1
|
Zhu Y, Zhang C, Liang Y, Shi J, Yu Q, Liu S, Yu D, Liu H. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomater Sci 2024; 12:1643-1661. [PMID: 38411223 DOI: 10.1039/d3bm02038j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Tissue adhesion is one of the most common postoperative complications, which is frequently accompanied by inflammation, pain, and even dyskinesia, significantly reducing the quality of life of patients. Thus, to prevent the formation of tissue adhesions, various strategies have been explored. Among these methods, placing anti-adhesion membranes over the injured site to separate the wound from surrounding tissues is a simple and prominently favored method. Recently, electrospun nanofibers have been the most frequently investigated antiadhesive membranes due to their tunable porous structure and high porosities. They not only can act as an essential barrier and functional carrier system but also allow for high permeability and nutrient transport, showing great potential for preventing tissue adhesion. Herein, we provide a short review of the most recent applications of electrospun nanofibrous antiadhesive membranes in tendons, the abdominal cavity, dural sac, pericardium, and meninges. Firstly, each section highlights the most representative examples and they are sorted based on the latest progress of related research. Moreover, the design principles, preparation strategies, overall performances, and existing problems are highlighted and evaluated. Finally, the current challenges and several future ways to develop electrospun nanofibrous antiadhesive membranes are proposed. The systematic discussion and proposed directions can shed light on ideas and guide the reasonable design of electrospun nanofibrous membranes, contributing to the development of exceptional tissue anti-adhesive materials in the foreseeable future.
Collapse
Affiliation(s)
- Yanting Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Chenwei Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Ying Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Jianyuan Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qiuhao Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, PR China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
2
|
Han WH, Wang QY, Kang YY, Shi LR, Long Y, Zhou X, Hao CC. Cross-linking electrospinning. NANOSCALE 2023; 15:15513-15551. [PMID: 37740390 DOI: 10.1039/d3nr03956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Although electrospinning (e-spinning) has witnessed rapid development in recent years, it has also been criticized by environmentalists due to the use of organic solvents. Therefore, aqueous e-spinning (green e-spinning) is considered a more attractive technique. However, considering the poor water resistance and mechanical properties of electrospun (e-spun) nanofibers, cross-linking is a perfect solution. In this review, we systematically discuss the cross-linking e-spinning system for the first time, including cross-linking strategies (in situ, liquid immersion, vapor, and spray cross-linking), cross-linking mechanism (physical and chemical cross-linking) of e-spun nanofibers, and the various applications (e.g., tissue engineering, drug delivery, water treatment, food packaging, and sensors) of cross-linked e-spun nanofibers. Among them, we highlight several cross-linking methods, including UV light cross-linking, electron beam cross-linking, glutaraldehyde (and other commonly used cross-linking agents) chemical cross-linking, thermal cross-linking, and enzymatic cross-linking. Finally, we confirm the significance of cross-linking e-spinning and reveal the problems in the construction of this system.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Li-Rui Shi
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yu Long
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Shin YH, Yun HW, Park SY, Choi SJ, Park IS, Min BH, Kim JK. Effect of glutaraldehyde-crosslinked cartilage acellular matrix film on anti-adhesion and nerve regeneration in a rat sciatic nerve injury model. J Tissue Eng Regen Med 2021; 15:1023-1036. [PMID: 34591344 DOI: 10.1002/term.3249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/01/2021] [Indexed: 01/16/2023]
Abstract
Decellularized extra-cellular matrix (ECM) has been studied as an alternative to anti-adhesive biomaterials and cartilage acellular matrix (CAM) has been shown to inhibit postoperative adhesion in several organs. This study aimed to evaluate the suitability of glutaraldehyde (GA) crosslinked CAM-films as anti-adhesion barriers for peripheral nerve injury. The films were successfully fabricated and showed improved physical properties such as mechanical strength, swelling ratio, and lengthened degradation period while maintaining the microstructure and chemical composition after GA crosslinking. In the in vitro study of CAM-film, the dsDNA content met the recommended limit of decellularization and more than 70% of the major ECM components were preserved after decellularization. The adhesion and proliferation of seeded human umbilical vein endothelial cells and fibroblasts were significantly lower in CAM-film than in control, but similar with Seprafilm. However, the CAM-film extract did not show cytotoxicity. In the in vivo study, the peri-neural fibrosis was thicker, adhesion score higher, and peri-neural collagen fibers more abundant in the control group than in the CAM-film group. The total number of myelinated axons was significantly higher in the CAM-film group than in the control group. The inflammatory marker decreased with time in the CAM-film group compared to that in the control group, whereas the nerve regenerative marker expression was maintained. Moreover, the ankle angles at contracture and toe-off were higher in the CAM film-treated rats than in the control rats. GA-crosslinked CAM films may be used during peripheral nerve surgery to prevent peri-neural adhesion and enhance nerve functional recovery.
Collapse
Affiliation(s)
- Young Ho Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou Medical Center, Suwon, Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Suk Young Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soon Jin Choi
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Su Park
- Cell Therapy Center, Ajou Medical Center, Suwon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou Medical Center, Suwon, Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Jae Kwang Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Yin M, Wan S, Ren X, Chu CC. Development of Inherently Antibacterial, Biodegradable, and Biologically Active Chitosan/Pseudo-Protein Hybrid Hydrogels as Biofunctional Wound Dressings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14688-14699. [PMID: 33739108 DOI: 10.1021/acsami.0c21680] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing a new family of hydrogel-based wound dressings that could have a dual biofunctionality of antibacterial and biological responses is highly desirable. In this study, an inherently effective antibacterial and biodegradable hydrogel dressing without the need for impregnated antibiotics was designed, synthesized, characterized, and examined for its effect on macrophages, which initiated inflammatory activity and activated both NO and TNF-α production for the purpose of achieving a better and faster wound healing. The purposes of this research was to develop a novel family of cationic biodegradable hydrogels based on arginine-based poly(ester urea urethane) (Arg-PEUU) and glycidyl methacrylate-modified chitosan (CS-GMA) that has both inherent antibacterial and bioactive functionality as a wound healing dressing for accelerated healing of contaminated or infected wounds. These hybrid hydrogels present a well-defined three-dimensional microporous network structure and have a high water absorption ability, and their biodegradation is effectively accelerated in the presence of lysozymes. The hemolytic activity test, MTT assay, and live/dead assay of these hybrid hydrogels indicated that they had no cytotoxicity toward red blood cells, NIH-3T3 fibroblast cells, and human vascular endothelial cells, thus corroborating their cytocompatibility. Furthermore, these hybrid hydrogels could elevate the release of both produced NO and TNF-α by stimulating and activating RAW 264.7 macrophages, augmenting their antibacterial biological response. The antibacterial assay of these hybrid hydrogels demonstrated their excellent antibacterial activity without the need for impregnated antibacterial agents. Taken together, this new family of biodegradable, antibacterial, and biologically responsive hybrid hydrogels exhibits great potential as biofunctional antibacterial wound dressing candidates for wound healing.
Collapse
Affiliation(s)
- Maoli Yin
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 214122 Jiangsu, China
- Biomedical Engineering Field, and Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| | - Shuangshuang Wan
- Biomedical Engineering Field, and Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| | - Xuehong Ren
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 214122 Jiangsu, China
| | - Chih-Chang Chu
- Biomedical Engineering Field, and Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| |
Collapse
|
5
|
Preparation of a cross-linked cartilage acellular matrix-poly (caprolactone-ran-lactide-ran-glycolide) film and testing its feasibility as an anti-adhesive film. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111283. [DOI: 10.1016/j.msec.2020.111283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/28/2020] [Accepted: 07/19/2020] [Indexed: 12/29/2022]
|
6
|
Sultana T, Gwon JG, Lee BT. Thermal stimuli-responsive hyaluronic acid loaded cellulose based physical hydrogel for post-surgical de novo peritoneal adhesion prevention. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110661. [PMID: 32204089 DOI: 10.1016/j.msec.2020.110661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/21/2023]
Abstract
Effective strategies for post-surgical adhesion prevention have increasingly focused on injectable adhesion barriers due to their minimal invasiveness and wider applicability. In this study, a thermo-reversible hydrogel was developed by combining high molecular weight hyaluronic acid (HA) at various concentrations (0.05, 0.25, and 0.45% w/v) with tempo-oxidized nanocellulose (TOCN), methyl cellulose (MC) and polyethylene glycol (PEG) for anti-adhesion application. The hydrogel preparation time was short and did not require any chemical modification. TOCN ensured the mechanical stability of the hydrogel. MC confirmed thermo-sensitive feature. Higher amounts of HA increased the rate of hydrogel degradation. The HA 0.25 hydrogel was free-flowing, injectable at ambient temperature, capable of faster (40 ± 2 s), and reversible sol-gel (4 °C-37 °C) transition. A rat side-wall cecum abrasion model was used to confirm the complete de novo adhesion prevention efficacy of optimized HA 0.25 hydrogel, where the scratched abdominal wall of animals treated with HA 0.25 hydrogel healed after 14 days. During in vivo experiment, PEG in the hydrogel played a crucial role in adhesion prevention by minimizing friction between the surgical site and nearby organs. In a nutshell, HA 0.25 hydrogel, fabricated without crosslinking agent, is a potential candidate for tissue adhesion prevention strategies.
Collapse
Affiliation(s)
- Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Jae-Gyoung Gwon
- Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute, Seoul, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| |
Collapse
|
7
|
Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr Polym 2020; 232:115823. [PMID: 31952618 DOI: 10.1016/j.carbpol.2019.115823] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023]
Abstract
The aim of this study was to develop novel nanofibrous membranes based on the quaternary ammonium N-halamine chitosan (CSENDMH) and polyvinyl alcohol (PVA) for antibacterial and hemostasis wound dressing. To improve the antimicrobial properties of nanofibrous membranes, a new chitosan-quaternary ammonium N-halamine derivative was successfully synthesized, and the structure was analyzed by 1H NMR and 13C NMR, fourier transform infrared (FTIR) spectroscopy, and elemental analysis. The morphological and water absorption ability studies showed that the membrane had a uniform bead-free network and high porosity structure like natural extracellular matrix as well as high hydrophilicity. For in vitro evaluation of the hemostatic effect, the membranes showed excellent blood clotting capacity, especially the PVA/CSENDMH membranes. The antimicrobial assay demonstrated excellent antibacterial activity of nanofibrous membranes against both gram-negative and gram-positive bacteria. Furthermore, the cytocompatibility assay results indicated that human fibroblasts could adhere and proliferate on the membranes, thus corroborating their biocompatibility.
Collapse
|
8
|
Park DY, Yun HW, Lim S, Truong MD, Yin XY, Park J, Kim BK, Shin DI, Li XG, Chung JY, Kim MS, Min BH. Cross-linked cartilage acellular matrix film decreases postsurgical peritendinous adhesions. Artif Organs 2019; 44:E136-E149. [PMID: 31660625 DOI: 10.1111/aor.13591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Cartilage extracellular matrix contains antiadhesive and antiangiogenic molecules such as chondromodulin-1, thrombospondin-1, and endostatin. We have aimed to develop a cross-linked cartilage acellular matrix (CAM) barrier for peritendinous adhesion prevention. CAM film was fabricated using decellularized porcine cartilage tissue powder and chemical cross-linking. Biochemical analysis of the film showed retention of collagen and glycosaminoglycans after the fabrication process. Physical characterization of the film showed denser collagen microstructure, increased water contact angle, and higher tensile strength after cross-linking. The degradation time in vivo was 14 d after cross-linking. The film extract and film surface showed similar cell proliferation, while inhibiting cell migration and cell adhesion compared to standard media and culture plate, respectively. Application of the film after repair resulted in similar tendon healing and significantly less peritendinous adhesions in a rabbit Achilles tendon injury model compared to repair only group, demonstrated by histology, ultrasonography, and biomechanical testing. In conclusion, the current study developed a CAM film having biological properties of antiadhesion, together with biomechanical properties and degradation profile suitable for prevention of peritendinous adhesions.
Collapse
Affiliation(s)
- Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sumin Lim
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Jinho Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Byeong Kook Kim
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Dong Il Shin
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Xue Guang Li
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
9
|
Kim MJ, Ji YB, Seo JY, Park SH, Kim JH, Min BH, Kim MS. Substance P-loaded electrospun small intestinal submucosa/poly(ε-caprolactone)-ran-poly(l-lactide) sheet to facilitate wound healing through MSC recruitment. J Mater Chem B 2019; 7:7599-7611. [PMID: 31740904 DOI: 10.1039/c9tb01532a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we prepared an electrospun small intestinal submucosa/poly(ε-caprolactone)-ran-poly(l-lactide) (SIS/PCLA) sheet onto which substance P (SP) was loaded, and this was employed as a cell-free scaffold for wound healing through the mobilization of human mesenchymal stem cells (hMSCs). SP release from the SP-loaded scaffold was 42% at 12 h and 51% at 24 h due to an initial burst of SP, but after 1 day, it exhibited a linear release profile and was released at a sustained rate for 21 days. The SP-loaded SIS/PCLA sheet exhibited higher in vitro and in vivo hMSC migration than did the PCLA and SIS/PCLA sheets. Large hMSCs injected into the tail vein of mice models migrated towards the wound to a greater extent in the presence of the SP-loaded SIS/PCLA sheet than with the PCLA and SIS/PCLA sheets, as confirmed by the CD44 and CD29 markers of recruited hMSCs. In animal wound models, significantly higher wound contraction (∼97%) in the group treated with the SP-loaded SIS/PCLA sheet was observed compared with the PCLA (∼74%) and SIS/PCLA (∼84%) groups at 3 weeks. In addition, SP-loaded SIS/PCLA-treated animals showed significant epidermal regeneration and collagen density (56%) in the mature granulation tissue at 3 weeks compared to the PCLA and SIS/PCLA groups. The wound area after SP-loaded SIS/PCLA sheet treatment also showed high blood vessel formation at the early stage, resulting in enhanced wound healing. Furthermore, the SP-loaded SIS/PCLA group exhibited a lower macrophage count (2.9%) than did the PCLA (7.7%) and SIS/PCLA (3.4%) groups. It was thus confirmed that the use of SP-loaded SIS/PCLA sheet as a cell-free scaffold could effectively enhance wound healing through MSC recruitment.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Ji Young Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
10
|
Controlled release of Mitomycin C from modified cellulose based thermo-gel prevents post-operative de novo peritoneal adhesion. Carbohydr Polym 2019; 229:115552. [PMID: 31826495 DOI: 10.1016/j.carbpol.2019.115552] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
The complications from surgery associated peritoneal adhesion can be alleviated by combination of physical isolation and pharmaceutical treatment. This work aims to develop thermo-sensitive hydrogel barrier by combining mitomycin C (MMC) with modified tempo oxidized nanocellulose (cTOCN) through EDC/NHS-chemical conjugation followed by integration with methyl cellulose (MC). The MMC was successfully combined with cTOCN and ensured controlled release of MMC from hydrogel throughout 14 days. Amount of MC (1.5, 2.5, 3.5% w/v) was proportional to gelation time and inversely proportional to degradation of hydrogel. The optimized hydrogel (C2.5T1M0.2) needed only 30 s for thermoreversible sol-gel (4℃-37℃) phenomenon and did not show in vitro fibroblast cells toxicity as well as ensured complete adhesion prevention efficacy, reperitonealization in rat side wall-cecal abrasion model. Overall, the developed C2.5T1M0.2 thermo-gel advances state-of-the-art in view of cytocompatibility, mechanical stability, optimum degradation, good injectability, sustain drug release from surgical sites, and satisfactory de novo anti-adhesion capacity.
Collapse
|
11
|
Park JY, Song BR, Lee JW, Park SH, Kang TW, Yun HW, Park SH, Min BH, Kim MS. Preparation of a Cross-Linked Cartilage Acellular-Matrix Film and Its In Vivo Evaluation as an Antiadhesive Barrier. Polymers (Basel) 2019; 11:E247. [PMID: 30960232 PMCID: PMC6419041 DOI: 10.3390/polym11020247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
In this paper, a cartilage acellular-matrix (CAM) is chosen as a biomaterial for an effective antiadhesive barrier to apply between injured tissue and healthy tissues or organs. CAM is cross-linked using glutaraldehyde to create a cross-linked CAM (Cx-CAM) film. Cx-CAM has higher elastic modulus and toughness and more hydrophobic surface properties than CAM before cross-linking. Small intestinal submucosa (SIS), cross-linked SIS (Cx-SIS) as a negative control, and Seprafilm as a positive control are used in an experiment as adhesion barriers. Human umbilical vein endothelial cells (HUVECs) on SIS, Cx-SIS, or in a culture plate get attached and effectively proliferate for 7 days, but Cx-CAM and Seprafilm allow for little or no attachment and proliferation of HUVECs, thus manifesting antiadhesive and antiproliferative effects. In animals with surgical damage to the peritoneal wall and cecum, Cx-CAM and Seprafilm afford little adhesion and negligible inflammation after seven days, as confirmed by hematoxylin and eosin staining and macrophage staining, in contrast to an untreated-injury model, SIS, or Cx-SIS film. Cx-CAM significantly suppresses the formation of blood vessels between the peritoneal wall and cecum, as confirmed by CD31 staining. Overall, the newly designed Cx-CAM film works well as an antiadhesion barrier and has better anti-tissue adhesion efficiency.
Collapse
Affiliation(s)
- Joon Yeong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Bo Ram Song
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Jin Woo Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Tae Woong Kang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Hee-Woong Yun
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
- Cell Therapy Center, Ajou University Medical Center, Suwon 16499, Korea.
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea.
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
- Cell Therapy Center, Ajou University Medical Center, Suwon 16499, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| |
Collapse
|