blood vessels and trachea can suffer long-segmental defects through trauma and disease. With current limitations in the use of autologous grafts, the need for a synthetic substitute is of continuous interest as possible alternatives. Fabrication of these tubular organs is commonly done with techniques such as electrospinning and melt electrowriting using a rotational collector. Current additive manufacturing (AM) systems do not commonly implement the use of a rotational axis, which limits their application for the fabrication of tubular scaffolds. In this study, a four axis extrusion-based AM system similar to fused deposition modeling (FDM) has been developed to create tubular hollow scaffolds. A rectangular and a diamond pore design were further investigated for mechanical characterization, as a standard and a biomimicry pore geometry respectively. We demonstrated that in the radial compression mode the diamond pore design had a higher Young's modulus (19,8 ± 0,7 MPa compared to 2,8 ± 0,5 MPa), while in the longitudinal tensile mode the rectangular pore design had a higher Young's modulus (5,8 ± 0,2 MPa compared to 0,1 ± 0,01 MPa). Three-point bending analyses revealed that the diamond pore design is more resistant to luminal collapse compared to the rectangular design. This data showed that by changing the scaffold pore design, a wide range of mechanical properties could be obtained. Furthermore, a full control over scaffold design and geometry can be achieved with the developed 4-axis extrusion-based system, which has not been reported with other techniques. This flexibility allow the manufacturing of scaffolds for diverse tubular tissue regeneration applications by designing suitable deposition patterns to match their mechanical pre-requisites.
Collapse
Affiliation(s)
- Kenny A van Kampen
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, the Netherlands
| | - Elena Olaret
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Izabela-Cristina Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, the Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, the Netherlands.
| |
Collapse
|
2
|
Dhasmana A, Singh A, Rawal S. Biomedical grafts for tracheal tissue repairing and regeneration "Tracheal tissue engineering: an overview". J Tissue Eng Regen Med 2020; 14:653-672. [PMID: 32064791 DOI: 10.1002/term.3019] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Airway system is a vital part of the living being body. Trachea is the upper respiratory portion that connects nostril and lungs and has multiple functions such as breathing and entrapment of dust/pathogen particles. Tracheal reconstruction by artificial prosthesis, stents, and grafts are performed clinically for the repairing of damaged tissue. Although these (above-mentioned) methods repair the damaged parts, they have limited applicability like small area wounds and lack of functional tissue regeneration. Tissue engineering helps to overcome the above-mentioned problems by modifying the traditional used stents and grafts, not only repair but also regenerate the damaged area to functional tissue. Bioengineered tracheal replacements are biocompatible, nontoxic, porous, and having 3D biomimetic ultrastructure with good mechanical strength, which results in faster and better tissue regeneration. Till date, the bioengineered tracheal replacements studies have been going on preclinical and clinical levels. Besides that, still many researchers are working at advance level to make extracellular matrix-based acellular, 3D printed, cell-seeded grafts including living cells to overcome the demand of tissue or organ and making the ready to use tracheal reconstructs for clinical application. Thus, in this review, we summarized the tracheal tissue engineering aspects and their outcomes.
Collapse
Affiliation(s)
- Archna Dhasmana
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Atul Singh
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Sagar Rawal
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Janke HP, de Jonge PK, Feitz WF, Oosterwijk E. Reconstruction Strategies of the Ureter and Urinary Diversion Using Tissue Engineering Approaches. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:237-248. [DOI: 10.1089/ten.teb.2018.0345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Heinz P. Janke
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul K.J.D. de Jonge
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout F.J. Feitz
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Zhou H, Zhou J, Wang T, Zeng J, Liu L, Jian J, Zhou Z, Zeng L, Liu Q, Liu G. In-situ preparation of silver salts/collagen fiber hybrid composites and their photocatalytic and antibacterial activities. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:274-280. [PMID: 30041120 DOI: 10.1016/j.jhazmat.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
To promote the utilization of collagen fiber, silver salts/collagen fiber hybrid composites with photocatalytic and antibacterial activities were successfully prepared in this study via the in-situ organic-inorganic process. The surface morphology, chemical composition and structure were discussed. Scanning electron microscopy (SEM) observation showed that the silver salts/collagen fiber hybrid composites were successfully prepared with silver salt particles (300-500 nm) distributing evenly on the surface of collagen fiber. X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FTIR) analysis provided strong evidence for the successful coating of silver salts on the surface of collagen fiber and the hybrid mechanism was subsequently discussed. The photocatalytic activity was evaluated by degrading methyl orange (MO) under ultraviolet (UV) light and visible light, respectively. The results indicated that AgCl/Collagen Fiber showed the most efficient photocatalytic activity under UV and visible light irradiation. Furthermore, the introduction of Ag+ endowed the photocatalysts with antibacterial performance, which was investigated by measuring the width of the bacteriostatic belts. The results indicated the antibacterial activity of the composites, proving that the photocatalysts were durable and reusable.
Collapse
Affiliation(s)
- Hu Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jie Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Taofen Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Lihua Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jian Jian
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Lingwei Zeng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Qingquan Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guoqing Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
5
|
Janke HP, Güvener N, Dou W, Tiemessen DM, YantiSetiasti A, Cremers JGO, Borm PJA, Feitz WFJ, Heerschap A, Kiessling F, Oosterwijk E. Labeling of Collagen Type I Templates with a Naturally Derived Contrast Agent for Noninvasive MR Imaging in Soft Tissue Engineering. Adv Healthc Mater 2018; 7:e1800605. [PMID: 30058274 DOI: 10.1002/adhm.201800605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/26/2018] [Indexed: 12/14/2022]
Abstract
In vivo monitoring of tissue-engineered constructs is important to assess their integrity, remodeling, and degradation. However, this is challenging when the contrast with neighboring tissues is low, necessitating labeling with contrast agents (CAs), but current CAs have limitations (i.e., toxicity, negative contrast, label instability, and/or inappropriate size). Therefore, a naturally derived hemin-L-lysine (HL) complex is used as a potential CA to label collagen-based templates for magnetic resonance imaging (MRI). Labeling does not change the basic characteristics of the collagen templates. When hybrid templates composed of collagen type I reinforced with degradable polymers are subcutaneously implanted in mice, longitudinal visualization by MRI is possible with good contrast and in correlation with template remodeling. In contrast, unlabeled collagen templates are hardly detectable and the fate of these templates cannot be monitored by MRI. Interestingly, tissue remodeling and vascularization are enhanced within HL-labeled templates. Thus, HL labeling is presented as a promising universal imaging marker to label tissue-engineered implants for MRI, which additionally seems to accelerate tissue regeneration.
Collapse
Affiliation(s)
- Heinz P. Janke
- Department of Urology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Geert Grooteplein 28 6525 GA Nijmegen The Netherlands
| | - Nihan Güvener
- Institute for Experimental Molecular Imaging; Center for Biohybrid Medical Systems Uniklinik RWTH and Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Forckenbeckstr. 55 52074 Aachen Germany
- Nano4Imaging GmbH; Zentrum für Biomedizintechnik (ZBMT); Pauwelsstrasse 17 52074 Aachen Germany
| | - Weiqiang Dou
- Department of Radiology and Nuclear Medicine; Radboud University Medical Center; PO Box 9101 6500 HB Nijmegen The Netherlands
- GE Healthcare; MR Research China; Beijing 100176 China
| | - Dorien M. Tiemessen
- Department of Urology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Geert Grooteplein 28 6525 GA Nijmegen The Netherlands
| | - Anglita YantiSetiasti
- Department of Urology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Geert Grooteplein 28 6525 GA Nijmegen The Netherlands
- Department of Anatomical Pathology; Faculty of Medicine; University of Padjadjaran; Jalan Professor Eyckman No. 38; Bandung 4016 Indonesia
| | - Jozef G. O. Cremers
- Institute for Experimental Molecular Imaging; Center for Biohybrid Medical Systems Uniklinik RWTH and Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Forckenbeckstr. 55 52074 Aachen Germany
- Nano4Imaging GmbH; Zentrum für Biomedizintechnik (ZBMT); Pauwelsstrasse 17 52074 Aachen Germany
| | - Paul J. A. Borm
- Nano4Imaging GmbH; Zentrum für Biomedizintechnik (ZBMT); Pauwelsstrasse 17 52074 Aachen Germany
| | - Wout F. J. Feitz
- Department of Urology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Geert Grooteplein 28 6525 GA Nijmegen The Netherlands
- Radboudumc Amalia Children's Hospital; Radboud University Medical Center; Geert Grooteplein 28 6525 GA Nijmegen The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine; Radboud University Medical Center; PO Box 9101 6500 HB Nijmegen The Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging; Center for Biohybrid Medical Systems Uniklinik RWTH and Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Forckenbeckstr. 55 52074 Aachen Germany
| | - Egbert Oosterwijk
- Department of Urology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Geert Grooteplein 28 6525 GA Nijmegen The Netherlands
| |
Collapse
|
6
|
Sloff M, Janke HP, de Jonge PKJD, Tiemessen DM, Kortmann BBM, Mihaila SM, Geutjes PJ, Feitz WFJ, Oosterwijk E. The Impact of γ-Irradiation and EtO Degassing on Tissue Remodeling of Collagen-based Hybrid Tubular Templates. ACS Biomater Sci Eng 2018; 4:3282-3290. [PMID: 30221191 PMCID: PMC6134342 DOI: 10.1021/acsbiomaterials.8b00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022]
Abstract
![]()
Clinical
implementation of novel products for tissue engineering
and regenerative medicine requires a validated sterilization method.
In this study, we investigated the effect of γ-irradiation and
EtO degassing on material characteristics in vitro and the effect on template remodeling of hybrid tubular constructs
in a large animal model. Hybrid tubular templates were prepared from
type I collagen and Vicryl polymers and sterilized by 25 kGray of
γ-irradiation or EtO degassing. The in vitro characteristics were extensively studied, including tensile strength
analysis and degradation studies. For in vivo evaluation,
constructs were subcutaneously implanted in goats for 1 month to form
vascularized neo-tissue. Macroscopic and microscopic appearances of
the γ- and EtO-sterilized constructs slightly differed due to
additional processing required for the COL-Vicryl-EtO constructs.
Regardless of the sterilization method, incubation in urine resulted
in fast degradation of the Vicryl polymer and decreased strength (<7
days). Incubation in SBF was less invasive, and strength was maintained
for at least 14 days. The difference between the two sterilization
methods was otherwise limited. In contrast, subcutaneous implantation
showed that the effect of sterilization was considerable. A well-vascularized
tube was formed in both cases, but the γ-irradiated construct
showed an organized architecture of vasculature and was mechanically
more comparable to the native ureter. Moreover, the γ-irradiated
construct showed advanced tissue remodeling as shown by enhanced ECM
production. This study shows that the effect of sterilization on tissue
remodeling cannot be predicted by in vitro analyses
alone. Thus, validated sterilization methods should be incorporated
early in the development of tissue engineered products, and this requires
both in vitro and in vivo analyses.
Collapse
Affiliation(s)
- Marije Sloff
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28 Zuid, 6525 GA Nijmegen, The Netherlands
| | - Heinz P Janke
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28 Zuid, 6525 GA Nijmegen, The Netherlands
| | - Paul K J D de Jonge
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28 Zuid, 6525 GA Nijmegen, The Netherlands
| | - Dorien M Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28 Zuid, 6525 GA Nijmegen, The Netherlands
| | - Barbara B M Kortmann
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28 Zuid, 6525 GA Nijmegen, The Netherlands.,Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Geert Grooteplein 10 Zuid, 6525 GA Nijmegen, The Netherlands
| | - Silvia M Mihaila
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28 Zuid, 6525 GA Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28 Zuid, 6525 GA Nijmegen, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28 Zuid, 6525 GA Nijmegen, The Netherlands.,Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Geert Grooteplein 10 Zuid, 6525 GA Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28 Zuid, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
7
|
Ma F, Xu F, Li R, Zheng Y, Wang F, wei N, zhong J, Tang Q, Zhu T, Wang Z, Zhu J. Sustained delivery of glial cell-derived neurotrophic factors in collagen conduits for facial nerve regeneration. Acta Biomater 2018; 69:146-155. [PMID: 29330037 DOI: 10.1016/j.actbio.2018.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Facial nerve injury caused by traffic accidents or operations may reduce the quality of life in patients, and recovery following the injury presents unique clinical challenges. Glial cell-derived neurotrophic factor (GDNF) is important in nerve regeneration; however, soluble GDNF rapidly diffuses into body fluids, making it difficult to achieve therapeutic efficacy. In this work, we developed a rat tail derived collagen conduit to connect nerve defects in a simple and safe manner. GDNF was immobilized in the collagen conduits via chemical conjugation to enable controlled release of GDNF. The GDNF delivery system prevented rapid diffusion from the site without impacting bioactivity of GDNF; degradation of the collagen conduit was inhibited owing to the chemical conjugation. The artificial nerve conduit was then used to examine facial nerve regeneration across a facial nerve defect. Following transplantation, the artificial nerve conduits degraded gradually without causing dislocations and serious inflammation, with good integration into the host tissue. Functional and histological tests indicated that the artificial nerve conduits were able to guide the axons to grow through the defect, reaching the distal stumps. The degree of nerve regeneration in the group that was treated with the artificial nerve conduit approached that of the autograft group, and exceeded that of the other conduit grafted groups. STATEMENT OF SIGNIFICANCE In this study, we developed artificial nerve conduits consisting of GDNF immobilized on collagen, with the aim of providing an environment for nerve regeneration. Our results show that the artificial nerve conduits guided the regeneration of axons to the distal nerve segment. GDNF was immobilized stably in the artificial nerve conduits, and therefore retained a sufficient concentration at the target site to effectively promote the regeneration process. The artificial nerve conduits exhibited good biocompatibility and facilitated nerve regeneration and functional recovery with an efficacy that was close to that of an autograft, and better than that of the other conduit grafted groups. Our approach provides an effective delivery system that overcomes the rapid diffusion of GDNF in body fluids, promoting peripheral nerve regeneration. The artificial nerve conduit therefore qualifies as a putative candidate material for the fabrication of peripheral nerve reconstruction devices.
Collapse
|