1
|
Brown MG, Brady DJ, Healy KM, Henry KA, Ogunsola AS, Ma X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024; 13:1045. [PMID: 38920674 PMCID: PMC11201612 DOI: 10.3390/cells13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.
Collapse
Affiliation(s)
- Marcel G. Brown
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Davis J. Brady
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M. Healy
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kaitlin A. Henry
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ayobami S. Ogunsola
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
2
|
Jiang Y, Lv H, Shen F, Fan L, Zhang H, Huang Y, Liu J, Wang D, Pan H, Yang J. Strategies in product engineering of mesenchymal stem cell-derived exosomes: unveiling the mechanisms underpinning the promotive effects of mesenchymal stem cell-derived exosomes. Front Bioeng Biotechnol 2024; 12:1363780. [PMID: 38756412 PMCID: PMC11096451 DOI: 10.3389/fbioe.2024.1363780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Articular cartilage injuries present a significant global challenge, particularly in the aging population. These injuries not only restrict movement due to primary damage but also exacerbate elderly degenerative lesions, leading to secondary cartilage injury and osteoarthritis. Addressing osteoarthritis and cartilage damage involves overcoming several technical challenges in biological treatment. The use of induced mesenchymal stem cells (iMSCs) with functional gene modifications emerges as a solution, providing a more stable and controllable source of Mesenchymal Stem Cells (MSCs) with reduced heterogeneity. Furthermore, In addition, this review encompasses strategies aimed at enhancing exosome efficacy, comprising the cultivation of MSCs in three-dimensional matrices, augmentation of functional constituents within MSC-derived exosomes, and modification of their surface characteristics. Finally, we delve into the mechanisms through which MSC-exosomes, sourced from diverse tissues, thwart osteoarthritis (OA) progression and facilitate cartilage repair. This review lays a foundational framework for engineering iMSC-exosomes treatment of patients suffering from osteoarthritis and articular cartilage injuries, highlighting cutting-edge research and potential therapeutic pathways.
Collapse
Affiliation(s)
- Yudong Jiang
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanning Lv
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuguo Shen
- Orthopedics Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lei Fan
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Hongjun Zhang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Yong Huang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jia Liu
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Dong Wang
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Haile Pan
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianhua Yang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
3
|
Wang Q, Wang Y, Chang C, Ma F, Peng D, Yang S, An Y, Deng Q, Wang Q, Gao F, Wang F, Tang H, Qi X, Jiang X, Cai D, Zhou G. Comparative analysis of mesenchymal stem/stromal cells derived from human induced pluripotent stem cells and the cognate umbilical cord mesenchymal stem/stromal cells. Heliyon 2023; 9:e12683. [PMID: 36647346 PMCID: PMC9840238 DOI: 10.1016/j.heliyon.2022.e12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) show tremendous potential for regenerative medicine due to their self-renewal, multi-differentiation and immunomodulatory capabilities. Largely studies had indicated conventional tissue-derived MSCs have considerable limited expandability and donor variability which hinders further application. Induced pluripotent stem cell (iPSCs)-derived MSCs (iMSCs) have created exciting source for standardized cellular therapy. However, the cellular and molecular differences between iMSCs and the cognate tissue-derived MSCs remains poorly explored. In this study, we first successfully reprogrammed human umbilical cords-derived mesenchymal stem/stromal cells (UMSCs) into iPSCs by using the cocktails of mRNA. Subsequently, iPSCs were further differentiated into iMSCs in xeno-free induction medium. Then, iMSCs were compared with the donor matched UMSCs by assessing proliferative state, differentiation capability, immunomodulatory potential through immunohistochemical analysis, flow cytometric analysis, transcriptome sequencing analysis, and combine with coculture with immune cell population. The results showed that iMSCs exhibited high expression of MSCs positive-makers CD73, CD90, CD105 and lack expression of negative-maker cocktails CD34, CD45, CD11b, CD19, HLA-DR; also successfully differentiated into osteocytes, chondrocytes and adipocytes. Further, the iMSCs were similar with their parental UMSCs in cell proliferative state detected by the CCK-8 assay, and in cell rejuvenation state assessed by β-Galactosidase staining and telomerase activity related mRNA and protein analysis. However, iMSCs exhibited similarity to resident MSCs in Homeobox (Hox) genes expression profile and presented better neural differentiation potential by activation of NESTIN related pathway. Moreover, iMSCs owned enhanced immunosuppression capacity through downregulation pools of pro-inflammatory factors, including IL6, IL1B etc. and upregulation anti-inflammatory factors NOS1, TGFB etc. signals. In summary, our study provides an attractive cell source for basic research and offers fundamental biological insight of iMSCs-based therapy.
Collapse
Affiliation(s)
- Quanlei Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China,Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China,Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yuwei Wang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China,The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China
| | - Chongfei Chang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Feilong Ma
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Dongxiu Peng
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Shun Yang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | | | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qixiao Wang
- Department of Oral and Maxillofacial Surgery, The First People's Hospital of Huaihua, University of South China, Huaihua, Hunan, China
| | - Fei Gao
- China Food and Drug Administration, Beijing, China
| | - Fei Wang
- The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China
| | - Huiru Tang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Xiaoming Jiang
- The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China,Corresponding author. The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China.
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China,Corresponding author. Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China.
| | - Guangqian Zhou
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China,Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China,The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China,Corresponding author. The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China.
| |
Collapse
|
4
|
Kong H, Liu P, Li H, Zeng X, Xu P, Yao X, Liu S, Cheng CK, Xu J. Mesenchymal Stem Cell-Derived Extracellular Vesicles: The Novel Therapeutic Option for Regenerative Dentistry. Stem Cell Rev Rep 2023; 19:46-58. [PMID: 35132538 DOI: 10.1007/s12015-022-10342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 01/29/2023]
Abstract
Dental mesenchymal stem cells (MSCs) are characterized by unlimited self-renewal ability and high multidirectional differentiation potential. Since dental MSCs can be easily isolated and exhibit a high capability to differentiate into odontogenic cells, they are considered as attractive therapeutic agents in regenerative dentistry. Recently, MSC-derived extracellular vesicles (MSC-EVs) have attracted widespread attention as carriers for cell-free therapy due to their potential functions. Many studies have shown that MSC-EVs can mediate microenvironment at tissue damage site, and coordinate the regeneration process. Additionally, MSC-EVs can mediate intercellular communication, thus affecting the phenotypes and functions of recipient cells. In this review, we mainly summarized the types of MSCs that could be potentially applied in regenerative dentistry, the possible molecular cargos of MSC-EVs, and the major effects of MSC-EVs on the therapeutic induction of osteogenic differentiation.
Collapse
Affiliation(s)
- Haiying Kong
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Peiqi Liu
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China.,Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hongwen Li
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China.,Shenzhen Longgang Institute of Stomatology, Shenzhen, Guangdong, China
| | - Xiantao Zeng
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Peiwu Xu
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Xinhui Yao
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Senqing Liu
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jian Xu
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China. .,Shenzhen Longgang Institute of Stomatology, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Current Application of iPS Cells in the Dental Tissue Regeneration. Biomedicines 2022; 10:biomedicines10123269. [PMID: 36552025 PMCID: PMC9775967 DOI: 10.3390/biomedicines10123269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
When teeth and periodontal tissues are severely damaged by severe caries, trauma, and periodontal disease, such cases may be subject to tooth extraction. As tooth loss leads to the deterioration of quality of life, the development of regenerative medicine for tooth and periodontal tissue is desired. Induced pluripotent stem cells (iPS cells) are promising cell resources for dental tissue regeneration because they offer high self-renewal and pluripotency, along with fewer ethical issues than embryonic stem cells. As iPS cells retain the epigenetic memory of donor cells, they have been established from various dental tissues for dental tissue regeneration. This review describes the regeneration of dental tissue using iPS cells. It is important to mimic the process of tooth development in dental tissue regeneration using iPS cells. Although iPS cells had safety issues in clinical applications, they have been overcome in recent years. Dental tissue regeneration using iPS cells has not yet been established, but it is expected in the future.
Collapse
|
6
|
He Y, Wang W, Luo P, Wang Y, He Z, Dong W, Jia M, Yu X, Yang B, Wang J. Mettl3 regulates hypertrophic differentiation of chondrocytes through modulating Dmp1 mRNA via Ythdf1-mediated m 6A modification. Bone 2022; 164:116522. [PMID: 35981698 DOI: 10.1016/j.bone.2022.116522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
As the main cells in endochondral osteogenesis, chondrocytes have limited self-repair ability due to weak proliferation activity, low density, and dedifferentiation tendency. Here, a thorough inquiry about the effect and underlying mechanisms of methyltransferase like-3 (Mettl3) on chondrocytes was made. Functionally, it was indicated that Mettl3 promoted the proliferation and hypertrophic differentiation of chondrocytes. Mechanically, Dmp1 (dentin matrix protein 1) was proved to be the downstream direct target of Mettl3 for m6A modification to regulate the differentiation of chondrocytes through bioinformatics analysis and correlated experiments. The Reader protein Ythdf1 mediated Dmp1 mRNA catalyzed by Mettl3. In vivo, the formation of subcutaneous ectopic cartilage-like tissue further supported the in vitro results. In conclusion, the gene regulation of Mettl3/m6A/Ythdf1/Dmp1 axis in hypertrophic differentiation of chondrocytes for the development of endochondral osteogenesis may supply a promising treatment strategy for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Wang
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Meie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
7
|
Gao P, Liu S, Wang X, Ikeya M. Dental applications of induced pluripotent stem cells and their derivatives. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:162-171. [PMID: 35516907 PMCID: PMC9065891 DOI: 10.1016/j.jdsr.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Periodontal tissue regeneration is the ideal tactic for treating periodontitis. Tooth regeneration is the potential strategy to restore the lost teeth. With infinite self-renewal, broad differentiation potential, and less ethical issues than embryonic stem cells, induced pluripotent stem cells (iPSCs) are promising cell resource for periodontal and tooth regeneration. This review summarized the optimized technologies of generating iPSC lines and application of iPSC derivatives, which reduce the risk of tumorigenicity. Given that iPSCs may have epigenetic memory from the donor tissue and tend to differentiate into lineages along with the donor cells, iPSCs derived from dental tissues may benefit for personalized dental application. Neural crest cells (NCCs) and mesenchymal stem or stomal cells (MSCs) are lineage-specific progenitor cells derived from iPSCs and can differentiate into multilineage cell types. This review introduced the updated technologies of inducing iPSC-derived NCCs and iPSC-derived MSCs and their application in periodontal and tooth regeneration. Given the complexity of periodontal tissues and teeth, it is crucial to elucidate the integrated mechanisms of all constitutive cells and the spatio-temporal interactions among them to generate structural periodontal tissues and functional teeth. Thus, more sophisticated studies in vitro and in vivo and even preclinical investigations need to be conducted.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General and Emergency Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Division of Oral Ecology and Biochemistry, Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Hua Z, Li S, Liu Q, Yu M, Liao M, Zhang H, Xiang X, Wu Q. Low-Intensity Pulsed Ultrasound Promotes Osteogenic Potential of iPSC-Derived MSCs but Fails to Simplify the iPSC-EB-MSC Differentiation Process. Front Bioeng Biotechnol 2022; 10:841778. [PMID: 35656194 PMCID: PMC9152674 DOI: 10.3389/fbioe.2022.841778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) are a promising cell source for bone tissue engineering. However, iMSCs have less osteogenic potential than BMSCs, and the classical iPSC-EB-iMSC process to derive iMSCs from iPSCs is too laborious as it involves multiple in vitro steps. Low-intensity pulsed ultrasound (LIPUS) is a safe therapeutic modality used to promote osteogenic differentiation of stem cells. Whether LIPUS can facilitate osteogenic differentiation of iMSCs and simplify the iPSC-EB-iMSC process is unknown. We stimulated iMSCs with LIPUS at different output intensities (20, 40, and 60 mW/cm2) and duty cycles (20, 50, and 80%). Results of ALP activity assay, osteogenic gene expression, and mineralization quantification demonstrated that LIPUS was able to promote osteogenic differentiation of iMSCs, and it worked best at the intensity of 40 mW/cm2 and the duty cycle of 50% (LIPUS40/50). The Wnt/β-catenin signaling pathway was involved in LIPUS40/50-mediated osteogenesis. When cranial bone defects were implanted with iMSCs, LIPUS40/50 stimulation resulted in a significant higher new bone filling rate (72.63 ± 17.04)% than the non-stimulated ones (34.85 ± 4.53)%. Daily exposure to LIPUS40/50 may accelerate embryoid body (EB)-MSC transition, but it failed to drive iPSCs or EB cells to an osteogenic lineage directly. This study is the first to demonstrate the pro-osteogenic effect of LIPUS on iMSCs. Although LIPUS40/50 failed to simplify the classical iPSC-EB-MSC differentiation process, our preliminary results suggest that LIPUS with a more suitable parameter set may achieve the goal. LIPUS is a promising method to establish an efficient model for iPSC application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqing Wu
- *Correspondence: Qingqing Wu, ; Xuerong Xiang,
| |
Collapse
|
9
|
Nambiar J, Jana S, Nandi SK. Strategies for Enhancing Vascularization of Biomaterial-Based Scaffold in Bone Regeneration. CHEM REC 2022; 22:e202200008. [PMID: 35352873 DOI: 10.1002/tcr.202200008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Despite the recent advances in reconstructive orthopedics; fracture union is a challenge to bone regeneration. Concurrent angiogenesis is a complex process governed by events, delicately entwined with osteogenesis. However, poorly perfused scaffolds have lower success rates; necessitating the need for a better vascular component, which is important for the delivery of nutrients, oxygen, waste elimination, recruitment of cells for optimal bone repair. This review highlights the latest strategies to promote biomaterial-based scaffold vascularization by incorporation of cells, growth factors, inorganic ions, etc. into natural or synthetic polymers, ceramic materials, or composites of organic and inorganic compounds. Furthermore, it emphasizes structural modifications, biophysical stimuli, and natural molecules to fabricate scaffolds aiding the genesis of dense vascularization following their implantation to manifest a compatible regenerative microenvironment without graft rejection.
Collapse
Affiliation(s)
- Jasna Nambiar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| |
Collapse
|
10
|
Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms222111746. [PMID: 34769175 PMCID: PMC8583713 DOI: 10.3390/ijms222111746] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oral and craniofacial bone defects caused by congenital disease or trauma are widespread. In the case of severe alveolar bone defect, autologous bone grafting has been considered a “gold standard”; however, the procedure has several disadvantages, including limited supply, resorption, donor site morbidity, deformity, infection, and bone graft rejection. In the last few decades, bone tissue engineering combined with stem cell-based therapy may represent a possible alternative to current bone augmentation techniques. The number of studies investigating different cell-based bone tissue engineering methods to reconstruct alveolar bone damage is rapidly rising. As an interdisciplinary field, bone tissue engineering combines the use of osteogenic cells (stem cells/progenitor cells), bioactive molecules, and biocompatible scaffolds, whereas stem cells play a pivotal role. Therefore, our work highlights the osteogenic potential of various dental tissue-derived stem cells and induced pluripotent stem cells (iPSCs), the progress in differentiation techniques of iPSCs into osteoprogenitor cells, and the efforts that have been made to fabricate the most suitable and biocompatible scaffold material with osteoinductive properties for successful bone graft generation. Moreover, we discuss the application of stem cell-derived exosomes as a compelling new form of “stem-cell free” therapy.
Collapse
|
11
|
Xu Y, Yang Y, Hua Z, Li S, Yang Z, Liu Q, Fu G, Ji P, Wu Q. BMP2 immune complexes promote new bone formation by facilitating the direct contact between osteoclasts and osteoblasts. Biomaterials 2021; 275:120890. [PMID: 34130144 DOI: 10.1016/j.biomaterials.2021.120890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
BMP2 antibody is proposed as a promising replacement for rhBMP2 in bone tissue engineering. Although studies have demonstrated its osteoinductive efficacy, the underlying osteogenic mechanism and adverse reactions of specific BMP2 antibody are not clarified yet, making it difficult to optimize the antibody for future application. By establishing BMP2 immune complexes (BMP2-ICs) ex vivo, we were able to introduce BMP2-ICs directly in vivo and found that BMP2-ICs promoted bone formation while suppressing osteoclastogenesis. However, ex vivo osteoclastogenic assays showed that BMP2-ICs promoted osteoclastogenesis by binding FcγR and activating PLCγ2 phosphorylation. Given that BMP2-ICs react with osteoblast and osteoclast lineage cells by the conjugated BMP2 domain and the Fc domain respectively, we introduced BMP2-ICs into coculture system of the two lineage cells and found that BMP2-ICs promoted osteogenesis while suppressing osteoclastogenesis by facilitating osteoblast-osteoclast contact and activating the EphrinB2-EphB4 signaling. This bidirectional function of BMP2-ICs was reproduced in the cranial bone resorption model, where osteoblast and osteoclast lineage cells co-localized. This study excluded the hidden problem of osteoclast overactivation that usually comes with rhBMP2 and clarified the first evidence of the mechanism of antibody-mediated bone regeneration, suggesting BMP2-ICs may present a promising therapy for bone diseases related with disrupted osteoclast-osteoblast interaction.
Collapse
Affiliation(s)
- Yamei Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Yao Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Ziyi Hua
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Shuang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Zhenyu Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Qianzi Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Gang Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China; Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Qingqing Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China; Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
12
|
The sialylation profile of IgG determines the efficiency of antibody directed osteogenic differentiation of iMSCs by modulating local immune responses and osteoclastogenesis. Acta Biomater 2020; 114:221-232. [PMID: 32771590 DOI: 10.1016/j.actbio.2020.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/03/2020] [Accepted: 07/31/2020] [Indexed: 12/25/2022]
Abstract
Antibody-mediated osseous regeneration (AMOR) has been proved as a promising strategy for osteogenic differentiation of induced pluripotent stem cells derived MSCs (iMSCs). The key characteristic of antibody that determines the AMOR potential is largely unknown. The glycosylation profile of immunoglobulin G (IgG) represents a key checkpoint that determines its effector functions. Herein, we modified the sialylation profile of BMP2 antibodies to investigate the effects of glycosylation on antibody-mediated osteogenic differentiation of iMSCs. We found that over-sialylated BMP2 antibodies stimulated the highest amount of new bone while those non- or low-sialylated led to bone porosity and collapse. The immune response aroused by BMP2 immune complexes (BMP2-ICs) was intensified by desialylation, which contributed to an environment that favored osteoclastogenesis while inhibited osteoblastogenesis. In vitro study further demonstrated that the osteogenic potential of BMP2-ICs was not significantly affected by the degree of sialylation. On the other hand, BMP2-ICs could stimulate osteoclastogenesis by binding FcγRs on preosteoclasts directly, which was significantly intensified by desialylation and attenuated by over-sialylation. Bone defects implanted with alginate microbeads loaded with iMSCs and over-sialylated antibodies showed more bone formation than those sites with non- or low sialylated antibodies. Taken together, our study demonstrated that sialylation profile is one of the traits that decide the AMOR potential of BMP2 antibodies. Enhancement of sialylation may be a promising strategy to optimize antibody for iMSCs application in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Antibody-mediated osseous regeneration (AMOR) is a promising strategy for bone tissue engineering that takes advantage of the specific reactivity of antibodies to sequester endogenous BMP2 and present it to osteoprogenitor cells. We previously demonstrated that BMP2 immune complex can drive iPSCs derived MSCs to osteogenic lineage. In this study, we analyze the effects of glycosylation profile on antibody directed osteogenic differentiation of iMSCs because glycosylation profile represents a key checkpoint that determines the effector functions of antibodies, and it is susceptible to variations in different clones. The results showed that sialylation profile is one of the traits that decides the AMOR potential of BMP2 antibody, and the enhancement of sialylation maybe a promising strategy to optimize antibodies for AMOR.
Collapse
|
13
|
Induced Pluripotent Stem Cells in Dental and Nondental Tissue Regeneration: A Review of an Unexploited Potential. Stem Cells Int 2020; 2020:1941629. [PMID: 32300365 PMCID: PMC7146092 DOI: 10.1155/2020/1941629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies currently represent the state of art for tissue regenerative treatment approaches for various diseases and disorders. Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells, using vectors carrying definite transcription factors, have manifested a breakthrough in regenerative medicine, relying on their pluripotent nature and ease of generation in large amounts from various dental and nondental tissues. In addition to their potential applications in regenerative medicine and dentistry, iPSCs can also be used in disease modeling and drug testing for personalized medicine. The current review discusses various techniques for the production of iPSC-derived osteogenic and odontogenic progenitors, the therapeutic applications of iPSCs, and their regenerative potential in vivo and in vitro. Through the present review, we aim to explore the potential applications of iPSCs in dental and nondental tissue regeneration and to highlight different protocols used for the generation of different tissues and cell lines from iPSCs.
Collapse
|
14
|
Gao Y, Ku NJ, Sung TC, Higuchi A, Hung CS, Lee HHC, Ling QD, Cheng NC, Umezawa A, Barro L, Burnouf T, Ye Q, Chen H. The effect of human platelet lysate on the differentiation ability of human adipose-derived stem cells cultured on ECM-coated surfaces. J Mater Chem B 2019; 7:7110-7119. [PMID: 31513217 DOI: 10.1039/c9tb01764j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human mesenchymal stem cells (hMSCs), such as human adipose-derived stem cells (hADSCs), present heterogeneous characteristics, including varying differentiation abilities and genotypes. hADSCs isolated under different conditions exhibit differences in stemness. We isolated hADSCs from human fat tissues via culture on different cell culture biomaterials including tissue culture polystyrene (TCPS) dishes and extracellular matrix protein (ECM)-coated dishes in medium supplemented with 5% or 10% serum-converted human platelet lysate (hPL) or 10% fetal bovine serum (FBS) as a control. Currently, it is not clear whether xeno-free hPL in the cell culture medium promotes the ability of hMSCs such as hADSCs to differentiate into several cell lineages compared to the xenomaterial FBS. We investigated whether a synchronized effect of ECM (Matrigel, fibronectin, and recombinant vitronectin) coatings on TCPS dishes for efficient hADSC differentiation could be observed when hADSCs were cultured in hPL medium. We found that Matrigel-coated dishes promoted hADSC differentiation into osteoblasts and suppressed differentiation into chondrocytes in 10% hPL medium. Recombinant vitronectin- and fibronectin-coated dishes greatly promoted hADSC differentiation into osteoblasts and chondrocytes in 5% and 10% hPL media. hPL promoted hADSC differentiation into osteoblasts and chondrocytes compared to FBS on the fibronectin-coated surface and recombinant vitronectin-coated surface.
Collapse
Affiliation(s)
- Yan Gao
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China.
| | - Nien-Ju Ku
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China. and Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan and Center for Emergent Matter Science, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and Wenzhou Institute, University of Chinese Academy of Science, No. 16, Xinsan Road, Hi-Tech Industry Park, Wenzhou, Zhejiang, China
| | - Chi-Sheng Hung
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd, Hsinchu, 30060, Taiwan and Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd, Taipei 100, Taiwan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan and Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan
| | - Qingsong Ye
- Regenerative Dentistry Group, School of Dentistry, The University of Queensland, 288 Herston Road, Herston Qld, Brisbane 4006, Australia
| | - Hao Chen
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
15
|
Rana D, Kumar S, Webster TJ, Ramalingam M. Impact of Induced Pluripotent Stem Cells in Bone Repair and Regeneration. Curr Osteoporos Rep 2019; 17:226-234. [PMID: 31256323 DOI: 10.1007/s11914-019-00519-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The main objective of this article is to investigate the current trends in the use of induced pluripotent stem cells (iPSCs) for bone tissue repair and regeneration. RECENT FINDINGS Pluripotent stem cell-based tissue engineering has extended innovative therapeutic approaches for regenerative medicine. iPSCs have shown osteogenic differentiation capabilities and would be an innovative resource of stem cells for bone tissue regenerative applications. This review recapitulates the current knowledge and recent progress regarding utilization of iPSCs for bone therapy. A review of current findings suggests that a combination of a three-dimensional scaffolding system with iPSC technology to mimic the physiological complexity of the native stem cell niche is highly favorable for bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Deepti Rana
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Sanjay Kumar
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, 632002, India
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Murugan Ramalingam
- Biomaterials and Stem Cell Engineering Lab, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, India.
| |
Collapse
|
16
|
Xu Y, Xia M, Chen T, Yang Y, Fu G, Ji P, Wu Q. Inferior alveolar nerve transection disturbs innate immune responses and bone healing after tooth extraction. Ann N Y Acad Sci 2019; 1448:52-64. [PMID: 31095746 DOI: 10.1111/nyas.14120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yamei Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Mengnan Xia
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Yao Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Gang Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Qingqing Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| |
Collapse
|
17
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
18
|
Endowing iPSC-Derived MSCs with Angiogenic and Keratinogenic Differentiation Potential: A Promising Cell Source for Skin Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8459503. [PMID: 30302340 PMCID: PMC6158941 DOI: 10.1155/2018/8459503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/23/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023]
Abstract
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell-based therapy for skin regeneration. Aiming to establish human iPSCs as a potential cell source for skin tissue engineering, we expect to obtain an epidermal-like cell line with angiogenic and keratinogenic differentiation potential via inducing iPSC-derived mesenchymal stem cells (iPSC-MSCs) with basic fibroblast growth factor (bFGF) and/or keratinocyte growth factor (KGF). The results show that iPSC-MSCs were successfully induced with a positive FGFR/KGFR expression on the cell surface. BFGF/KGF induction could significantly increase the expression of vascularization marker CD31 and keratinization marker CK10, respectively, while when combined together, although CD31 and CK10 were still positively expressed, their expressions were lower than that of the single induction group, suggesting that the effects of the two growth factors interfered with each other. This cell line with angiogenic and keratinogenic differentiation potential provides a promising new source of cells for the construction of well vascularized and keratinized tissue engineered skin, furthermore establishing an effective strategy for iPSC-based therapy in skin tissue engineering.
Collapse
|