1
|
Lu Y, Jiang Q. Development of patient-tailored preoperative assessment of percutaneous vertebroplasty. Front Surg 2024; 11:1444817. [PMID: 39512732 PMCID: PMC11540795 DOI: 10.3389/fsurg.2024.1444817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Percutaneous vertebroplasty (PVP), a minimally invasive surgery technique, has become the common treatment for osteoporotic vertebral compression fractures (OVCF). The complications of PVP will lead to severe damage to spinal neuro systems due to bone cement leakage. A patient tailored preoperative assessment approach was developed to reduce the risks of complications in this study. The porcine OVCF model was fabricated to mimic the patient vertebral fracture in vitro using decalcification process. The 3D reconstructed model based on the imagological examination data acquired from the porcine vertebral bone was implemented for finite element (FE) simulation. The vertebral body with bone cement injected was scanned using CT for comparison with the finite element simulation results. This study showed a practical method for predicting the flow of bone cement in OVCF, which enabled the surgeons to evaluate the bone cement flow during preoperative assessment to reduce the cement leakage risks.
Collapse
Affiliation(s)
- Yian Lu
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Qunhua Jiang
- Department of Nursing, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| |
Collapse
|
2
|
Ghandour S, Hong L, Aramesh M, Persson C. Mechanical characterization and cytocompatibility of linoleic acid modified bone cement for percutaneous cement discoplasty. J Mech Behav Biomed Mater 2024; 158:106662. [PMID: 39096682 DOI: 10.1016/j.jmbbm.2024.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
Minimally invasive spine treatments have been sought after for elderly patients with comorbidities suffering from advanced degenerative disc disease. Percutaneous cement discoplasty (PCD) is one such technique where cement is injected into a degenerated disc with a vacuum phenomenon to relieve patients from pain. Adjacent vertebral fractures (AVFs) are however an inherent risk, particularly for osteoporotic patients, due to the high stiffness of the used cements. While low-modulus cements have been developed for vertebroplasty through the addition of linoleic acid, there are no such variations with a high-viscosity base cement, which is likely needed for the discoplasty application. Therefore, a low-modulus polymethyl methacrylate was developed by the addition of 12%vol. linoleic acid to a high-viscosity bone cement (hv-LA-PMMA). Initial experimental validation of the cement was performed by mechanical testing under compression over a period of 24 weeks, after storage in 37 °C phosphate buffer saline (PBS) solution. Furthermore, cement extracts were used to evaluate residual monomer release and the cytotoxicity of hv-LA-PMMA using fibroblastic cells. Relative to the base commercial cement, a significant reduction of Young's modulus and compressive strength of 36% and 42% was observed, respectively. Compression-tension fatigue tests at 5 MPa gave an average fatigue limit of 31,078 cycles. This was higher than another low-modulus cement and comparable to the fatigue properties of the disc annulus tissue. Monomer release tests showed that hv-LA-PMMA had a significantly higher release between 24 h and 7 days compared to the original bone cement, similarly to other low-modulus cements. Also, the control cement showed cytocompatibility at all time points of extract collection for 20-fold dilution, while hv-LA-PMMA only showed the same for extract collections at day 7. However, the 20-fold dilution was needed for both the control and the hv-LA-PMMA extracts to demonstrate more than 70% fibroblast viability at day 7. In conclusion, the mechanical testing showed promise in the use of linoleic acid in combination with a high-viscosity PMMA cement to achieve properties adequate to the application. Further testing and in vivo studies are however required to fully evaluate the mechanical performance and biocompatibility of hv-LA-PMMA for possible future clinical application.
Collapse
Affiliation(s)
- Salim Ghandour
- Div. of Biomedical Engineering, Dept. of Materials Science and Engineering, Uppsala University, Sweden
| | - Linglu Hong
- Div. of Biomedical Engineering, Dept. of Materials Science and Engineering, Uppsala University, Sweden
| | - Morteza Aramesh
- Div. of Biomedical Engineering, Dept. of Materials Science and Engineering, Uppsala University, Sweden
| | - Cecilia Persson
- Div. of Biomedical Engineering, Dept. of Materials Science and Engineering, Uppsala University, Sweden.
| |
Collapse
|
3
|
Ghandour S, Christie I, Öhman Mägi C, Persson C. Quasi-static and dynamic mechanical properties of a linoleic acid-modified, low-modulus bone cement for spinal applications. OPEN RESEARCH EUROPE 2024; 3:203. [PMID: 39185085 PMCID: PMC11344196 DOI: 10.12688/openreseurope.16683.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 08/27/2024]
Abstract
Background Polymethylmethacrylate (PMMA) bone cement is extensively used in spinal procedures such as vertebroplasty and kyphoplasty, while its use in percutaneous cement discoplasty (PCD) is not yet widely spread. A main issue for both application sites, vertebra and disc, is the mismatch in stiffness between cement and bone, potentially resulting in adjacent vertebral fractures and adjacent segment disease. Tailoring the cement modulus using additives is hence an interesting strategy. However, there is a lack of data on the tensile and tension-compression fatigue properties of these cements, relevant to the newly researched indication of PCD. Method A commercial PMMA cement (VS) was modified with 12%vol of linoleic acid (VSLA) and tested for quasi-static tensile properties. Additionally, tension-compression fatigue testing with amplitudes ranging from +/-5MPa to +/-7MPa and +/-9MPa was performed, and a Weibull three-parameter curve fit was used to calculate the fatigue parameters. Results Quasi-static testing revealed a significant reduction in VSLA's Young's Modulus (E=581.1±126.4MPa) compared to the original cement (E=1478.1±202.9MPa). Similarly, the ultimate tensile stress decreased from 36.6±1.5MPa to 11.6±0.8MPa. Thus, VSLA offers improved compatibility with trabecular bone properties. Fatigue testing of VSLA revealed that as the stress amplitude increased the Weibull mean number decreased from 3591 to 272 and 91 cycles, respectively. In contrast, the base VS cement reached run-out at the highest stress amplitude. However, the lowest stress amplitude used exceeds the pressures recorded in the disc in vivo, and VSLA displayed a similar fatigue life range to that of the annulus fibrosis tissue. Conclusions While the relevance of fully reversed tension-compression fatigue testing can be debated for predicting cement performance in certain spinal applications, the results of this study can serve as a benchmark for comparison of low-modulus cements for the spine. Further investigations are necessary to assess the clinical feasibility and effectiveness of these cements.
Collapse
Affiliation(s)
- Salim Ghandour
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Uppsala County, 75121, Sweden
| | - Iain Christie
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Uppsala County, 75121, Sweden
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Uppsala County, 75121, Sweden
| | - Caroline Öhman Mägi
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Uppsala County, 75121, Sweden
| | - Cecilia Persson
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Uppsala County, 75121, Sweden
| |
Collapse
|
4
|
Zhou Y, Höglund L, Samanta A, Procter P, Persson C. Hydroxyapatite particle shape affects screw attachment in cancellous bone when augmented with hydroxyapatite-containing hydrogels. J Mech Behav Biomed Mater 2024; 150:106241. [PMID: 37995601 DOI: 10.1016/j.jmbbm.2023.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
Screw-bone construct failures are a true challenge in orthopaedic implant fixation, particularly in poor quality bone. Whilst augmentation with bone cement can improve the primary stability of screws, there are cements, e.g. PMMA, that may impede blood flow and nutrients and hamper bone remodelling. In this study, soft, non-setting biomaterials based on Hyalectin gels and hydroxyapatite (HA) particles with different morphological parameters were evaluated as potential augmentation materials, using a lapine ex vivo bone model. The pull-out force, stiffness, and work to fracture were considered in evaluating screw attachment. The pull-out force of constructs reinforced with Hyalectin containing irregularly shaped nano-HA and spherically shaped micro-HA particles were found to be significantly higher than the control group (no augmentation material). The pull-out stiffness increased for the micro-HA particles and the work to fracture increased for the irregular nano-HA particles. However, there were no significant augmentation effect found for the spherical shaped nano-HA particles. In conclusion, injectable Hyalectin gel loaded with hydroxyapatite particles was found to have a potentially positive effect on the primary stability of screws in trabecular bone, depending on the HA particle shape and size.
Collapse
Affiliation(s)
- Yijun Zhou
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden
| | - Lisa Höglund
- Division of Macromolecular Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Ayan Samanta
- Division of Macromolecular Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Philip Procter
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden
| | - Cecilia Persson
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden.
| |
Collapse
|
5
|
Wang Z, Yang S, He C, Li C, Louh RF. Enhancing Bone Cement Efficacy with Hydrogel Beads Synthesized by Droplet Microfluidics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:302. [PMID: 38334573 PMCID: PMC10857596 DOI: 10.3390/nano14030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Effective filling materials, typically bone cements, are essential for providing mechanical support during bone fracture treatment. A current challenge with bone cement lies in achieving continuous drug release and forming porous structures that facilitate cell migration and enhance osteoconductivity. We report a droplet microfluidics-based method for synthesizing uniform-sized gelatin hydrogel beads. A high hydrogel concentration and increased crosslinking levels were found to enhance drug loading as well as release performance. Consequently, the droplet microfluidic device was optimized in its design and fabrication to enable the stable generation of uniform-sized droplets from high-viscosity gelatin solutions. The size of the generated beads can be selectively controlled from 50 to 300 μm, featuring a high antibiotic loading capacity of up to 43% dry weight. They achieve continuous drug release lasting more than 300 h, ensuring sustained microbial inhibition with minimal cytotoxicity. Furthermore, the hydrogel beads are well suited for integration with calcium phosphate cement, maintaining structural integrity to form porous matrices and improve continuous drug release performance. The uniform size distribution of the beads, achieved through droplet microfluidic synthesis, ensures predictable drug release dynamics and a measurable impact on the mechanical properties of bone cements, positioning this technology as a promising enhancement to bone cement materials.
Collapse
Affiliation(s)
- Zeyu Wang
- Frontier Institute of Science and Technology (FIST), Micro- and Nano-Technology Research Center of State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Sherwin Yang
- Master’s Program of Biomedical Informatics and Biomedical Engineering, Feng Chia University, Taichung 407, Taiwan
| | - Chunjie He
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi’an Jiaotong University, Xi’an 710049, China; (C.H.); (C.L.)
| | - Chaoqiang Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi’an Jiaotong University, Xi’an 710049, China; (C.H.); (C.L.)
| | - Rong-Fuh Louh
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan
| |
Collapse
|
6
|
Li Z, Shi J, Wang Y, Li Y, Liu W, Xu R, Wang S, Chen L, Ye X, Zhang C, Xu W. Development of modified PMMA cement in spine surgery. ENGINEERED REGENERATION 2023; 4:375-386. [DOI: 10.1016/j.engreg.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
7
|
Chen L, Zhang S, Zhang B, Liang Q, Luo D, Yu X, Yao B, Zhao K, Yang Z, Tang Y, Wu Z. Study on the poly(methyl methacrylate-acrylic acid)/calcium phosphate cement composite bound by chelation with enhanced water absorption and biomechanical properties. J Mech Behav Biomed Mater 2023; 147:106149. [PMID: 37782989 DOI: 10.1016/j.jmbbm.2023.106149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Polymethylmethacrylate (PMMA) bone cement has been widely used as a critical material for fixing prostheses and filling bone defects. The shrinkage of PMMA bone cement was addressed by the additives, however, the uneven integral water absorption and expansion performance as well as the deteriorated mechanical properties of the modified bone cement after immersion in phosphate buffered saline (PBS) and simulation body fluid (SBF) affected the long-term stability after implantation. Calcium phosphate cement (CPC) is a biomaterial with promising applications in orthopedics, whose hydration reaction provides an important driving force for the transfer of water. Besides, the mechanical properties of CPC can be enhanced with the curing process. In this study, CPC was utilized to modify the poly(methyl methacrylate-acrylic acid) [P(MMA-AA)] bone cement. The results demonstrated the successful construction of interconnected CPC water delivery networks in the P(MMA-AA)/CPC composite, the water absorption ratio and expansion ratio of the composite were up to 131.18 ± 9.14% and 168.19 ± 5.44%, respectively. Meanwhile, the transformation of CPC water delivery networks into rigid mechanical support networks as well as the chelation interaction between organic-inorganic enhanced the mechanical properties of the composite after immersion, the compressive strength after immersion reached 62.97 ± 0.97 MPa, which was 27.65% higher than that before immersion. The degradation ratio of the composite was up to 13.76 ± 0.23% after 9 days of immersion, which was 16.4% higher than that of CPC. Furthermore, composites exhibited superior biocompatibility as the release of Ca2+. Therefore, P(MMA-AA)/CPC composite serves as a promising medical filling material for clinical use.
Collapse
Affiliation(s)
- Lei Chen
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Shitong Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Bo Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Qian Liang
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Dong Luo
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Xiaojiao Yu
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Binghua Yao
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Kang Zhao
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Zhao Yang
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Yufei Tang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Zixiang Wu
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
8
|
Liu J, Hou W, Wei W, Peng J, Wu X, Lian C, Zhao Y, Tu R, Goto T, Dai H. Design and fabrication of high-performance injectable self-setting trimagnesium phosphate. Bioact Mater 2023; 28:348-357. [PMID: 37334067 PMCID: PMC10276258 DOI: 10.1016/j.bioactmat.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
Magnesium phosphate bone cement has become a widely used orthopedic implant due to the advantages of fast-setting and high early strength. However, developing magnesium phosphate cement possessing applicable injectability, high strength, and biocompatibility simultaneously remains a significant challenge. Herein, we propose a strategy to develop high-performance bone cement and establish a trimagnesium phosphate cement (TMPC) system. The TMPC exhibits high early strength, low curing temperature, neutral pH, and excellent injectability, overcoming the critical limitations of recently studied magnesium phosphate cement. By monitoring the hydration pH value and electroconductivity, we demonstrate that the magnesium-to-phosphate ratio could manipulate the components of hydration products and their transformation by adjusting the pH of the system, which will influence the hydration speed. Further, the ratio could regulate the hydration network and the properties of TMPC. Moreover, in vitro studies show that TMPC has outstanding biocompatibility and bone-filling capacity. The facile preparation properties and these advantages of TMPC render it a potential clinical alternative to polymethylmethacrylate and calcium phosphate bone cement. This study will contribute to the rational design of high-performance bone cement.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Wen Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxi Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Rong Tu
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Takashi Goto
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
9
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Wong SK, Yee MMF, Chin KY, Ima-Nirwana S. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration. J Funct Biomater 2023; 14:jfb14050286. [PMID: 37233395 DOI: 10.3390/jfb14050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The management of bone defects is complicated by the presence of clinical conditions, such as critical-sized defects created by high-energy trauma, tumour resection, infection, and skeletal abnormalities, whereby the bone regeneration capacity is compromised. A bone scaffold is a three-dimensional structure matrix serving as a template to be implanted into the defects to promote vascularisation, growth factor recruitment, osteogenesis, osteoconduction, and mechanical support. This review aims to summarise the types and applications of natural and synthetic scaffolds currently adopted in bone tissue engineering. The merits and caveats of natural and synthetic scaffolds will be discussed. A naturally derived bone scaffold offers a microenvironment closer to in vivo conditions after decellularisation and demineralisation, exhibiting excellent bioactivity, biocompatibility, and osteogenic properties. Meanwhile, an artificially produced bone scaffold allows for scalability and consistency with minimal risk of disease transmission. The combination of different materials to form scaffolds, along with bone cell seeding, biochemical cue incorporation, and bioactive molecule functionalisation, can provide additional or improved scaffold properties, allowing for a faster bone repair rate in bone injuries. This is the direction for future research in the field of bone growth and repair.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Michelle Min Fang Yee
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
11
|
Bao J, Sun X, Chen Z, Yang J, Wang C. Study on the angiogenesis ability of Polymethyl methacrylate-mineralized collagen/Mg-Ca composite material in vitro and the bone formation effect in vivo. J Biomater Appl 2022; 37:814-828. [PMID: 35969489 DOI: 10.1177/08853282221121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnesium (Mg) and its alloys show high degrees of biocompatibility and biodegradability, used as biodegrad able materials in biomedical applications. In this study, Polymethyl methacrylate (PMMA) - mineralized collagen (nano-Hydroxyapatite/collagen; nHAC)/Mg-Ca composite materials were prepared, to study the angiogenesis ability of its composite materials on Human umbilical vein endothelial cells (HUVECs) and its osteogenesis effect in vivo. The results showed that the PMMA-nHAC reinforcement materials can promote the proliferation and adhesion in HUVECs of Mg matrix significantly, it can enhance the migration motility and VEGF expression of HUVECs. In vivo, Micro-CT examination showed that with coated samples presenting the highest bone formation. Histologically, the materials and their corrosion products caused no systematic or local cytotoxicological effects. Therefore, the Mg matrix composites prepared in the present study has good biocompatibility and PMMA-nHAC/Mg-Ca composite may be an ideal orthopedic material to improve the bone formation, and biodegradable magnesium based implants with bioactivity have potential applications in bone tissue.
Collapse
Affiliation(s)
- Jiaxin Bao
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xirao Sun
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhan Chen
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jingxin Yang
- Beijing Key Laboratory of Information Service Engineering, 70541Beijing Union University, Beijing, China.,College of Robotics, 70541Beijing Union University, Beijing, China
| | - Chengyue Wang
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
12
|
Ayyachi T, Pappalardo D, Finne‐Wistrand A. Defining the role of linoleic acid in acrylic bone cement. J Appl Polym Sci 2022. [DOI: 10.1002/app.52409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thayanithi Ayyachi
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Stockholm Sweden
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie Università del Sannio Benevento Italy
| | - Anna Finne‐Wistrand
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Stockholm Sweden
| |
Collapse
|
13
|
Bakhshyani M, Jallab M, Aarabi M, Ghaffari M. Development of a high-performance PVA/DOPA bone adhesive incorporated with bioactive glass and hydroxyapatite particles for highly comminuted bone fractures. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1995419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Mobina Bakhshyani
- Department of Polymer Engineering, School of Engineering, Golestan University, Gorgan, Iran
| | - Mojtaba Jallab
- Department of Polymer Engineering, School of Engineering, Golestan University, Gorgan, Iran
| | - Mehdi Aarabi
- Bone, and Connective Tissue Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Ghaffari
- Department of Polymer Engineering, School of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
14
|
Low-Modulus PMMA Has the Potential to Reduce Stresses on Endplates after Cement Discoplasty. J Funct Biomater 2022; 13:jfb13010018. [PMID: 35225981 PMCID: PMC8883899 DOI: 10.3390/jfb13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Cement discoplasty has been developed to treat patients with advanced intervertebral disc degeneration. In discoplasty, poly(methylmethacrylate) (PMMA) bone cement is injected into the disc, leading to reduced pain and certain spinal alignment correction. Standard PMMA-cements have much higher elastic modulus than the surrounding vertebral bone, which may lead to a propensity for adjacent fractures. A PMMA-cement with lower modulus might be biomechanically beneficial. In this study, PMMA-cements with lower modulus were obtained using previously established methods. A commercial PMMA-cement (V-steady®, G21 srl) was used as control, and as base cement. The low-modulus PMMA-cements were modified by 12 vol% (LA12), 16 vol% (LA16) and 20 vol% (LA20) linoleic acid (LA). After storage in 37 °C PBS from 24 h up to 8 weeks, specimens were tested in compression to obtain the material properties. A lower E-modulus was obtained with increasing amount of LA. However, with storage time, the E-modulus increased. Standard and low-modulus PMMA discoplasty were compared in a previously developed and validated computational lumbar spine model. All discoplasty models showed the same trend, namely a substantial reduction in range of motion (ROM), compared to the healthy model. The V-steady model had the largest ROM-reduction (77%), and the LA20 model had the smallest (45%). The average stress at the endplate was higher for all discoplasty models than for the healthy model, but the stresses were reduced for cements with higher amounts of LA. The study indicates that low-modulus PMMA is promising for discoplasty from a mechanical viewpoint. However, validation experiments are needed, and the clinical setting needs to be further considered.
Collapse
|
15
|
Wang Y, Shen S, Hu T, Williams GR, Bian Y, Feng B, Liang R, Weng X. Layered Double Hydroxide Modified Bone Cement Promoting Osseointegration via Multiple Osteogenic Signal Pathways. ACS NANO 2021; 15:9732-9745. [PMID: 34086438 DOI: 10.1021/acsnano.1c00461] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(methyl methacrylate) (PMMA) bone cement has been widely used in orthopedic surgeries including total hip/knee replacement, vertebral compression fracture treatment, and bone defect filling. However, aseptic loosening of the interface between PMMA bone cement and bone often leads to failure. Hence, the development of modified PMMA that facilitates the growth of bone into the modified PMMA bone cement is key to reducing the incidence of aseptic loosening. In this study, MgAl-layered double hydroxide (LDH) microsheets modified PMMA (PMMA&LDH) bone cement with superior osseointegration performance has been synthesized. The maximum polymerization reaction temperature of PMMA&LDH decreased by 7.0 and 11.8 °C, respectively, compared with that of PMMA and PMMA&COL-I (mineralized collagen I modified PMMA). The mechanical performance of PMMA&LDH decreased slightly in comparison with PMMA, which is beneficial to alleviate stress-shielding osteolysis, and indirectly promote osseointegration. The superior osteogenic ability of PMMA&LDH has been demonstrated in vivo, which boosts bone growth by 2.17- and 18.34-fold increments compared to the PMMA&COL-I and PMMA groups at 2 months, postoperatively. Moreover, transcriptome sequencing revealed four key osteogenic pathways: p38 MAPK, ERK/MAPK, FGF, and TGF-β, which were further confirmed by IPA, qPCR, and Western blot assays. Hence, LDH-modified PMMA bone cement is a promising biomaterial to enhance bone growth with potential applications in relevant orthopedic surgeries.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Songpo Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Orthopedic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, U.K
| | - Yanyan Bian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Bin Feng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
16
|
Wekwejt M, Chen S, Kaczmarek-Szczepańska B, Nadolska M, Łukowicz K, Pałubicka A, Michno A, Osyczka AM, Michálek M, Zieliński A. Nanosilver-loaded PMMA bone cement doped with different bioactive glasses - evaluation of cytocompatibility, antibacterial activity, and mechanical properties. Biomater Sci 2021; 9:3112-3126. [PMID: 33704333 DOI: 10.1039/d1bm00079a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanosilver-loaded PMMA bone cement (BC-AgNp) is a novel cement developed as a replacement for conventional cements. Despite its favorable properties and antibacterial activity, BC-AgNp still lacks biodegradability and bioactivity. Hence, we investigated doping with bioactive glasses (BGs) to create a new bioactive BC characterized by time-varying porosity and gradual release of AgNp. The BC Cemex was used as the base material and modified simultaneously with the AgNp and BGs: melted 45S5 and 13-93B3 glasses with various particle sizes and sol-gel derived SiO2/CaO microparticles. The effect of BG addition was examined by microscopic analysis, an assessment of setting parameters, wettability, FTIR and UV-VIS spectroscopy, mechanical testing, and hemo- and cytocompatibility and antibacterial efficiency studies. The results show that it is possible to incorporate various BGs into BC-AgNp, which leads to different properties depending on the type and size of BGs. The smaller particles of melted BGs showed higher porosity and better antibacterial properties with the moderate deterioration of mechanical properties. The sol-gel derived BGs, however, displayed a tendency for agglomeration and random distribution in BC-AgNp. The BGs with greater solubility more efficiently improve the antibacterial properties of BC-AgNp. Besides, the unreacted MMA monomer release could negatively influence the cellular response. Despite that, cements doped with different BGs are suitable for medical applications.
Collapse
Affiliation(s)
- M Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gdańsk, Poland.
| | - S Chen
- Centre for Functional and Surface Functionalized Glass, TnU AD, Trenčín, Slovakia
| | - B Kaczmarek-Szczepańska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - M Nadolska
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - K Łukowicz
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - A Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Kościerzyna, Poland
| | - A Michno
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - A M Osyczka
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - M Michálek
- Centre for Functional and Surface Functionalized Glass, TnU AD, Trenčín, Slovakia
| | - A Zieliński
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gdańsk, Poland.
| |
Collapse
|
17
|
Wang Z, Zhang X, Li Z, Feng Q, Chen J, Xie W. [Biomechanical study of polymethyl methacrylate bone cement and allogeneic bone for strengthening sheep vertebrae]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:471-476. [PMID: 33855832 DOI: 10.7507/1002-1892.202011061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To investigate the feasibility and mechanical properties of polymethyl methacrylate (PMMA) bone cement and allogeneic bone mixture to strengthen sheep vertebrae with osteoporotic compression fracture. Methods A total of 75 lumbar vertebrae (L 1-L 5) of adult goats was harvested to prepare the osteoporotic vertebral body model by decalcification. The volume of vertebral body and the weight and bone density before and after decalcification were measured. And the failure strength, failure displacement, and stiffness were tested by using a mechanical tester. Then the vertebral compression fracture models were prepared and divided into 3 groups ( n=25). The vertebral bodies were injected with allogeneic bone in group A, PMMA bone cement in group B, and mixture of allogeneic bone and PMMA bone cement in a ratio of 1∶1 in group C. After CT observation of the implant distribution in the vertebral body, the failure strength, failure displacement, and stiffness of the vertebral body were measured again. Results There was no significant difference in weight, bone density, and volume of vertebral bodies before decalcification between groups ( P>0.05). After decalcification, there was no significant difference in bone density, decreasing rate, and weight between groups ( P>0.05). There were significant differences in vertebral body weight and bone mineral density between pre- and post-decalcification in 3 groups ( P<0.05). CT showed that the implants in each group were evenly distributed in the vertebral body with no leakage. Before fracture, the differences in vertebral body failure strength, failure displacement, and stiffness between groups were not significant ( P>0.05). After augmentation, the failure displacement of group A was significantly greater than that of groups B and C, and the failure strength and stiffness were less than those of groups B and C, the failure displacement of group C was greater than that of group B, and the failure strength and stiffness were less than those of group B, the differences between groups were significant ( P<0.05). Except for the failure strength of group A ( P>0.05), the differences in the failure strength, failure displacement, and stiffness before fracture and after augmentation in the other groups were significant ( P<0.05). Conclusion The mixture of allogeneic bone and PMMA bone cement in a ratio of 1∶1 can improve the strength of the vertebral body of sheep osteoporotic compression fractures and restore the initial stiffness of the vertebral body. It has good mechanical properties and can be used as one of the filling materials in percutaneous vertebroplasty.
Collapse
Affiliation(s)
- Zhikun Wang
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Affiliated Shilong People's Hospital of Southern Medical University, Dongguan Guangdong, 523326, P.R.China
| | - Xiansen Zhang
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Affiliated Shilong People's Hospital of Southern Medical University, Dongguan Guangdong, 523326, P.R.China
| | - Zaixue Li
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Affiliated Shilong People's Hospital of Southern Medical University, Dongguan Guangdong, 523326, P.R.China
| | - Qingyu Feng
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Affiliated Shilong People's Hospital of Southern Medical University, Dongguan Guangdong, 523326, P.R.China
| | - Jianting Chen
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, 510010, P.R.China
| | - Wenwei Xie
- Department of Orthopedics, SSL Central Hospital of Dongguan City, Affiliated Shilong People's Hospital of Southern Medical University, Dongguan Guangdong, 523326, P.R.China
| |
Collapse
|
18
|
Robo C, Öhman-Mägi C, Persson C. Long-term mechanical properties of a novel low-modulus bone cement for the treatment of osteoporotic vertebral compression fractures. J Mech Behav Biomed Mater 2021; 118:104437. [PMID: 33706086 DOI: 10.1016/j.jmbbm.2021.104437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 02/04/2023]
Abstract
In spite of the success of vertebroplasty (VP) and balloon kyphoplasty (BKP), which are widely used for stabilizing painful vertebral compression fractures, concerns have been raised about use of poly(methyl methacrylate) (PMMA) bone cements for these procedures since the high compressive modulus of elasticity (E) of the cement is thought to be one of the causes of the higher number of adjacent-level vertebral fractures. Therefore, bone cements with E comparable to that of cancellous bone have been proposed. While the quasi-static compressive properties of these so-called "low-modulus" cements have been widely studied, their fatigue performance remains underassessed. The purpose of the present study was to critically compare a commercial bone cement (control cement) and its low-modulus counterpart on the basis of quasi-static compressive strength (CS), E, fatigue limit under compression-compression loading, and release of methyl methacrylate (MMA). At 24 h, mean CS and E of the low-modulus material were 72% and 77% lower than those of the control cement, whereas, at 4 weeks, mean CS and E were 60% and 54% lower, respectively. The fatigue limit of the control cement was estimated to be 43-45 MPa compared to 3-5 MPa for the low-modulus cement. The low-modulus cement showed an initial burst release of MMA after 24 h followed by a plateau, similar to many other commercially available cements, whereas the control cement showed a much lower, stable release from day 1 and up to 1 week. The low-modulus cement may be a promising alternative to currently available PMMA bone cements, with the potential for reducing the incidence of adjacent fractures following VP/BKP.
Collapse
Affiliation(s)
- Céline Robo
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Cecilia Persson
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Enhanced compressive strengths and induced cell growth of 1-3-type BaTiO 3/PMMA bio-piezoelectric composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111699. [PMID: 33545858 DOI: 10.1016/j.msec.2020.111699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Barium titanate (BaTiO3) has been used as a bone implant material because of its piezoelectric properties and the ability to promote cell growth when combined with hydroxyapatite. However, the brittleness of BaTiO3 inhibits its use as a bone replacement material at load-bearing sites, and the reduction of BaTiO3 content in the composite reduces its piezoelectric effect on bone growth. In this study, we explored a preparation method, which included directional freeze casting and self-solidification of bone cement, to obtain 1-3-type BaTiO3/PMMA bio-piezoelectric composites with a lamellar structure. The lamellar BaTiO3 layer through the composite from the bottom to the top significantly improved the piezoelectric properties of the composite. In addition, the dendritic ceramic bridges on the BaTiO3 pore walls can improve the compressive strength and elastic modulus of BaTiO3/PMMA bio-piezoelectric composites with a lamellar structure. More importantly, it was found that polarized lamellar BaTiO3 could induce osteoblasts to grow in the direction of the BaTiO3 layers. When the width of the BaTiO3 layer was in the range of 8-21 μm, osteoblasts along the BaTiO3 layer showed well growth, which can be of great value for the production of biomimetic bone units.
Collapse
|
20
|
Guerrieri AN, Montesi M, Sprio S, Laranga R, Mercatali L, Tampieri A, Donati DM, Lucarelli E. Innovative Options for Bone Metastasis Treatment: An Extensive Analysis on Biomaterials-Based Strategies for Orthopedic Surgeons. Front Bioeng Biotechnol 2020; 8:589964. [PMID: 33123519 PMCID: PMC7573123 DOI: 10.3389/fbioe.2020.589964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Bone is the third most frequent site of metastasis, with a particular incidence in breast and prostate cancer patients. For example, almost 70% of breast cancer patients develop several bone metastases in the late stage of the disease. Bone metastases are a challenge for clinicians and a burden for patients because they frequently cause pain and can lead to fractures. Unfortunately, current therapeutic options are in most cases only palliative and, although not curative, surgery remains the gold standard for bone metastasis treatment. Surgical intervention mostly provides the replacement of the affected bone with a bioimplant, which can be made by materials of different origins and designed through several techniques that have evolved throughout the years simultaneously with clinical needs. Several scientists and clinicians have worked to develop biomaterials with potentially successful biological and mechanical features, however, only a few of them have actually reached the scope. In this review, we extensively analyze currently available biomaterials-based strategies focusing on the newest and most innovative ideas while aiming to highlight what should be considered both a reliable choice for orthopedic surgeons and a future definitive and curative option for bone metastasis and cancer patients.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Roberta Laranga
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Davide Maria Donati
- Third Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
21
|
Wekwejt M, Michalska-Sionkowska M, Bartmański M, Nadolska M, Łukowicz K, Pałubicka A, Osyczka AM, Zieliński A. Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111286. [PMID: 32919647 DOI: 10.1016/j.msec.2020.111286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023]
Abstract
Acrylic bone cements (BC) are wildly used in medicine. Despite favorable mechanical properties, processability and inject capability, BC lack bioactivity. To overcome this, we investigated the effects of selected biodegradable additives to create a partially-degradable BC and also we evaluated its combination with nanosilver (AgNp). We hypothesized that using above strategies it would be possible to obtain bioactive BC. The Cemex was used as the base material, modified at 2.5, 5 or 10 wt% with either cellulose, chitosan, magnesium, polydioxanone or tricalcium-phosphate. The resulted modified BC was examined for surface morphology, wettability, porosity, mechanical and nanomechanical properties and cytocompatibility. The composite BC doped with AgNp was also examined for its release and antibacterial properties. The results showed that it is possible to create modified cement and all studied modifiers increased its porosity. Applying the additives slightly decreased BC wettability and mechanical properties, but the positive effect of the additives was observed in nanomechanical research. The relatively poor cytocompatibility of modified BC was attributed to the unreacted monomer release, except for polydioxanone modification which increased cells viability. Furthermore, all additives facilitated AgNp release and increased BC antibacterial effectiveness. Our present studies suggest the optimal content of biodegradable component for BC is 5 wt%. At this content, an improvement in BC porosity is achieved without significant deterioration of BC physical and mechanical properties. Polydioxanone and cellulose seem to be the most promising additives that improve porosity and antibacterial properties of antibiotic or nanosilver-loaded BC. Partially-degradable BC may be a good strategy to improve their antibacterial effectiveness, but some caution is still required regarding their cytocompatibility. STATEMENT OF SIGNIFICANCE: The lack of bone cement bioactivity is the main limitation of its effectiveness in medicine. To overcome this, we have created composite cements with partially-degradable properties. We also modified these cements with nanosilver to provide antibacterial properties. We examined five various additives at three different contents to modify a selected bone cement. Our results broaden the knowledge about potential modifiers and properties of composite cements. We selected the optimal content and the most promising additives, and showed that the combination of these additives with nanosilver would increase cements` antibacterial effectiveness. Such modified cements may be a new solution for medical applications.
Collapse
Affiliation(s)
- M Wekwejt
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, Gdańsk, Poland.
| | - M Michalska-Sionkowska
- Faculty of Biological and Veterinary Sciences, Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - M Bartmański
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, Gdańsk, Poland
| | - M Nadolska
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - K Łukowicz
- Institute of Zoology and Biomedical Research, Department of Biology and Cell Imaging, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - A Pałubicka
- Department of Surgical Oncologic, Medical University of Gdańsk, Gdańsk, Poland; Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Kościerzyna, Poland
| | - A M Osyczka
- Institute of Zoology and Biomedical Research, Department of Biology and Cell Imaging, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - A Zieliński
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
22
|
Li C, Hao W, Wu C, Li W, Tao J, Ai F, Xin H, Wang X. Injectable and bioactive bone cement with moderate setting time and temperature using borosilicate bio-glass-incorporated magnesium phosphate. ACTA ACUST UNITED AC 2020; 15:045015. [PMID: 31851951 DOI: 10.1088/1748-605x/ab633f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, borosilicate bio-glass (BG) was incorporated into magnesium phosphate cement (MPC) for the purpose of developing an injectable and bioactive composite cement with suitable physicochemical and biocompatible performance. Results show that the BG-incorporated MPC possesses an excellent injectability, and can be used to fill in different 3D printed defect models using a syringe with a moderate setting time. Meanwhile, BG can retard the setting time and adjust the exothermic temperature of MPC. When the MPC/BG ratio was 3:1 (MPC3-BG), its corresponding setting time, peak temperature, anti-washout ratio and compressive strength were 9.9 ± 0.7 min, 45.8 ± 1.6 °C, 87%-90% and 13.5 MPa, respectively, which were suitable for injection and bone reparation. Characterizations of MPC3-BG showed that it had a faster degradation rate than MPC and the functional ions of boron and silicon could be released from the dissolution of the composite cement. In vitro and in vivo experiments also demonstrated that MPC3-BG had a stimulatory effect on the cell proliferation and new bone regeneration.
Collapse
Affiliation(s)
- Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu J, Yang S, Cai K, Wang S, Qiu Z, Huang J, Jiang G, Wang X, Fang X. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics 2020; 10:6544-6560. [PMID: 32483469 PMCID: PMC7255031 DOI: 10.7150/thno.44428] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Poly (methyl methacrylate) (PMMA) bone cement is one of the most commonly used biomaterials for augmenting/stabilizing osteoporosis-induced vertebral compression fractures (OVCFs), such as percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP). However, its clinical applications are limited by its poor performance in high compressive modulus and weak bonding to bone. To address these issues, a bioactive composite bone cement was developed for the treatment of osteoporotic vertebral compression fractures, in which mineralized collagen (MC) was incorporated into the PMMA bone cement (MC-PMMA). Methods: The in vitro properties of PMMA and MC-PMMA composite bone cement were determined, including setting time, compressive modulus, adherence, proliferation, and osteogenic differentiation of rat bone mesenchymal stem cells. The in vivo properties of both cements were evaluated in an animal study (36 osteoporotic New Zealand female rabbits divided equally between the two bone cement groups; PVP at L5) and a small-scale and short-term clinical study (12 patients in each of the two bone cement groups; follow-up: 2 years). Results: In terms of value for PMMA bone cement, the handling properties of MC-PMMA bone cement were not significantly different. However, both compressive strength and compressive modulus were found to be significantly lower. In the rabbit model study, at 8 and 12 weeks post-surgery, bone regeneration was more significant in MC-PMMA bone cement (cortical bone thickness, osteoblast area, new bone area, and bone ingrowth %; each significantly higher). In the clinical study, at a follow-up of 2 years, both the Visual Analogue Score and Oswestry Disability Index were significantly reduced when MC-PMMA cement was used. Conclusions: MC-PMMA bone cement demonstrated good adaptive mechanical properties and biocompatibility and may be a promising alternative to commercial PMMA bone cements for the treatment of osteoporotic vertebral fractures in clinical settings. While the present results for MC-PMMA bone cement are encouraging, further study of this cement is needed to explore its viability as an ideal alternative for use in PVP and BKP.
Collapse
Affiliation(s)
- Jinjin Zhu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Kaiwen Cai
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiye Qiu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junfei Huang
- Shimadzu (China) Co., Ltd. Shenzhen Branch, Shenzhen 518042, China
| | - Guoqiang Jiang
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| |
Collapse
|
24
|
Wekwejt M, Michno A, Truchan K, Pałubicka A, Świeczko-Żurek B, Osyczka AM, Zieliński A. Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1114. [PMID: 31382557 PMCID: PMC6722923 DOI: 10.3390/nano9081114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Anna Michno
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Karolina Truchan
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland
- Department of Surgical Oncologic, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Beata Świeczko-Żurek
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Anna Maria Osyczka
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Zieliński
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
25
|
Panpisut P, Khan MA, Main K, Arshad M, Xia W, Petridis H, Young AM. Polymerization kinetics stability, volumetric changes, apatite precipitation, strontium release and fatigue of novel bone composites for vertebroplasty. PLoS One 2019; 14:e0207965. [PMID: 30883564 PMCID: PMC6422261 DOI: 10.1371/journal.pone.0207965] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The aim was to determine effects of diluent monomer and monocalcium phosphate monohydrate (MCPM) on polymerization kinetics and volumetric stability, apatite precipitation, strontium release and fatigue of novel dual-paste composites for vertebroplasty. MATERIALS AND METHODS Polypropylene (PPGDMA) or triethylene (TEGDMA) glycol dimethacrylates (25 wt%) diluents were combined with urethane dimethacrylate (70 wt%) and hydroxyethyl methacrylate (5 wt%). 70 wt% filler containing glass particles, glass fibers (20 wt%) and polylysine (5 wt%) was added. Benzoyl peroxide and MCPM (10 or 20 wt%) or N-tolyglycine glycidyl methacrylate and tristrontium phosphate (15 wt%) were included to give initiator or activator pastes. Commercial PMMA (Simplex) and bone composite (Cortoss) were used for comparison. ATR-FTIR was used to determine thermal activated polymerization kinetics of initiator pastes at 50-80°C. Paste stability, following storage at 4-37°C, was assessed visually or through mixed paste polymerization kinetics at 25°C. Polymerization shrinkage and heat generation were calculated from final monomer conversions. Subsequent expansion and surface apatite precipitation in simulated body fluid (SBF) were assessed gravimetrically and via SEM. Strontium release into water was assessed using ICP-MS. Biaxial flexural strength (BFS) and fatigue properties were determined at 37°C after 4 weeks in SBF. RESULTS Polymerization profiles all exhibited an inhibition time before polymerization as predicted by free radical polymerization mechanisms. Initiator paste inhibition times and maximum reaction rates were described well by Arrhenius plots. Plot extrapolation, however, underestimated lower temperature paste stability. Replacement of TEGDMA by PPGDMA, enhanced paste stability, final monomer conversion, water-sorption induced expansion and strontium release but reduced polymerization shrinkage and heat generation. Increasing MCPM level enhanced volume expansion, surface apatite precipitation and strontium release. Although the experimental composite flexural strengths were lower compared to those of commercially available Simplex, the extrapolated low load fatigue lives of all materials were comparable. CONCLUSIONS Increased inhibition times at high temperature give longer predicted shelf-life whilst stability of mixed paste inhibition times is important for consistent clinical application. Increased volumetric stability, strontium release and apatite formation should encourage bone integration. Replacing TEGDMA by PPGDMA and increasing MCPM could therefore increase suitability of the above novel bone composites for vertebroplasty. Long fatigue lives of the composites may also ensure long-term durability of the materials.
Collapse
Affiliation(s)
- Piyaphong Panpisut
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
| | - Muhammad Adnan Khan
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
| | - Kirsty Main
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
| | - Mayda Arshad
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
| | - Wendy Xia
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
| | - Haralampos Petridis
- Department of Restorative Dentistry, Unit of Prosthodontics, UCL Eastman Dental Institute, London, United Kingdom
| | - Anne Margaret Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
| |
Collapse
|