1
|
Zhao M, Zhu X, Li B, Yan C, Wu C, He L, Cao J, Lu F, Chen H, Li W. Potent cancer therapy by liposome microstructure tailoring with active-to-passive targeting and shell-to-core thermosensitive features. Mater Today Bio 2024; 26:101035. [PMID: 38586871 PMCID: PMC10995888 DOI: 10.1016/j.mtbio.2024.101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Liposomes have been widely studied as drug carriers for clinical application, and the key issue is how to achieve effective delivery through targeting strategies. Even though certain cell-level targeting or EPR effect designs have been developed, reaching sufficient drug concentration in intracellular regions remains a challenge due to the singularity of functionality. Herein, benefiting from the unique features of tumor from tissue to cell, a dual-thermosensitive and dual-targeting liposome (DTSL) was creatively fabricated through fine microstructure tailoring, which holds intelligent both tissue-regulated active-to-passive binding and membrane-derived homologous-fusion (HF) properties. At the micro level, DTSL can actively capture tumor cells and accompany the enhanced HF effect stimulated by self-constriction, which achieves a synergistic promotion effect targeting tissues to cells. As a result, this first active-then passive targeting process makes drug delivery more accurate and effective, and after dynamic targeting into cells, the nucleus of DTSL undergoes further thermally responsive contraction, fully releasing internal drugs. In vivo experiments showed that liposomes with dual targeting and dual thermosensitive features almost completely inhibited tumor growth. Summarized, these results provide a reference for a rational design and microstructural tailoring of the liposomal co-delivery system of drugs, suggesting that active-to-passive dual-targeting DTSL can function as a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Zhao
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Xiaodong Zhu
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Bailing Li
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenyang Yan
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Cong Wu
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Lei He
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingyi Cao
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fanglin Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Han Chen
- Department of General Surgery, 905th Hospital of People's Liberation Army Navy, Naval Medical University, Shanghai, 200433, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
2
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int J Mol Sci 2022; 24:ijms24010186. [PMID: 36613630 PMCID: PMC9820439 DOI: 10.3390/ijms24010186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Self-assembled peptide-based gels provide several advantages for technological applications. Recently, the co-assembly of gelators has been a strategy to modulate and tune gel properties and even implement stimuli-responsiveness. However, it still comprises limitations regarding the required library of compounds and outcoming properties. Hence, efforts have been made to combine peptide-based gels and (in)organic composites (e.g., magnetic nanoparticles, metal nanoparticles, liposomes, graphene, silica, clay, titanium dioxide, cadmium sulfide) to endow stimuli-responsive materials and achieve suitable properties in several fields ranging from optoelectronics to biomedical. Herein, we discuss the recent developments with composite peptide-based gels including the fabrication, tunability of gels' properties, and challenges on (bio)technological applications.
Collapse
|
4
|
Sebastian V. Toward continuous production of high-quality nanomaterials using microfluidics: nanoengineering the shape, structure and chemical composition. NANOSCALE 2022; 14:4411-4447. [PMID: 35274121 DOI: 10.1039/d1nr06342a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last decade, a multitude of synthesis strategies has been reported for the production of high-quality nanoparticles. Wet-chemical methods are generally the most efficient synthesis procedures since high control of crystallinity and physicochemical properties can be achieved. However, a number of challenges remain from inadequate reaction control during the nanocrystallization process; specifically variability, selectivity, scalability and safety. These shortcomings complicate the synthesis, make it difficult to obtain a uniform product with desired properties, and present serious limitations for scaling the production of colloidal nanocrystals from academic studies to industrial applications. Continuous flow reactors based on microfluidic principles offer potential solutions and advantages. The reproducibility of reaction conditions in microfluidics and therefore product quality have proved to exceed those obtained by batch processing. Considering that in nanoparticles' production not only is it crucial to control the particle size distribution, but also the shape and chemical composition, this review presents an overview of the current state-of-the-art in synthesis of anisotropic and faceted nanostructures by using microfluidics techniques. The review surveys the available tools that enable shape and chemical control, including secondary growth methods, active segmented flow, and photoinduced shape conversion. In addition, emphasis is placed on the available approaches developed to tune the structure and chemical composition of nanomaterials in order to produce complex heterostructures in a continuous and reproducible fashion.
Collapse
Affiliation(s)
- Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Department of Chemical Engineering and Environmental Technologies, University de Zaragoza, 50018, Zaragoza, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
5
|
Dong Y, Li S, Li X, Wang X. Smart MXene/agarose hydrogel with photothermal property for controlled drug release. Int J Biol Macromol 2021; 190:693-699. [PMID: 34520776 DOI: 10.1016/j.ijbiomac.2021.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023]
Abstract
Smart hydrogels responsive to minimally invasive near-infrared (NIR) light have great potential in localized drug delivery for cancer treatment, but they still show some limitations such as low photothermal conversion, poor photothermal stability, and improper temperature range in biomedical applications. In this paper, the two-dimensional MXene nanosheets with high photothermal conversion efficiency as well as photothermal stability was firstly prepared, then the MXene nanosheets and the therapeutic drug were embedded in the low-melting-point agarose hydrogel network to fabricate the drug-loaded MXene/agarose hydrogel (MXene@Hydrogel). With the addition of low concentration of MXene (20 ppm), the MXene@Hydrogel could quickly rise to 60 °C under NIR irradiation and melt to release the encapsulated drugs. Importantly, the drug on/off release and the kinetics could be easily controlled with varied agarose concentration, MXene concentration, light intensity, and exposure time. In addition, the drug doxorubicin retained the anticancer activity after released from the MXene@Hydrogel network under NIR irradiation. With the excellent biocompatibility, the newly fabricated NIR-responsive MXene@Hydrogel offers a novel way for the development of smart hydrogel-based drug delivery system for localized cancer treatment.
Collapse
Affiliation(s)
- Yangjin Dong
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shanshan Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Light K, Karboune S. Emulsion, hydrogel and emulgel systems and novel applications in cannabinoid delivery: a review. Crit Rev Food Sci Nutr 2021; 62:8199-8229. [PMID: 34024201 DOI: 10.1080/10408398.2021.1926903] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Emulsions, hydrogels and emulgels have attracted a high interest as tools for the delivery of poorly soluble hydrophobic nutraceuticals by enhancing their stability and bioavailability. This review provides an overview of these delivery systems, their unique qualities and their interactions with the human gastrointestinal system. The modulation of the various delivery systems to enhance the bioavailability and modify the release profile of bioactive encapsulates is highlighted. The application of the delivery systems in the delivery of cannabinoids is also discussed. With the recent increase of cannabis legalization across North America, there is much interest in developing cannabis edibles which can provide a consistent dose of cannabinoids per portion with a rapid time of onset. Indeed, the long time of onset of psychoactive effects and varied metabolic responses to these products result in a high risk of severe intoxication due to overconsumption. Sophisticated emulsion or hydrogel-based delivery systems are one potential tool to achieve this goal. To date, there is a lack of evidence linking specific classes of delivery systems with their pharmacokinetic profiles in humans. More research is needed to directly compare different classes of delivery systems for the gastrointestinal delivery of cannabinoids.
Collapse
Affiliation(s)
- Kelly Light
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Canada
| |
Collapse
|
7
|
Sun H, Feng M, Chen S, Wang R, Luo Y, Yin B, Li J, Wang X. Near-infrared photothermal liposomal nanoantagonists for amplified cancer photodynamic therapy. J Mater Chem B 2021; 8:7149-7159. [PMID: 32617545 DOI: 10.1039/d0tb01437k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) has been demonstrated to be a promising strategy for the treatment of cancer, while its therapeutic efficacy is often compromised due to excessive concentrations of glutathione (GSH) as a reactive oxygen species (ROS) scavenger in cancer cells. Herein, we report the development of near-infrared (NIR) photothermal liposomal nanoantagonists (PLNAs) for amplified PDT through through the reduction of intracellular GSH biosynthesis. Such PLNAs were constructed via encapsulating a photosensitizer, indocyanine green (ICG) and a GSH synthesis antagonist, l-buthionine sulfoximine (BSO) into a thermal responsive liposome. Under NIR laser irradiation at 808 nm, PLNAs generate mild heat via a ICG-mediated photothermal conversion effect, which leads to the destruction of thermal responsive liposomes for a controlled release of BSO in a tumor microenvironment, ultimately reducing GSH levels. This amplifies intracellular oxidative stresses and thus synergizes with PDT to afford an enhanced therapeutic efficacy. Both in vitro and in vivo data verify that PLNA-mediated phototherapy has an at least 2-fold higher efficacy in killing cancer cells and inhibiting tumor growth compared to sole PDT. This study thus demonstrates a NIR photothermal drug delivery nanosystem for amplified photomedicine.
Collapse
Affiliation(s)
- Haitao Sun
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Meixia Feng
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Siyu Chen
- Department of Medical Imaging, The Third Affiliated Hospital, Orthopedic Hospital of Guangdong Province, Southern Medical University, Guangdong 510000, China
| | - Ruizhi Wang
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu Luo
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bo Yin
- Radiology Department, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Xiaolin Wang
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
9
|
Misra R, Acharya S. Smart nanotheranostic hydrogels for on-demand cancer management. Drug Discov Today 2020; 26:344-359. [PMID: 33212236 DOI: 10.1016/j.drudis.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Theranostics is a revolution in cancer therapy. Hydrogels have many implications as a drug delivery vehicle and theranostics hydrogels could be a model nanotherapeutic for simultaneous cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ranjita Misra
- Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Sarbari Acharya
- Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
10
|
|
11
|
Li Y, Yan T, Chang W, Cao C, Deng D. Fabricating an intelligent cell-like nano-prodrug via hierarchical self-assembly based on the DNA skeleton for suppressing lung metastasis of breast cancer. Biomater Sci 2019; 7:3652-3661. [DOI: 10.1039/c9bm00630c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new intelligent cell-like nanostructure is designed for suppressing lung metastasis of breast cancer.
Collapse
Affiliation(s)
- Yunyan Li
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Tong Yan
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Wenya Chang
- Department of Pharmaceutical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Chongjiang Cao
- National R&D Center for Chinese Herbal Medicine Processing
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Dawei Deng
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| |
Collapse
|
12
|
Pro-angiogenic near infrared-responsive hydrogels for deliberate transgene expression. Acta Biomater 2018; 78:123-136. [PMID: 30098440 DOI: 10.1016/j.actbio.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022]
Abstract
CuS nanoparticles (CuSNP) are degradable, readily prepared, inexpensive to produce and efficiently cleared from the body. In this work, we explored the feasibility of CuSNP to function as degradable near infrared (NIR) nanotransducers within fibrin-based cellular scaffolds. To prepare NIR-responsive CuSNP hydrogels, fibrinogen was dissolved in cell culture medium and supplemented with aqueous dispersions of CuSNP. Fibrinogen polymerization was catalyzed by the addition of thrombin. In some experiments, HUVEC, C3H/10T1/2 or C3H/10T1/2-fLuc cells, that harbor a heat-activated and rapamycin-dependent gene switch for regulating the expression of firefly luciferase transgene, were incorporated to the sol phase of the hydrogel. For in vivo experiments, hydrogels were injected subcutaneously in the back of adult C3H/HeN mice. Upon NIR irradiation, CuSNP hydrogels allowed heat-inducible and rapamycin-dependent transgene expression in cells contained therein, in vitro and in vivo. C3H/10T1/2 cells cultured in CuSNP hydrogels increased metabolic activity, survival rate and fibrinolytic activity, which correlated with changes at the transcriptome level. Media conditioned by CuSNP hydrogels increased viability of HUVEC which formed pseudocapillary structures and remodeled protein matrix when entrapped within these hydrogels. After long-term implantation, the skin patches that covered the CuSNP hydrogels showed increased capillary density which was not detected in mice implanted with matrices lacking CuSNP. In summary, NIR-responsive scaffolds harboring CuSNP offer compelling features in the tissue engineering field, as degradable implants with enhanced integration capacity in host tissues that can provide remote controlled deployment of therapeutic gene products. STATEMENT OF SIGNIFICANCE Hydrogels composed of fibrin embedding copper sulfide nanoparticles (CuSNP) efficiently convert incident near infrared (NIR) energy into heat and can function as cellular scaffolding. NIR laser irradiation of CuSNP hydrogels can be employed to remotely induce spatiotemporal patterns of transgene expression in genetically engineered multipotent stem cells. CuSNP incorporation in hydrogel architecture accelerates the cell-mediated degradation of the fibrin matrix and induces pro-angiogenic responses that may facilitate the integration of these NIR-responsive scaffolds in host tissues. CuSNP hydrogels that harbor cells capable of controlled expression of therapeutic gene products may be well suited for tissue engineering as they are biodegradable, enhance implant vascularization and can be used to deploy growth factors in a desired spatiotemporal fashion.
Collapse
|
13
|
Abstract
Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Rongying Zhu
- Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
14
|
Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discov Today 2018; 23:1115-1125. [PMID: 29481876 DOI: 10.1016/j.drudis.2018.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/18/2018] [Accepted: 02/19/2018] [Indexed: 01/11/2023]
Abstract
In recent years, research has focused on the development of smart nanocarriers that can respond to specific stimuli. Among the various stimuli-responsive platforms for cancer therapy, near-infrared (NIR) light (700-1000nm)-responsive nanocarriers have gained considerable interest because of their deeper tissue penetration capacity, precisely controlled drug release, and minimal damage towards normal tissues. In this review, we outline various therapeutic applications of NIR-responsive nanocarriers in drug delivery, photothermal therapy (PTT), photodynamic therapy (PDT), and bioimaging. We also highlight recent trends towards NIR-responsive combinatorial therapy and multistimuli-responsive nanocarriers for improving therapeutic outcomes.
Collapse
|