1
|
Bodenstein DF, Siebiger G, Zhao Y, Clasky AJ, Mukkala AN, Beroncal EL, Banh L, Aslostovar L, Brijbassi S, Hogan SE, McCully JD, Mehrabian M, Petersen TH, Robinson LA, Walker M, Zachos C, Viswanathan S, Gu FX, Rotstein OD, Cypel M, Radisic M, Andreazza AC. Bridging the gap between in vitro and in vivo models: a way forward to clinical translation of mitochondrial transplantation in acute disease states. Stem Cell Res Ther 2024; 15:157. [PMID: 38816774 PMCID: PMC11140916 DOI: 10.1186/s13287-024-03771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Mitochondrial transplantation and transfer are being explored as therapeutic options in acute and chronic diseases to restore cellular function in injured tissues. To limit potential immune responses and rejection of donor mitochondria, current clinical applications have focused on delivery of autologous mitochondria. We recently convened a Mitochondrial Transplant Convergent Working Group (CWG), to explore three key issues that limit clinical translation: (1) storage of mitochondria, (2) biomaterials to enhance mitochondrial uptake, and (3) dynamic models to mimic the complex recipient tissue environment. In this review, we present a summary of CWG conclusions related to these three issues and provide an overview of pre-clinical studies aimed at building a more robust toolkit for translational trials.
Collapse
Affiliation(s)
- David F Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Gabriel Siebiger
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Avinash N Mukkala
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Erika L Beroncal
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Lauren Banh
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Lili Aslostovar
- Centre for Commercialization of Regenerative Medicine, Toronto, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Sarah E Hogan
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - James D McCully
- Harvard Medical School, Boston, USA
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, USA
| | | | - Thomas H Petersen
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington, Seattle, USA
| | | | - Sowmya Viswanathan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Frank X Gu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Ori D Rotstein
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Toronto Lung Transplant Program, Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
3
|
Khizar S, Alrushaid N, Alam Khan F, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Nanocarriers based novel and effective drug delivery system. Int J Pharm 2023; 632:122570. [PMID: 36587775 DOI: 10.1016/j.ijpharm.2022.122570] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Nanotechnology has ultimately come into the domain of drug delivery. Nanosystems for delivery of drugs are promptly emerging science utilizing different nanoparticles as carriers. Biocompatible and stable nanocarriers are novel diagnosis tools or therapy agents for explicitly targeting locates with controllable way. Nanocarriers propose numerous advantages to treat diseases via site-specific as well as targeted delivery of particular therapeutics. In recent times, there are number of outstanding nanocarriers use to deliver bio-, chemo-, or immuno- therapeutic agents to obtain effectual therapeutic reactions and to minimalize unwanted adverse-effects. Nanoparticles possess remarkable potential for active drug delivery. Moreover, conjugation of drugs with nanocarriers protects drugs from metabolic or chemical modifications, through their way to targeted cells and hence increased their bioavailability. In this review, various systems integrated with different types of nanocarriers (inorganic. organic, quantum dots, and carbon nanotubes) having different compositions, physical and chemical properties have been discussed for drug delivery applications.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France
| | - Noor Alrushaid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France; Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France.
| |
Collapse
|
4
|
Balafouti A, Pispas S. Hyperbranched Polyelectrolyte Copolymers as Novel Candidate Delivery Systems for Bio-Relevant Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1045. [PMID: 36770053 PMCID: PMC9921860 DOI: 10.3390/ma16031045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/12/2023]
Abstract
In this study, reversible addition-fragmentation chain transfer (RAFT) polymerization is utilized in order to synthesize novel hyperbranched poly(oligoethylene glycol) methyl ether methacrylate-co-tert-butyl methacrylate-co-methacrylic acid) (H-[P(OEGMA-co-tBMA-co-MAA)]) copolymers in combination with selective hydrolysis reactions. The copolymers showing amphiphilicity induced by the polar OEGMA and hydrophobic tBMA monomeric units, and polyelectrolyte character due to MAA units, combined with unique macromolecular architecture were characterized by physicochemical techniques, such as size exclusion chromatography (SEC) and 1H-NMR spectroscopy. The hyperbranched copolymers were investigated in terms of their ability to self-assemble into nanostructures when dissolved in aqueous media. Dynamic light scattering and fluorescence spectroscopy revealed multimolecular aggregates of nanoscale dimensions with low critical aggregation concentration, the size and mass of which depend on copolymer composition and solution conditions, whereas zeta potential measurements indicated pH sensitive features. In addition, aiming to evaluate their potential use as nanocarriers, the copolymers were studied in terms of their drug encapsulation and protein complexation ability utilizing curcumin and lysozyme, as a model hydrophobic drug and a model cationic protein, respectively.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
5
|
Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202201288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ragini Singh
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Amrita Prasad
- Department of Chemistry Magadh Mahila College Patna University Patna Bihar. India
| | - Binayak Kumar
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Soni Kumari
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Ram Krishna Sahu
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Suresh T. Hedau
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| |
Collapse
|
6
|
Zhang S, Li J, Ren J, Xue Z, Qi X, Si Q. Cyclic RGD functionalized PLGA nanoparticles loaded with noncovalent complex of indocyanine green with urokinase for synergistic thrombolysis. Front Bioeng Biotechnol 2022; 10:945531. [PMID: 36032719 PMCID: PMC9399888 DOI: 10.3389/fbioe.2022.945531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Thrombotic diseases have the characteristics of long latency period, rapid onset, and high mortality rate, which seriously threaten people's life and health. The aim of this research is to fabricate a novel indocyanine green complex of urokinase (ICG@uPA) and employ the amphiphilic PEG-PLGA polymer to deliver the complex as an enzyme-phototherapeutic synergistic thrombolysis platform. The noncovalent indocyanine green (ICG) complex of urokinase (ICG@uPA) was prepared via supramolecular self-assembly and then encapsulated into cRGD decorated polymeric nanoparticles (cRGD-ICG-uPA NPs) by double-emulsion solvent evaporation method. Then the nanoparticles (NPs) were characterized in terms of particle size, optical properties, in vitro release, etc. The targeting and thrombolytic effect of the nanoparticles were studied both in vitro and in vivo. ICG@uPA and cRGD-ICG-uPA NPs displayed significantly higher photostability and laser energy conversion efficiency than free ICG. Concomitantly, the NPs exhibited selective binding affinity to the activated platelets and specific accumulation in the mouse mesenteric vessel thrombus. Significant thrombolysis was achieved in vivo by photo-assisted synergistic therapy with reduced dose and systemic bleeding risk of uPA. Our results prove that the functional PLGA nanoparticle loaded with the ICG@uPA offers a novel option for effective and safe thrombolytic treatment.
Collapse
Affiliation(s)
- Sha Zhang
- Department of Geriatric Cardiology, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jinjie Li
- Centre of Sport Nutrition and Health, Zhengzhou University, Zhengzhou, China
| | - Jiefeng Ren
- Department of Geriatric Cardiology, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zaiyao Xue
- Department of Geriatric Cardiology, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xinlian Qi
- Department of Geriatric Cardiology, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Quanjin Si
- Department of the Third Health Care, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
7
|
Silva JRV, Barroso PAA, Nascimento DR, Figueira CS, Azevedo VAN, Silva BR, Santos RPD. Benefits and challenges of nanomaterials in assisted reproductive technologies. Mol Reprod Dev 2021; 88:707-717. [PMID: 34553442 DOI: 10.1002/mrd.23536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Abstract
Assisted reproductive technology (ART) have contributed to preserve fertility in humans and to increase multiplication of genetically superior animals. Despite being highly practiced worldwide, ART presents some challenges, especially because gametes and embryos are kept in vitro for a variable period of time, and the oxidative stress in vitro can have negative impact on oocyte competence and embryo development. Nanotechnology needs to be considered to help overcome some of those impairments, since it can provide strategies to deliver antioxidants and hormones to gametes and embryos in vitro. The application of nanotechnology to ART can allow the development of new protocols using nanomaterials to improve in vitro oocyte competence and embryo production. This review discusses the applicability of nanomaterials to improve sperm selection, to deliver antioxidants and hormones to preantral follicles, oocytes, and embryos in vitro, as well as the concerns about using nanotechnology in ART.
Collapse
Affiliation(s)
- José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| | | | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ricardo Pires Dos Santos
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| |
Collapse
|
8
|
Strasser P, Teasdale I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules 2020; 25:E1716. [PMID: 32276516 PMCID: PMC7181247 DOI: 10.3390/molecules25071716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
9
|
Meere M, Pontrelli G, McGinty S. Modelling phase separation in amorphous solid dispersions. Acta Biomater 2019; 94:410-424. [PMID: 31238110 DOI: 10.1016/j.actbio.2019.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022]
Abstract
Much work has been devoted to analysing thermodynamic models for solid dispersions with a view to identifying regions in the phase diagram where amorphous phase separation or drug recrystallization can occur. However, detailed partial differential equation non-equilibrium models that track the evolution of solid dispersions in time and space are lacking. Hence theoretical predictions for the timescale over which phase separation occurs in a solid dispersion are not available. In this paper, we address some of these deficiencies by (i) constructing a general multicomponent diffusion model for a dissolving solid dispersion; (ii) specializing the model to a binary drug/polymer system in storage; (iii) deriving an effective concentration dependent drug diffusion coefficient for the binary system, thereby obtaining a theoretical prediction for the timescale over which phase separation occurs; (iv) calculating the phase diagram for the Felodipine/HPMCAS system; and (iv) presenting a detailed numerical investigation of the Felodipine/HPMCAS system assuming a Flory-Huggins activity coefficient. The numerical simulations exhibit numerous interesting phenomena, such as the formation of polymer droplets and strings, Ostwald ripening/coarsening, phase inversion, and droplet-to-string transitions. A numerical simulation of the fabrication process for a solid dispersion in a hot melt extruder was also presented. STATEMENT OF SIGNIFICANCE: Solid dispersions are products that contain mixtures of drug and other materials e.g. polymer. These are liable to separate-out over time - a phenomenon known as phase separation. This means that it is possible the product differs both compositionally and structurally between the time of manufacture and the time it is taken by the patient, leading to poor bioavailability and so ultimately the shelf-life of the product has to be reduced. Theoretical predictions for the timescale over which phase separation occurs are not currently available. Also lacking are detailed partial differential equation non-equilibrium models that track the evolution of solid dispersions in time and space. This study addresses these issues, before presenting a detailed investigation of a particular drug-polymer system.
Collapse
Affiliation(s)
- Martin Meere
- School of Mathematics, NUI Galway, University Road, Galway, Ireland.
| | | | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
10
|
Said SS, Yin H, Elfarnawany M, Nong Z, O'Neil C, Leong H, Lacefield JC, Mequanint K, Pickering JG. Fortifying Angiogenesis in Ischemic Muscle with FGF9-Loaded Electrospun Poly(Ester Amide) Fibers. Adv Healthc Mater 2019; 8:e1801294. [PMID: 30785239 DOI: 10.1002/adhm.201801294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/03/2019] [Indexed: 12/24/2022]
Abstract
Delivery of angiogenic growth factors lessens ischemia in preclinical models but has demonstrated little benefit in patients with peripheral vascular disease. Augmenting the wrapping of nascent microvessels by mural cells constitutes an alternative strategy to regenerating a functional microvasculature, particularly if integrated with a sustained delivery platform. Herein, electrospun poly(ester amide) (PEA) nanofiber mats are fabricated for delivering a mural cell-targeting factor, fibroblast growth factor 9 (FGF9). Proof-of-principle is established by placing FGF9/FGF2-loaded PEA fiber mats on the chick chorioallantoic membrane and identifying enhanced angiogenesis by 3D power Doppler micro-ultrasound imaging. To assess the delivery system in ischemic muscle, FGF9-loaded PEA fiber mats are implanted onto the surface of the tibialis anterior muscle of mice with hindlimb ischemia. The system supplies FGF9 into the tibialis anterior muscle and yields a neo-microvascular network with enhanced mural cell coverage up to 28 days after injury. The regenerating muscle that receives FGF9 display near-normal sized myofibers and reduced interstitial fibrosis. Moreover, the mice demonstrate improved locomotion. These findings of locally released FGF9 from PEA nanofibers raise prospects for a microvascular remodeling approach to improve muscle health in peripheral vascular disease.
Collapse
Affiliation(s)
- Somiraa S. Said
- School of Biomedical EngineeringWestern University London Ontario N6A 5B9 Canada
| | - Hao Yin
- Robarts Research InstituteWestern University London Ontario N6A 5B7 Canada
| | - Mai Elfarnawany
- Department of OtolaryngologyWestern University London Ontario N6A 5W9 Canada
| | - Zengxuan Nong
- Robarts Research InstituteWestern University London Ontario N6A 5B7 Canada
| | - Caroline O'Neil
- Robarts Research InstituteWestern University London Ontario N6A 5B7 Canada
| | - Hon Leong
- Department of Surgery (Urology)Schulich School of Medicine and DentistryWestern University London Ontario N6A 5C1 Canada
| | - James C. Lacefield
- School of Biomedical EngineeringDepartment of Electrical and Computer EngineeringDepartment of Medical BiophysicsWestern University London Ontario N6A 5B9 Canada
| | - Kibret Mequanint
- School of Biomedical EngineeringDepartment of Chemical and Biochemical EngineeringWestern University London Ontario N6A 5B9 Canada
| | - J. Geoffrey Pickering
- Robarts Research InstituteDepartment of Medicine (Cardiology)Department of BiochemistryDepartment of Medical BiophysicsSchulich School of Medicine and DentistryWestern UniversityLondon Health Sciences Centre 339 Windermere Rd London Ontario N6A 5A5 Canada
| |
Collapse
|
11
|
Rastogi S, Shukla S, Kalaivani M, Singh GN. Peptide-based therapeutics: quality specifications, regulatory considerations, and prospects. Drug Discov Today 2018; 24:148-162. [PMID: 30296551 DOI: 10.1016/j.drudis.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 01/17/2023]
Abstract
Exquisite selectivity, remarkable efficacy, and minimal toxicity are key attributes inherently assigned to peptides, resulting in increased research interest from the pharmaceutical industry in peptide-based therapeutics (PbTs). Pharmacopoeias develop authoritative standards for PbT by providing standard specifications and test methods. Nevertheless, a lack of harmonization in test procedures adopted for PbT in the latest editions of Pharmacopoeias has been observed. Adoption of a harmonized monograph could increase further the interest of the global pharmaceutical industry in PbTs. Here, we provide an overview of pharmacopoeial methodologies and specifications commonly observed in PbT monographs and highlight the main differences among the pharmacopoeias in terms of the active pharmaceutical ingredients that they focus on. We also address the prospects for PbTs to mature as a new therapeutic niche.
Collapse
Affiliation(s)
- Shruti Rastogi
- Analytical Research & Development, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India
| | - Shatrunajay Shukla
- Medical Devices & Materiovigilance, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India.
| | - M Kalaivani
- Biologics, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Govt. of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India
| | - Gyanendra Nath Singh
- Analytical Research & Development, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India; Medical Devices & Materiovigilance, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India; Biologics, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Govt. of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India; Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India
| |
Collapse
|
12
|
Yan G, Li A, Zhang A, Sun Y, Liu J. Polymer-Based Nanocarriers for Co-Delivery and Combination of Diverse Therapies against Cancers. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E85. [PMID: 29401694 PMCID: PMC5853717 DOI: 10.3390/nano8020085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/27/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Cancer gives rise to an enormous number of deaths worldwide nowadays. Therefore, it is in urgent need to develop new therapies, among which combined therapies including photothermal therapy (PTT) and chemotherapy (CHT) using polymer-based nanocarriers have attracted enormous interest due to the significantly enhanced efficacy and great progress has been made so far. The preparation of such nanocarriers is a comprehensive task involving the cooperation of nanomaterial science and biomedicine science. In this review, we try to introduce and analyze the structure, preparation and synergistic therapeutic effect of various polymer-based nanocarriers composed of anti-tumor drugs, nano-sized photothermal materials and other possible parts. Our effort may bring benefit to future exploration and potential applications of similar nanocarriers.
Collapse
Affiliation(s)
- Guowen Yan
- School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Aihua Li
- School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Aitang Zhang
- School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Yong Sun
- School of Pharmacy, Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, China.
| | - Jingquan Liu
- School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|