1
|
Wang H, Zhang J, Bai H, Wang C, Li Z, Wang Z, Liu Q, Wang Z, Wang X, Zhu X, Liu J, Wang J, Zhao X, Ren L, Liu H. 3D printed cell-free bilayer porous scaffold based on alginate with biomimetic microenvironment for osteochondral defect repair. BIOMATERIALS ADVANCES 2025; 167:214092. [PMID: 39489002 DOI: 10.1016/j.bioadv.2024.214092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Despite significant progress in repairing osteochondral injuries using 3D printing technology, most cartilage layer scaffolds are made of degradable materials, making it difficult to simultaneously provide extracellular matrix functionality while replicating the mechanical properties of natural cartilage layers. Additionally, their degradation rate is challenging to align with cartilage regeneration. Furthermore, double-layer scaffolds commonly used for repairing osteochondral often exhibit inadequate bonding between the cartilage layer scaffolds and bone layer scaffolds. To solve these problems, we presented a bilayer scaffold composed of a 3D printed non-degradable thermoplastic polyurethane (TPU) scaffold filled with hydrogel (Gel) made of gelatin and sodium alginate as the cartilage layer (noted as TPU/Gel), meanwhile, a 3D printed polylactic acid (PLA) scaffold containing 10 % hydroxyapatite (HA) as the bone layer (noted as PLA/HA). At the junction of the bone layer and cartilage layer, TPU tightly bonded with the bone layer scaffold under high temperatures. The hydrogel filling within the TPU layer of cartilage served not only to lubricate the joint surface but also aided in creating a 3D microenvironment. The non-degradable nature of TPU allowed the cartilage layer scaffold to seamlessly integrate with the surrounding regenerated cartilage, achieving permanent replacement and providing shock absorption and weight-bearing effects. This effectively addressed the mechanical challenges associated with cartilage regeneration and resolved the inconsistency between cartilage regeneration and material degradation rates.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiaxin Zhang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Haotian Bai
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chenyu Wang
- Department of Plastic & Reconstruct Surgery, First Hospital of Jilin University, Changchun 130061, China
| | - Zuhao Li
- Department of Orthopaedics, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhonghan Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qingping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Zhenguo Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Xianggang Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xiujie Zhu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiaqi Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jincheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Zhao
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - He Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
2
|
Popova E, Tikhomirova V, Akhmetova A, Ilina I, Kalinina N, Taliansky M, Kost O. Calcium Phosphate Nanoparticles as Carriers of Low and High Molecular Weight Compounds. Int J Mol Sci 2024; 25:12887. [PMID: 39684598 DOI: 10.3390/ijms252312887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Nanoparticles could improve the bioavailability of active agents of various natures to human, animal, and plant tissues. In this work, we compared two methods on the synthesis of calcium phosphate nanoparticles (CaPs), differed by the synthesis temperature, pH, and concentration of the stabilizing agent, and explored the possibilities of incorporation of a low-molecular-weight peptide analogue enalaprilat, the enzyme superoxide dismutase 1 (SOD1), as well as DNA and dsRNA into these particles, by coprecipitation and sorption. CaPs obtained with and without cooling demonstrated the highest inclusion efficiency for enalaprilat upon coprecipitation: 250 ± 10 μg/mg of CaPs and 340 ± 30 μg/mg of CaPs, respectively. Enalaprilat sorption on the preliminarily formed CaPs was much less effective. SOD1 was only able to coprecipitate with CaPs upon cooling, with SOD1 loading 6.6 ± 2 μg/mg of CaPs. For the incorporation of DNA, the superiority of the sorption method was demonstrated, allowing loading of up to 88 μg/mg of CaPs. The ability of CaPs to incorporate dsRNa by sorption was also demonstrated by electrophoresis and atomic force microscopy. These results could have important implications for the development of the roots for incorporating substances of different natures into CaPs for agricultural and medical applications.
Collapse
Affiliation(s)
- Ekaterina Popova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Assel Akhmetova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Physical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Olga Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Andrée L, Joziasse LS, Adjobo-Hermans MJW, Yang F, Wang R, Leeuwenburgh SCG. Effect of Hydroxyapatite Nanoparticle Crystallinity and Colloidal Stability on Cytotoxicity. ACS Biomater Sci Eng 2024; 10:6964-6973. [PMID: 39373188 PMCID: PMC11558557 DOI: 10.1021/acsbiomaterials.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Hydroxyapatite nanoparticles (nHA) have gained attention as potential intracellular drug delivery vehicles due to their high binding affinity for various biomolecules and pH-dependent solubility. Yet, the dependence of nHA cytocompatibility on their physicochemical properties remains unclear since numerous studies have revealed starkly contrasting results. These discrepancies may be attributed to differences in size, shape, crystallinity, and aggregation state of nHA, which complicates fundamental understanding of the factors driving nHA cytotoxicity. Here, we hypothesize that nHA cytotoxicity is primarily driven by intracellular calcium levels following the internalization of nHA nanoparticles. By investigating the cytotoxicity of spherical nHA with different crystallinity and dispersity, we find that both lower crystallinity and increased agglomeration of nHA raise cytotoxicity, with nanoparticle agglomeration being the more dominant factor. We show that the internalization of nHA enhances intracellular calcium levels and increases the production of reactive oxygen species (ROS). However, only subtle changes in intracellular calcium are observed, and their physiological relevance remains to be confirmed. In conclusion, we show that nHA agglomeration enhances ROS production and the associated cytotoxicity. These findings provide important guidelines for the future design of nHA-containing formulations for biomedical applications, implying that nHA crystallinity and especially agglomeration should be carefully controlled to optimize biocompatibility and therapeutic efficacy.
Collapse
Affiliation(s)
- Lea Andrée
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | - Lucas S. Joziasse
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | | | - Fang Yang
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | - Rong Wang
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| |
Collapse
|
4
|
Ucuncu MK, Guven K, Yazicioglu O. Investigation of the constituents of commercially available toothpastes. Int J Dent Hyg 2024; 22:913-932. [PMID: 38659161 DOI: 10.1111/idh.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2024] [Accepted: 03/30/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES Toothpaste plays a pivotal role in oral and dental hygiene. This cross-sectional study not only investigates the constituents of toothpastes available in the market and their frequency across different brands but also delves into the potential side effects, irritations, or unfavourable outcomes of these constituents, emphasizing the broader health and environmental implications. METHODS The largest of the five major chain markets in each district of Istanbul was visited, and adult toothpastes were included in this study. All the constituents that make up the toothpaste were individually recorded in an Excel database. Subsequently, literature regarding the purposes, toxic and potential side effects of each ingredient was gathered using databases such as Google Scholar, PubMed and ScienceDirect. The percentages of these ingredients' occurrence among all the toothpastes were calculated, and the ingredients were categorized into 15 distinct groups based on their usage purposes. RESULTS There were 160 different varieties of toothpaste belonging to 19 different brands on the market shelves. Although a total of 244 different ingredients were identified, only 78 of them were included in the study. Among the analysed toothpaste types, 105 of them were found to contain 1450 ppm fluoride, whilst 26 toothpaste variants were discovered to have fluoride levels below this value. Among the various ingredients analysed, particular attention was drawn to commonly debated compounds in oral care products. Specifically, titanium dioxide was found in 68% (n = 111) of the varieties, sodium lauryl sulphate in 67% (n = 108) and paraben in 2% (n = 4), respectively. CONCLUSION Whilst certain ingredients may raise concerns for potential side effects and health considerations within the human body, the toothpaste has long been regarded as an indispensable tool for maintaining optimal oral and dental health. However, gaining a deeper understanding and conducting research on each constituent that comprises the toothpaste, as well as raising awareness in this regard, holds significant importance for human health.
Collapse
Affiliation(s)
- Musa Kazim Ucuncu
- Department of Restorative Dentistry, Faculty of Dentistry, Altinbas University, Istanbul, Turkey
| | | | - Oktay Yazicioglu
- Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Höppel A, Bahr O, Ebert R, Wittmer A, Seidenstuecker M, Carolina Lanzino M, Gbureck U, Dembski S. Cu-doped calcium phosphate supraparticles for bone tissue regeneration. RSC Adv 2024; 14:32839-32851. [PMID: 39429940 PMCID: PMC11483895 DOI: 10.1039/d4ra04769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Calcium phosphate (CaP) minerals have shown great promise as bone replacement materials due to their similarity to the mineral phase of natural bone. In addition to biocompatibility and osseointegration, the prevention of infection is crucial, especially due to the high concern of antibiotic resistance. In this context, a controlled drug release as well as biodegradation are important features which depend on the porosity of CaP. An increase in porosity can be achieved by using nanoparticles (NPs), which can be processed to supraparticles, combining the properties of nano- and micromaterials. In this study, Cu-doped CaP supraparticles were prepared to improve the bone substitute properties while providing antibacterial effects. In this context, a modified sol-gel process was used for the synthesis of CaP NPs, where a Ca/P molar ratio of 1.10 resulted in the formation of crystalline β-tricalcium phosphate (β-TCP) after calcination at 1000 °C. In the next step, CaP NPs with Cu2+ (0.5-15.0 wt%) were processed into supraparticles by a spray drying method. Cu release experiments of the different Cu-doped CaP supraparticles demonstrated a long-term sustained release over 14 days. The antibacterial properties of the supraparticles were determined against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, where complete antibacterial inhibition was achieved using a Cu concentration of 5.0 wt%. In addition, cell viability assays of the different CaP supraparticles with human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) exhibited high biocompatibility with particle concentrations of 0.01 mg mL-1 over 72 hours.
Collapse
Affiliation(s)
- Anika Höppel
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg 97070 Würzburg Germany
| | - Olivia Bahr
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg 97074 Würzburg Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg 97074 Würzburg Germany
| | - Annette Wittmer
- Medical Center University of Freiburg, Faculty of Medicine, Institute for Microbiology and Hygiene 79104 Freiburg Germany
| | - Michael Seidenstuecker
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg 79106 Freiburg Germany
| | - M Carolina Lanzino
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB), University of Stuttgart 70569 Stuttgart Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg 97070 Würzburg Germany
| | - Sofia Dembski
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg 97070 Würzburg Germany
- Fraunhofer Institute for Silicate Research ISC 97082 Würzburg Germany
| |
Collapse
|
6
|
Weiss GS, Silva FRO, Garcia RM, Sakae LO, Viana ÍEL, Hara AT, Lima LC, Scaramucci T. Experimental toothpastes containing β-TCP nanoparticles functionalized with fluoride and tin to prevent Erosive Tooth Wear. J Dent 2024; 149:105273. [PMID: 39084548 DOI: 10.1016/j.jdent.2024.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES The present study aimed to synthesize toothpastes containing Beta- TriCalcium Phosphate (β-TCP) nanoparticles, functionalized with fluoride and tin, and test their ability to reduce erosive tooth wear (ETW). METHODS Toothpastes were synthesized with the following active ingredients: 1100 ppm of fluoride (as sodium fluoride, F-), 3500 ppm of tin (as stannous chloride, Sn2+), and 800 ppm of β-TCP (Sizes a - 20 nm; and b - 100 nm). Enamel specimens were randomly assigned into the following groups (n = 10): 1. Commercial toothpaste; 2. Placebo; 3 F-; 4. F- + β-TCPa; 5. F- + β-TCPb; 6. F- + Sn2+; 7. F- + Sn2+ + β-TCPa and 8. F- + Sn2+ + β-TCPb. Specimens were subjected to erosion-abrasion cycling. Surface loss (in µm) was measured by optical profilometry. Toothpastes pH and available F- were also assessed. RESULTS Brushing with placebo toothpaste resulted in higher surface loss than brushing with F- (p = 0.005) and F- + β-TCPb (p = 0.007); however, there was no difference between F- and F- + β-TCPb (p = 1.00). Commercial toothpaste showed no difference from Placebo (p = 0.279). The groups F-, F- + β-TCPa, F- + β-TCPb, F- + Sn2+, F- + Sn2+ + β-TCPa and F- + Sn2+ + β-TCPb were not different from the commercial toothpaste (p > 0.05). Overall, the addition of β-TCP reduced the amount of available fluoride in the experimental toothpastes. The pH of toothpastes ranged from 4.97 to 6.49. CONCLUSIONS Although toothpaste containing β-TCP nanoparticles protected enamel against dental erosion-abrasion, this effect was not superior to the standard fluoride toothpaste (commercial). In addition, the functionalization of β-TCP nanoparticles with fluoride and tin did not enhance their protective effect. CLINICAL SIGNIFICANCE Although β-TCP nanoparticles have some potential to control Erosive Tooth Wear, their incorporation into an experimental toothpaste appears to have a protective effect that is similar to a commercial fluoride toothpaste.
Collapse
Affiliation(s)
- Guilherme Stangler Weiss
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Flávia Rodrigues Oliveira Silva
- Material Science and Technology Center, Nuclear and Energy Research Institute (IPEN-CNEN), Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000, Brazil
| | - Raíssa Manoel Garcia
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Letícia Oba Sakae
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Ítallo Emídio Lira Viana
- Department of Comprehensive Care, Division of Operative Dentistry - Tufts University School of Dental Medicine, Boston, MA, USA
| | - Anderson T Hara
- Department of Cariology and Operative Dentistry, Indiana University School of Dentistry (IUSD), Indianapolis, IN, USA
| | - Leonardo Custódio Lima
- Department of Dentistry, Federal University of Juiz de Fora (UFJF), Campus Governador Valadares, MG, 35010-180, Brazil.
| | - Taís Scaramucci
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
7
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Fauzi MSA, Sabri MSA, Halim AAA, Abidin SAIZ. Combinatorial effects of hydroxyapatite and Tualang honey on medication-related osteonecrosis of the jaw (MRONJ): An in vitro study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:101999. [PMID: 39089510 DOI: 10.1016/j.jormas.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication associated with prolonged bisphosphonate therapy. Increasing evidence shows that mucosal damage plays an important role in the pathogenesis of MRONJ. This study investigates the combinatorial effects of hydroxyapatite with Tualang honey on cell viability and wound healing in MRONJ. MATERIALS AND METHODS The incorporation of Tualang honey into hydroxyapatite was assessed using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and field emission scanning electron-energy dispersive X-ray analysis microscopy (FESEM-EDX). The effect of hydroxyapatite combined with Tualang honey on cell viability was determined by WST-1 assay and wound healing was assessed by scratch assay. RESULTS The incorporation of Tualang honey into hydroxyapatite altered the functional groups, structure, size, morphology, and components of the crystal as evidenced by FTIR, XRD and FESEM-EDX analysis. High concentrations of pamidronic acid inhibit oral fibroblast viability and wound healing. Low and high concentrations of hydroxyapatite demonstrate non-toxicity towards fibroblast cells. Furthermore, hydroxyapatite reversed the action of pamidronic acid on the cells; it increased fibroblast viability but did not close the wound. Tualang honey promotes fibroblast viability and wound closure. However, the addition of Tualang honey is unable to overcome the inhibitory effects of pamidronic acid on fibroblasts. The addition of Tualang honey and hydroxyapatite improved the cell viability and accelerated wound closure of fibroblast exposed to pamidronic acid. CONCLUSION These findings demonstrated that the combination treatment protects oral fibroblasts by preventing bisphosphonate toxicity.
Collapse
Affiliation(s)
| | | | - Adyani Azizah Abd Halim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Siti Amalina Inche Zainal Abidin
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia; Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Siew B, Enax J, Meyer F. Case Report on Caries Assessment Using Intraoral Scanner Compared with Bitewing Radiographs. Eur J Dent 2024; 18:957-962. [PMID: 38698612 PMCID: PMC11290935 DOI: 10.1055/s-0044-1782192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Dental caries remains one of the main reasons patients seeing their dentist. They either show up for preventive measures, diagnostics, or treatment of present caries lesions. To date, diagnostics are performed visually, supported by using bitewing radiographs. While radiographic diagnostics should only be performed on a biannual basis, and some caries process will not be seen with visual diagnostics, there remains a lack in regular checkups. Therefore, different technical applications can be used for regular diagnostics. One of those is the near-infrared imaging (NIRI) technology. In this case report, a patient presented with incipient caries lesions. These lesions were diagnosed visually, radiographically, and using NIRI. After diagnosis of incipient caries lesions, the patient was advised to use a hydroxyapatite toothpaste and a hydroxyapatite gel for the remineralization of the lesions and prevention of caries progression. The patient was followed up for 6 months with regular checkups in between. Visual diagnostics and NIRI were used to detecting the caries progress. After 6 months, bitewing radiographs were used in addition. In this clinical investigation we were able to show for the first time that NIRI and bitewing radiographs are able to detect and follow incipient caries lesions. Additionally, this study highlights that hydroxyapatite-containing oral care products are able to arrest and remineralize the caries process.
Collapse
Affiliation(s)
- Bernard Siew
- Smilefocus, Camden Medical Centre, Singapore, Singapore
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| |
Collapse
|
10
|
Sarfi S, Azaryan E, Hanafi-Bojd MY, Emadian Razavi F, Naseri M. Green synthesis of nanohydroxyapatite with Elaeagnus angustifolia L. extract as a metronidazole nanocarrier for in vitro pulpitis model treatment. Sci Rep 2024; 14:14702. [PMID: 38926433 PMCID: PMC11208562 DOI: 10.1038/s41598-024-65582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study is to introduce a dental capping agent for the treatment of pulp inflammation (pulpitis). Nanohydroxyapatite with Elaeagnus angustifolia L. extract (nHAEA) loaded with metronidazole (nHAEA@MTZ) was synthesized and evaluated using a lipopolysaccharide (LPS) in vitro model of pulpitis. nHAEA was synthesized through sol-gel method and analyzed using Scanning Electron Microscopy, Transmission Electron Microscopy, and Brunauer Emmett Teller. Inflammation in human dental pulp stem cells (HDPSCs) induced by LPS. A scratch test assessed cell migration, RT PCR measured cytokines levels, and Alizarin red staining quantified odontogenesis. The nHAEA nanorods were 17-23 nm wide and 93-146 nm length, with an average pore diameter of 27/312 nm, and a surface area of 210.89 m2/g. MTZ loading content with controlled release, suggesting suitability for therapeutic applications. nHAEA@MTZ did not affect the odontogenic abilities of HDPSCs more than nHAEA. However, it was observed that nHAEA@MTZ demonstrated a more pronounced anti-inflammatory effect. HDPSCs treated with nanoparticles exhibited improved migration compared to other groups. These findings demonstrated that nHAEA@MTZ could be an effective material for pulp capping and may be more effective than nHAEA in reducing inflammation and activating HDPSCs to enhance pulp repair after pulp damage.
Collapse
Affiliation(s)
- Sepideh Sarfi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsaneh Azaryan
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
11
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
12
|
Balas M, Badea MA, Ciobanu SC, Piciu F, Iconaru SL, Dinischiotu A, Predoi D. Biocompatibility and Osteogenic Activity of Samarium-Doped Hydroxyapatite-Biomimetic Nanoceramics for Bone Regeneration Applications. Biomimetics (Basel) 2024; 9:309. [PMID: 38921189 PMCID: PMC11201808 DOI: 10.3390/biomimetics9060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we report on the development of hydroxyapatite (HAp) and samarium-doped hydroxyapatite (SmHAp) nanoparticles using a cost-effective method and their biological effects on a bone-derived cell line MC3T3-E1. The physicochemical and biological features of HAp and SmHAp nanoparticles are explored. The X-ray diffraction (XRD) studies revealed that no additional peaks were observed after the integration of samarium (Sm) ions into the HAp structure. Valuable information regarding the molecular structure and morphological features of nanoparticles were obtained by using Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The elemental composition obtained by using energy-dispersive X-ray spectroscopy (EDS) confirmed the presence of the HAp constituent elements, Ca, O, and P, as well as the presence and uniform distribution of Sm3+ ions. Both HAp and SmHAp nanoparticles demonstrated biocompatibility at concentrations below 25 μg/mL and 50 μg/mL, respectively, for up to 72 h of exposure. Cell membrane integrity was preserved following treatment with concentrations up to 100 μg/mL HAp and 400 μg/mL SmHAp, confirming the role of Sm3+ ions in enhancing the cytocompatibility of HAp. Furthermore, our findings reveal a positive, albeit limited, effect of SmHAp nanoparticles on the actin dynamics, osteogenesis, and cell migration compared to HAp nanoparticles. Importantly, the biological results highlight the potential role of Sm3+ ions in maintaining cellular balance by mitigating disruptions in Ca2+ homeostasis induced by HAp nanoparticles. Therefore, our study represents a significant contribution to the safety assessment of both HAp and SmHAp nanoparticles for biomedical applications focused on bone regeneration.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Steluta Carmen Ciobanu
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| | - Florentina Piciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Daniela Predoi
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| |
Collapse
|
13
|
Yazicioglu O, Ucuncu MK, Guven K. Ingredients in Commercially Available Mouthwashes. Int Dent J 2024; 74:223-241. [PMID: 37709645 PMCID: PMC10988267 DOI: 10.1016/j.identj.2023.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVES Mouthwashes, a cornerstone of oral and dental hygiene, play a pivotal role in combating the formation of dental plaque, a leading cause of periodontal disease and dental caries. This study aimed to review the composition of mouthwashes found on retail shelves in Turkey and evaluate their prevalence and side effects, if any. METHODS The mouthwashes examined were sourced from the 5 largest chain stores in each district of Istanbul. A comprehensive list of the constituents was meticulously recorded. The research was supported by an extensive compilation of references from scholarly databases such as Google Scholar, PubMed, and ScienceDirect. Through rigorous analysis, the relative proportions of mouthwash ingredients and components were determined. RESULTS A total of 45 distinctive variations of mouthwashes, representing 17 prominent brands, were identified. Amongst the 116 ingredients discovered, 70 were evaluated for potential adverse effects and undesirable side effects. The aroma of the mouthwash (n = 45; 100%), as welll as their sodium fluoride (n = 28; 62.22%), sodium saccharin (n = 29; 64.44%), sorbitol (n = 21; 46.6%), and propylene glycol (n = 28; 62.22%) content were the main undesireable features. CONCLUSIONS The limited array of mouthwashes found on store shelves poses a concern for both oral and public health. Furthermore, the intricate composition of these products, consisting of numerous ingredients with the potential for adverse effects, warrants serious attention. Both clinicians and patients should acknowledge the importance and unwarranted side effects of the compnents of the mouthwashes.
Collapse
Affiliation(s)
- Oktay Yazicioglu
- Istanbul University, Faculty of Dentistry, Department of Restorative Dentistry, Istanbul, Turkey
| | - Musa Kazim Ucuncu
- Altinbas University, Faculty of Dentistry, Department of Restorative Dentistry, Istanbul, Turkey.
| | | |
Collapse
|
14
|
Abedi M, Ghasemi Y, Nemati MM. Nanotechnology in toothpaste: Fundamentals, trends, and safety. Heliyon 2024; 10:e24949. [PMID: 38317872 PMCID: PMC10838805 DOI: 10.1016/j.heliyon.2024.e24949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Several studies have revealed that healthcare nanomaterials are widely used in numerous areas of dentistry, including prevention, diagnosis, treatment, and repair. Nanomaterials in dental cosmetics are utilized to enhance the efficacy of toothpaste and other mouthwashes. Nanoparticles are added to toothpastes for a variety of reasons, including dental decay prevention, remineralization, hypersensitivity reduction, brightening, and antibacterial qualities. In this review, the benefits and uses of many common nanomaterials found in toothpaste are outlined. Additionally, the capacity and clinical applications of nanoparticles as anti-bacterial, whitening, hypersensitivity, and remineralizing agents in the treatment of dental problems and periodontitis are discussed.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Pandey AS, Bawiskar D, Wagh V. Nanocosmetics and Skin Health: A Comprehensive Review of Nanomaterials in Cosmetic Formulations. Cureus 2024; 16:e52754. [PMID: 38389646 PMCID: PMC10882253 DOI: 10.7759/cureus.52754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The development of nanocosmetics nanotechnology has ushered in a new age in cosmetic research, completely changing the skincare scene. This abstract investigates the relationship between skincare and nanotechnology, particularly emphasizing the effects of nanocosmetics on skin health. Cosmetics, known as "nanocosmetics," use materials at the nanoscale, typically between 1 and 100 nanometers, to improve the effectiveness and delivery of active chemicals. Nanotechnology in cosmetics allows for the development of sophisticated delivery methods that provide enhanced stability and tailored distribution, including nanoemulsions and nanocapsules. This breakthrough overcomes the constraints of conventional formulations by enabling the entry of active ingredients into the skin's deeper layers. Studies investigating nanocosmetics and skin health were included. This encompassed in vitro studies, animal models, and clinical studies of various designs. Exclusion criteria included studies focusing solely on nanotechnology unrelated to skin health or nanocosmetics and review articles editorials, commentaries, and conference abstracts. Nanocosmetics is a groundbreaking development in skincare that provides creative answers to a range of skin issues. As the area develops, realizing the full potential of nanotechnology in fostering ideal skin health will need sustained research and adherence to safety regulations.
Collapse
Affiliation(s)
- Anjali S Pandey
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dushyant Bawiskar
- Sports Medicine, Abhinav Bindra Sports Medicine and Research Institute, Bhubaneswar, IND
| | - Vasant Wagh
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
16
|
Zhang Y, Ma S, Nie J, Liu Z, Chen F, Li A, Pei D. Journey of Mineral Precursors in Bone Mineralization: Evolution and Inspiration for Biomimetic Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207951. [PMID: 37621037 DOI: 10.1002/smll.202207951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/27/2023] [Indexed: 08/26/2023]
Abstract
Bone mineralization is a ubiquitous process among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of bone tissues. It is now well documented that carbonated apatite, an inorganic component of bone, is proceeded through transient amorphous mineral precursors that transforms into the crystalline mineral phase. Here, the evolution on mineral precursors from their sources to the terminus in the bone mineralization process is reviewed. How organisms tightly control each step of mineralization to drive the formation, stabilization, and phase transformation of amorphous mineral precursors in the right place, at the right time, and rate are highlighted. The paradigm shifts in biomineralization and biomaterial design strategies are intertwined, which promotes breakthroughs in biomineralization-inspired material. The design principles and implementation methods of mineral precursor-based biomaterials in bone graft materials such as implant coatings, bone cements, hydrogels, and nanoparticles are detailed in the present manuscript. The biologically controlled mineralization mechanisms will hold promise for overcoming the barriers to the application of biomineralization-inspired biomaterials.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaming Nie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faming Chen
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
17
|
Güneş M, Yalçın B, Burgazlı AY, Tagorti G, Yavuz E, Akarsu E, Kaya N, Marcos R, Kaya B. Morphologically different hydroxyapatite nanoparticles exert differential genotoxic effects in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166556. [PMID: 37633389 DOI: 10.1016/j.scitotenv.2023.166556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Hydroxyapatite (HAP) occurs naturally in sedimentary and metamorphic rocks and constitutes the hard structures in many organisms. Since synthetic nano-sized HAP (HAP-NPs) are used in orthopedic applications and for heavy metal remediation in aquatic and terrestrial media, both environment and humans are exposed to them. Due to the concerns about their potential hazards, the genotoxic effects that round/rod forms of HAP-NPs were investigated in Drosophila using the wing-spot and the comet assays. Furthermore, caspase activities were evaluated to examine the activation of cell death pathways. As a novelty, the expression of 36 genes involved in DNA repair was investigated, as a tool to indirectly determine DNA damage induction. Obtained sizes were 35-60 nm (roundHAP-NPs) and 45-90 nm (rodHAP-NPs) with a low Zeta-potential (-1.65 and 0.37 mV, respectively). Genotoxicity was detected in the wing-spot (round form), and in the comet assay (round and rod-like HA-NPs). In addition, increased expression of Caspases 3/7, 8, and 9 activities were observed. For both HAP forms, increased changes in the expression were observed for mismatch repair genes, while decreased expression was observed for genes involved in ATM, ATR, and cell cycle pathways. The observed changes in the repair pathways would reinforce the view that HAP-NPs have genotoxic potential, although more markedly in the round form. Thus, the environmental presence of engineered nanoparticles, including HAPs, raises concerns about potential effects on human health. It is essential that the effects of their use are carefully assessed and monitored to ensure safety and to mitigate any potential adverse effects.
Collapse
Affiliation(s)
- Merve Güneş
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | | | - Ghada Tagorti
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Emre Yavuz
- Department of Chemistry, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Esin Akarsu
- Department of Chemistry, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Nuray Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Bülent Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
18
|
Li Y, Jiang W, Nie N, Xu J, Wang X, Zhang J, Guan J, Zhu C, Zhang C, Gu Y, Chen X, Yao S, Yin Z, Wu B, Ouyang H, Zou X. Size- and Dose-Dependent Body-Wide Organ Transcriptomic Responses to Calcium Phosphate Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38018117 DOI: 10.1021/acsami.3c10301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Nanomaterials are widely used in clinical practice. There are potential risks of body-wide infiltration due to their small size; however, the body-wide reliable risk assessment of nanoparticle infiltration is not fully studied and established. In this study, we demonstrated the size- and dose-dependent body-wide organ transcriptomic responses to calcium phosphate nanomaterials in vivo. In a mice model, a calcium phosphate nanocluster (amorphous calcium phosphate, ACP, ∼1 nm in diameter) and its crystallization product (ACP-M, ∼10 nm in diameter) in a series of doses was administrated systematically; multiorgan transcriptomics were then performed with tissues of heart, liver, spleen, lung, kidney, and brain to investigate the systematic effect of dose and size of nanomaterials on the whole body. The results presented gene expression trajectories correlated with the dose of the nanomaterials and tissue-specific risk effects in all detected tissues. For the dose-dependent tissue-specific risk effects, lung tissue exhibited the most significant risk signatures related to apoptosis, cell proliferation, and cell stress. The spleen showed the second most significant risk signatures associated with immune response and DNA damage. For the size-dependent tissue-specific risk effects, ACP nanomaterials could increase most of the tissue-specific risk effects of nanomaterials in multiple organs than larger calcium phosphate nanoparticles. Finally, we used the size- and dose-dependent body-wide organ transcriptomic responses/risks to nanomaterials as the standards and built up a risk prediction model to evaluate the risk of the local nanomaterials delivery. Thus, our findings could provide a size- and dose- dependent risk assessment scale of nanoparticles in the transcriptomic level. It could be useful for risk assessment of nanomaterials in the future.
Collapse
Affiliation(s)
- Yu Li
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Wei Jiang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Nanfang Nie
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Jiaqi Xu
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Xiaozhao Wang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang University-University of Edinburgh Institute, Hangzhou 310058, P. R. China
| | - Junwen Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Jiahuan Guan
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Chengcheng Zhu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Cheng Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Ying Gu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Xiaoyi Chen
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Zi Yin
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Bingbing Wu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Hongwei Ouyang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang University-University of Edinburgh Institute, Hangzhou 310058, P. R. China
| | - Xiaohui Zou
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| |
Collapse
|
19
|
Quiñonero F, Parra-Torrejón B, Ramírez-Rodríguez GB, Garcés V, Delgado-López JM, Jiménez-Luna C, Perazzoli G, Melguizo C, Prados J, Ortíz R. Combining Olaparib and Ascorbic Acid on Nanoparticles to Enhance the Drug Toxic Effects in Pancreatic Cancer. Int J Nanomedicine 2023; 18:5075-5093. [PMID: 37701822 PMCID: PMC10493099 DOI: 10.2147/ijn.s415631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction Pancreatic cancer (PC) shows a very poor response to current treatments. Development of drug resistance is one of the causes of the therapy failure, being PARP1 (poly ADP-ribose polymerase 1) a relevant protein in the resistance mechanism. In this work, we have functionalized calcium phosphate-based nanoparticles (NPs) with Olaparib (OLA, a PARP-1 inhibitor) in combination with ascorbic acid (AA), a pro-oxidative agent, to enhance their individual effects. Methods Amorphous Calcium Phosphate (ACP) NPs were synthesized through a biomimetic approach and then functionalized with OLA and AA (NP-ACP-OLA-AA). After evaluation of the loading capacity and release kinetic, cytotoxicity, cell migration, immunofluorescence, and gene expression assays were performed using pancreatic tumor cell lines. In vivo studies were carried out on tumors derived from the PANC-1 line in NOD SCID gamma (NSG) mice. Results NP-ACP-OLA-AA was loaded with 13%wt of OLA (75% loading efficiency) and 1% of AA, respectively. The resulting dual nanosystem exhibited a gradual release of OLA and AA, being the latter protected from degradation in solution. This ensured the simultaneous availability of OLA and AA for a longer period, at least, during the entire time of in vitro cell experiments (72 hours). In vitro studies indicated that NP-ACP-OLA-AA showed the best cytotoxic effect outperforming that of the free OLA and a higher genotoxicity and apoptosis-mediated cytotoxic effect in human pancreatic ductal adenocarcinoma cell line. Interestingly, the in vivo assays using immunosuppressed mice with PANC-1-induced tumors revealed that NP-ACP-OLA-AA produced a higher tumor volume reduction (59.1%) compared to free OLA (28.3%) and increased the mice survival. Conclusion Calcium phosphate NPs, a highly biocompatible and biodegradable system, were an ideal vector for the OLA and AA co-treatment in PC, inducing significant therapeutic benefits relative to free OLA, including cytotoxicity, induction of apoptosis, inhibition of cell migration, tumor growth, and survival.
Collapse
Affiliation(s)
- Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
| | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, 18071, Spain
| | | | - Victor Garcés
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Raul Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| |
Collapse
|
20
|
Duru İ, Büyük NI, Köse GT, Marques DW, Bruce KA, Martin JR, Ege D. Incorporating the Antioxidant Fullerenol into Calcium Phosphate Bone Cements Increases Cellular Osteogenesis without Compromising Physical Cement Characteristics. ADVANCED ENGINEERING MATERIALS 2023; 25:2300301. [PMID: 37982016 PMCID: PMC10656051 DOI: 10.1002/adem.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/21/2023]
Abstract
Herein, fullerenol (Ful), a highly water-soluble derivative of C60 fullerene with demonstrated antioxidant activity, is incorporated into calcium phosphate cements (CPCs) to enhance their osteogenic ability. CPCs with added carboxymethyl cellulose/gelatin (CMC/Gel) are doped with biocompatible Ful particles at concentrations of 0.02, 0.04, and 0.1 wt v%-1 and evaluated for Ful-mediated mechanical performance, antioxidant activity, and in vitro cellular osteogenesis. CMC/gel cements with the highest Ful concentration decrease setting times due to increased hydrogen bonding from Ful's hydroxyl groups. In vitro studies of reactive oxygen species (ROS) scavenging with CMC/gel cements demonstrate potent antioxidant activity with Ful incorporation and cement scavenging capacity is highest for 0.02 and 0.04 wt v%-1 Ful. In vitro cytotoxicity studies reveal that 0.02 and 0.04 wt v%-1 Ful cements also protect cellular viability. Finally, increase of alkaline phosphatase (ALP) activity and expression of runt-related transcription factor 2 (Runx2) in MC3T3-E1 pre-osteoblast cells treated with low-dose Ful cements demonstrate Ful-mediated osteogenic differentiation. These results strongly indicate that the osteogenic abilities of Ful-loaded cements are correlated with their antioxidant activity levels. Overall, this study demonstrates exciting potential of Fullerenol as an antioxidant and proosteogenic additive for improving the performance of calcium phosphate cements in bone reconstruction procedures.
Collapse
Affiliation(s)
- İlayda Duru
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| | - Nisa Irem Büyük
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Gamze Torun Köse
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Dylan Widder Marques
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Karina Ann Bruce
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - John Robert Martin
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Duygu Ege
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| |
Collapse
|
21
|
Chen X, He H, Guo X, Hou M, Zhang X, Li S, Wang C, Zhao G, Li W, Zhang X, Hong W. Calcium Orthophosphate in Liposomes for Co-Delivery of Doxorubicin Hydrochloride/Paclitaxel in Breast Cancer. Mol Pharm 2023; 20:3914-3924. [PMID: 37384449 DOI: 10.1021/acs.molpharmaceut.3c00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Nanoparticles (NPs) show great advantages in cancer treatment by enabling controlled and targeted delivery of payloads to tumor sites through the enhanced permeability and retention (EPR) effect. In this study, highly effective pH-responsive and biodegradable calcium orthophosphate@liposomes (CaP@Lip) NPs with a diameter of 110 ± 20 nm were designed and fabricated. CaP@Lip NPs loaded with hydrophobic paclitaxel and hydrophilic doxorubicin hydrochloride achieved excellent drug loading efficiencies of 70 and 90%, respectively. Under physiological conditions, the obtained NPs are negatively charged. However, they switched to positively charged when exposed to weak acidic environments by which internalization can be promoted. Furthermore, the CaP@Lip NPs exhibit an obvious structural collapse under acid conditions (pH 5.5), which confirms their excellent biodegradability. The "proton expansion" effect in endosomes and the pH-responsiveness of the NPs facilitate the release of encapsulated drugs from individual channels. The effectiveness and safety of the drug delivery systems were demonstrated through in vitro and in vivo experiments, with a 76% inhibition of tumor growth. These findings highlight the high targeting ability of the drug-loaded NPs to tumor sites through the EPR effect, effectively suppressing tumor growth and metastasis. By combining CaP NPs and liposomes, this study not only resolves the toxicity of CaP but also enhances the stability of liposomes. The CaP@Lip NPs developed in this study have significant implications for biomedical applications and inspire the development of intelligent and smart drug nanocarriers and release systems for clinical use.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Huayu He
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinyu Guo
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Mingyi Hou
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinzhong Zhang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Shengnan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Guodong Zhao
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing 100000, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xiuping Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing 100000, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| |
Collapse
|
22
|
Paszynska E, Pawinska M, Enax J, Meyer F, Schulze zur Wiesche E, May TW, Amaechi BT, Limeback H, Hernik A, Otulakowska-Skrzynska J, Krahel A, Kaminska I, Lapinska-Antonczuk J, Stokowska E, Gawriolek M. Caries-preventing effect of a hydroxyapatite-toothpaste in adults: a 18-month double-blinded randomized clinical trial. Front Public Health 2023; 11:1199728. [PMID: 37533523 PMCID: PMC10393266 DOI: 10.3389/fpubh.2023.1199728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023] Open
Abstract
Background Dental caries is a worldwide challenge for public health. The aim of this 18-month double-blinded, randomized, clinical trial was to compare the caries-preventing effect of a fluoride-free, hydroxyapatite toothpaste (test) and a toothpaste with sodium fluoride (1450 ppm fluoride; positive control) in adults. Methods The primary endpoint was the percentage of subjects showing no increase in overall Decayed Missing Filled Surfaces (DMFS) index. The study was designed as non-inferiority trial. Non-inferiority was claimed if the upper limit of the exact one-sided 95% confidence interval for the difference of the primary endpoint DMFS between test and control toothpaste was less than the predefined margin of non-inferiority (Δ ≤ 20%). Results In total, 189 adults were included in the intention-to-treat (ITT) analysis; 171 subjects finished the study per protocol (PP). According to the PP analysis, no increase in DMFS index was observed in 89.3% of subjects of the hydroxyapatite group and 87.4% of the subjects of the fluoride group. The hydroxyapatite toothpaste was not statistically inferior to a fluoride toothpaste with regard to the primary endpoint. Conclusion Hydroxyapatite was proven to be a safe and efficient anticaries agent in oral care. Clinical trial registration NCT04756557.
Collapse
Affiliation(s)
- Elzbieta Paszynska
- Department of Integrated Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Malgorzata Pawinska
- Department of Integrated Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | | | - Theodor W. May
- Society for Biometrics and Psychometrics, Bielefeld, Germany
| | - Bennett T. Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Hardy Limeback
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Amadeusz Hernik
- Department of Integrated Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Anna Krahel
- Department of Integrated Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Inga Kaminska
- Department of Integrated Dentistry, Medical University of Bialystok, Bialystok, Poland
| | | | - Ewa Stokowska
- Department of Gerostomatology, Medical University of Bialystok, Bialystok, Poland
| | - Maria Gawriolek
- Department of Integrated Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
23
|
Wang L, Wang X, Zhou S, Ren J, Liu L, Xiao C, Deng C. Single-particle dispersion of carbon dots in the nano-hydroxyapatite lattice achieving solid-state green fluorescence. NANOSCALE ADVANCES 2023; 5:3304-3315. [PMID: 37325540 PMCID: PMC10263101 DOI: 10.1039/d3na00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/06/2023] [Indexed: 06/17/2023]
Abstract
Carbon dots (CDs), as new carbon nanomaterials, have potential applications in multiple fields due to their superior optical properties, good biocompatibility, and easy preparation. However, CDs are typically an aggregation-caused quenching (ACQ) material, which has a huge limitation on the practical application of CDs. To solve this problem, in this paper, CDs were prepared by the solvothermal method using citric acid and o-phenylenediamine as precursors and dimethylformamide as solvent. Then using CDs as nucleating agents, solid-state green fluorescent CDs were synthesized by in situ growth of nano-hydroxyapatite (HA) crystals on the surface of CDs. The results show that CDs are stably dispersed single-particlely in the form of bulk defects in the nano-HA lattice matrices with a dispersion concentration of 3.10%, and solid-state green fluorescence of CDs is achieved with a stable emission wavelength peak position near 503 nm, which provides a new solution to the ACQ problem. CDs-HA nanopowders were further used as LED phosphors to obtain bright green LEDs. In addition, CDs-HA nanopowders showed excellent performance in cell imaging (mBMSCs and 143B) applications, which provides a new scheme for further applications of CDs in the field of cell imaging and even in vivo imaging.
Collapse
Affiliation(s)
- Lunzhu Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Xinru Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Shuoshuo Zhou
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Jian Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Liting Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Cairong Xiao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Chunlin Deng
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| |
Collapse
|
24
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
25
|
Pickering Emulsions Based in Inorganic Solid Particles: From Product Development to Food Applications. Molecules 2023; 28:molecules28062504. [PMID: 36985475 PMCID: PMC10054141 DOI: 10.3390/molecules28062504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Pickering emulsions (PEs) have attracted attention in different fields, such as food, pharmaceuticals and cosmetics, mainly due to their good physical stability. PEs are a promising strategy to develop functional products since the particles’ oil and water phases can act as carriers of active compounds, providing multiple combinations potentiating synergistic effects. Moreover, they can answer the sustainable and green chemistry issues arising from using conventional emulsifier-based systems. In this context, this review focuses on the applicability of safe inorganic solid particles as emulsion stabilisers, discussing the main stabilisation mechanisms of oil–water interfaces. In particular, it provides evidence for hydroxyapatite (HAp) particles as Pickering stabilisers, discussing the latest advances. The main technologies used to produce PEs are also presented. From an industrial perspective, an effort was made to list new productive technologies at the laboratory scale and discuss their feasibility for scale-up. Finally, the advantages and potential applications of PEs in the food industry are also described. Overall, this review gathers recent developments in the formulation, production and properties of food-grade PEs based on safe inorganic solid particles.
Collapse
|
26
|
Popova E, Matveeva O, Beznos O, Tikhomirova V, Kudryashova E, Grigoriev Y, Chesnokova N, Kost O. Chitosan-Covered Calcium Phosphate Particles Co-Loaded with Superoxide Dismutase 1 and ACE Inhibitor: Development, Characterization and Effect on Intraocular Pressure. Pharmaceutics 2023; 15:pharmaceutics15020550. [PMID: 36839871 PMCID: PMC9962464 DOI: 10.3390/pharmaceutics15020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Improvement of the efficiency of drug penetration into the eye tissues is still an actual problem in ophthalmology. One of the most promising solutions is drug encapsulation in carriers capable of overcoming the cornea/sclera tissue barrier. Formulations on the base of antioxidant enzyme, superoxide dismutase 1 (SOD1), and an inhibitor of angiotensin-converting enzyme, enalaprilat, were prepared by simultaneous inclusion of both drugs into calcium phosphate (CaP) particles in situ with subsequent covering of the particles with 5 kDa chitosan. The formulations obtained were characterized by dynamic light scattering and scanning electron microscopy. Hybrid CaP-chitosan particles co-loaded with SOD1 and enalaprilat had a mean hydrodynamic diameter of 120-160 nm and ζ-potential +20 ± 1 mV. The percentage of the inclusion of SOD1 and enalaprilat in hybrid particles was 30% and 56%, respectively. The ability of SOD1 and enalaprilat to reduce intraocular pressure (IOP) was examined in vivo in normotensive Chinchilla rabbits. It was shown that topical instillations of SOD1/enalaprilat co-loaded hybrid particles were much more effective in decreasing IOP compared to free enzyme or free enalaprilat and even to the same particles that contained a single drug. Thus, the proposed formulations demonstrate potential as prospective therapeutic agents for the treatment of glaucoma.
Collapse
Affiliation(s)
- Ekaterina Popova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya Matveeva
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Beznos
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Victoria Tikhomirova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Kudryashova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri Grigoriev
- Shubnikov Institute of Crystallography, Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Natalia Chesnokova
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Olga Kost
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-939-34-30
| |
Collapse
|
27
|
Imangali N, Sokolova V, Kostka K, Epple M, Winkler C. Functionalized calcium phosphate nanoparticles to direct osteoprotegerin to bone lesion sites in a medaka ( Oryzias latipes) osteoporosis model. Front Endocrinol (Lausanne) 2023; 14:1101758. [PMID: 36909307 PMCID: PMC9992893 DOI: 10.3389/fendo.2023.1101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Calcium phosphate (CaP) is the inorganic part of hard tissues, such as bone, teeth and tendons, and has a high biocompatibility and good biodegradability. Therefore, CaP nanoparticles functionalized with DNA encoding bone anabolic factors are promising carrier-systems for future therapeutic development. Here, we analysed CaP nanoparticles in a genetically modified medaka fish model, where osteoporosis-like lesions can be induced by transgenic expression of receptor activator of nuclear factor kappa-B ligand (Rankl). Rankl-transgenic medaka were used to visualize and understand effects of microinjected functionalized CaP nanoparticles during modulation of osteoclast activity in vivo. For this, we synthetized multi-shell CaP nanoparticles by rapid precipitation of calcium lactate and ammonium hydrogen phosphate followed by the addition of plasmid DNA encoding the osteoclastogenesis inhibitory factor osteoprotegerin-b (Opgb). An additional layer of poly(ethyleneimine) was added to enhance cellular uptake. Integrity of the synthesized nanoparticles was confirmed by dynamic light scattering, scanning electron microscopy and energy dispersive X-ray spectroscopy. Fluorescently labelled CaP nanoparticles were microinjected into the heart, trunk muscle or caudal fins of Rankl-transgenic medaka embryos that expressed fluorescent reporters in various bone cell types. Confocal time-lapse imaging revealed a uniform distribution of CaP nanoparticles in injected tissues and showed that nanoparticles were efficiently taken up by macrophages that subsequently differentiated into bone-resorbing osteoclasts. After Rankl induction, fish injected with Opg-functionalized nanoparticles showed delayed or absent degradation of mineralized matrix, i.e. a lower incidence of osteoporosis-like phenotypes. This is proof of principle that CaP nanoparticles can be used as carriers to efficiently deliver modulatory compounds to osteoclasts and block their activity.
Collapse
Affiliation(s)
- Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
- *Correspondence: Christoph Winkler,
| |
Collapse
|
28
|
Enax J, Amaechi BT, Schulze zur Wiesche E, Meyer F. Overview on Adjunct Ingredients Used in Hydroxyapatite-Based Oral Care Products. Biomimetics (Basel) 2022; 7:biomimetics7040250. [PMID: 36546950 PMCID: PMC9775056 DOI: 10.3390/biomimetics7040250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Hydroxyapatite, Ca5(PO4)3(OH), is a biomimetic active ingredient, which is used in commercial oral care products such as toothpastes and mouthwashes worldwide. Clinical studies (in vivo) as well as in situ and in vitro studies have shown the preventive effects of hydroxyapatite in various field of oral care. In some products, hydroxyapatite is combined with other active ingredients, to achieve an additional antibacterial effect or to promote gum health. This review analyzes the efficacy of six selected natural and nature-inspired ingredients that are commonly used together with hydroxyapatite. These additional actives are either antibacterial (lactoferrin, xylitol, and zinc) or promote gum health (allantoin, bisabolol, and hyaluronic acid). A systematic literature search was performed, and all studies found on each ingredient were analyzed. In summary, all analyzed ingredients mentioned in this review are well described in scientific studies on their beneficial effect for oral health and can be used to expand the preventive effect of hydroxyapatite in oral care products.
Collapse
Affiliation(s)
- Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34 36, 33611 Bielefeld, Germany
- Correspondence: (J.E.); (F.M.)
| | - Bennett T. Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Erik Schulze zur Wiesche
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34 36, 33611 Bielefeld, Germany
| | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34 36, 33611 Bielefeld, Germany
- Correspondence: (J.E.); (F.M.)
| |
Collapse
|
29
|
Amaechi BT, Farah R, Liu JA, Phillips TS, Perozo BI, Kataoka Y, Meyer F, Enax J. Remineralization of molar incisor hypomineralization (MIH) with a hydroxyapatite toothpaste: an in-situ study. BDJ Open 2022; 8:33. [PMID: 36496424 PMCID: PMC9741585 DOI: 10.1038/s41405-022-00126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
AIM This randomized, double-blind, crossover, in-situ study, compared the efficacy of toothpastes based on microcrystalline hydroxyapatite (HAP; fluoride-free) or fluoride, in remineralizing molar incisor hypomineralization (MIH). METHODS Two lesion-bearing enamel blocks were produced from each of thirty extracted permanent molars diagnosed with MIH. Sixty produced blocks were randomly assigned to two groups (30/group): 20% HAP or 1450 ppm fluoride toothpaste. Each group was subdivided into, etched (n = 20), with lesion surface treated with 32% phosphoric acid-etchant for 5 s, and unetched (n = 10). Blocks were cemented into intra-oral appliances (2 blocks/appliance) worn full-time by 15 subjects. Subjects used the toothpastes in a two-phase crossover manner, lasting 14 days per phase, after one-week washout period. Baseline and post-treatment mineral density (MD) was quantified using microcomputed tomography. RESULTS Overall, both groups showed statistically significant (paired t-test; p < 0.001) net-gain when MD was compared pre-treatment and post-treatment. HAP: pre-treatment (1.716 ± 0.315) and post-treatment (1.901 ± 0.354), Fluoride: pre-treatment (1.962 ± 0.363) and post-treatment (2.072 ± 0.353). Independent t-test demonstrated a practically significantly (≥10%) higher percentage remineralization with HAP toothpaste (26.02 ± 20.68) compared with fluoride toothpaste (14.64 ± 9.60). Higher percentage remineralization was observed in etched than unetched samples. CONCLUSION The tested toothpaste based on hydroxyapatite can remineralize MIH lesions. Pre-treating the tooth surface with acid-etchant enhanced remineralization.
Collapse
Affiliation(s)
- Bennett Tochukwu Amaechi
- grid.267309.90000 0001 0629 5880Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Rayane Farah
- grid.267309.90000 0001 0629 5880Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Jungyi Alexis Liu
- grid.267309.90000 0001 0629 5880Department of Developmental Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Thais Santiago Phillips
- grid.267309.90000 0001 0629 5880Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Betty Isabel Perozo
- grid.267309.90000 0001 0629 5880Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Yuko Kataoka
- grid.267309.90000 0001 0629 5880Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| |
Collapse
|
30
|
Enax J, Meyer F, Schulze zur Wiesche E, Epple M. On the Application of Calcium Phosphate Micro- and Nanoparticles as Food Additive. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4075. [PMID: 36432359 PMCID: PMC9693044 DOI: 10.3390/nano12224075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The human body needs calcium and phosphate as essential nutrients to grow bones and teeth, but they are also necessary for many other biochemical purposes (e.g., the biosynthesis of phospholipids, adenosine triphosphate, ATP, or DNA). The use of solid calcium phosphate in particle form as a food additive is reviewed and discussed in terms of bioavailability and its safety after ingestion. The fact that all calcium phosphates, such as hydroxyapatite and tricalcium phosphate, are soluble in the acidic environment of the stomach, regardless of the particle size or phase, means that they are present as dissolved ions after passing through the stomach. These dissolved ions cannot be distinguished from a mixture of calcium and phosphate ions that were ingested separately, e.g., from cheese or milk together with soft drinks or meat. Milk, including human breast milk, is a natural source of calcium and phosphate in which calcium phosphate is present as nanoscopic clusters (nanoparticles) inside casein (protein) micelles. It is concluded that calcium phosphates are generally safe as food additives, also in baby formula.
Collapse
Affiliation(s)
- Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Erik Schulze zur Wiesche
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
31
|
Zinc-modified phosphate-based glass micro-filler improves Candida albicans resistance of auto-polymerized acrylic resin without altering mechanical performance. Sci Rep 2022; 12:19456. [PMID: 36376540 PMCID: PMC9663707 DOI: 10.1038/s41598-022-24172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of auto-polymerized acrylic resin by pathogenic Candida albicans is a common problem for denture users. In this study, zinc-modified phosphate-based glass was introduced into an auto-polymerized acrylic resin at concentrations of 3, 5, and 7 wt.%. The mechanical or physical properties (flexural strength, elastic modulus, microhardness, and contact angle), surface morphology of the resultant materials, and the antimicrobial effect on C. albicans were investigated. There were no statistical differences in the mechanical properties between the control and the zinc-modified phosphate-based glass samples (p > 0.05); however, the number of C. albicans colony-forming units was significantly lower in the control group (p < 0.05). Scanning electron microscopy revealed that C. albicans tended not to adhere to the zinc-modified-phosphate-based glass samples. Thus, the zinc-modified materials retained the advantageous mechanical properties of unaltered acrylic resins, while simultaneously exhibiting a strong antimicrobial effect in vitro.
Collapse
|
32
|
Bonany M, Pérez-Berná AJ, Dučić T, Pereiro E, Martin-Gómez H, Mas-Moruno C, van Rijt S, Zhao Z, Espanol M, Ginebra MP. Hydroxyapatite nanoparticles-cell interaction: New approaches to disclose the fate of membrane-bound and internalised nanoparticles. BIOMATERIALS ADVANCES 2022; 142:213148. [PMID: 36274359 DOI: 10.1016/j.bioadv.2022.213148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Hydroxyapatite nanoparticles are popular tools in bone regeneration, but they have also been used for gene delivery and as anticancer drugs. Understanding their mechanism of action, particularly for the latter application, is crucial to predict their toxicity. To this end, we aimed to elucidate the importance of nanoparticle membrane interactions in the cytotoxicity of MG-63 cells using two different types of nanoparticles. In addition, conventional techniques for studying nanoparticle internalisation were evaluated and compared with newer and less exploited approaches. Hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles were used as suspensions or compacted as specular discs. Comparison between cells seeded on the discs and those supplemented with the nanoparticles allowed direct interaction of the cell membrane with the material to be ruled out as the main mechanism of toxicity. In addition, standard techniques such as flow cytometry were inconclusive when used to assess nanoparticles toxicity. Interestingly, the use of intracellular calcium fluorescent probes revealed the presence of a high number of calcium-rich vesicles after nanoparticle supplementation in cell culture. These structures could not be detected by transmission electron microscopy due to their liquid content. However, by using cryo-soft X-ray imaging, which was used to visualise the cellular ultrastructure without further treatment other than vitrification and to quantify the linear absorption coefficient of each organelle, it was possible to identify them as multivesicular bodies, potentially acting as calcium stores. In the study, an advanced state of degradation of the hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles within MG-63 cells was observed. Overall, we demonstrate that the combination of fluorescent calcium probes together with cryo-SXT is an excellent approach to investigate intracellular calcium, especially when found in its soluble form.
Collapse
Affiliation(s)
- Mar Bonany
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), UPC, 08028 Barcelona, Spain
| | | | - Tanja Dučić
- MISTRAL Beamline Experiments Division, ALBA Synchrotron Light Source, 08290 Barcelona, Spain
| | - Eva Pereiro
- MISTRAL Beamline Experiments Division, ALBA Synchrotron Light Source, 08290 Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), UPC, 08028 Barcelona, Spain
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200, MD, Maastricht, the Netherlands
| | - Zhitong Zhao
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), UPC, 08028 Barcelona, Spain.
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), UPC, 08028 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
33
|
Chen P, Zhang C, He P, Pan S, Zhong W, Wang Y, Xiao Q, Wang X, Yu W, He Z, Gao X, Song J. A Biomimetic Smart Nanoplatform as “Inflammation Scavenger” for Regenerative Therapy of Periodontal Tissue. Int J Nanomedicine 2022; 17:5165-5186. [PMID: 36388874 PMCID: PMC9642321 DOI: 10.2147/ijn.s384481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The functional reconstruction of periodontal tissue defects remains a clinical challenge due to excessive and prolonged host response to various endogenous and exogenous pro-inflammatory stimuli. Thus, a biomimetic nanoplatform with the capability of modulating inflammatory response in a microenvironment-responsive manner is attractive for regenerative therapy of periodontal tissue. Methods Herein, a facile and green design of engineered bone graft materials was developed by integrating a biomimetic apatite nanocomposite with a smart-release coating, which could realize inflammatory modulation by “on-demand” delivery of the anti-inflammatory agent through a pH-sensing mechanism. Results In vitro and in vivo experiments demonstrated that this biocompatible nanoplatform could facilitate the clearance of reactive oxygen species in human periodontal ligament stem cells under inflammatory conditions via inhibiting the production of endogenous proinflammatory mediators, in turn contributing to the enhanced healing efficacy of periodontal tissue. Moreover, this system exhibited effective antimicrobial activity against common pathogenic bacteria in the oral cavity, which is beneficial for the elimination of exogenous pro-inflammatory factors from bacterial infection during healing of periodontal tissue. Conclusion The proposed strategy provides a versatile apatite nanocomposite as a promising “inflammation scavenger” and propels the development of intelligent bone graft materials for periodontal and orthopedic applications.
Collapse
Affiliation(s)
- Poyu Chen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Ping He
- Department of Stomatology, Dazhou Central Hospital, Dazhou, SiChuan, 635000, People’s Republic of China
| | - Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xinyan Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenliang Yu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Zhangmin He
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Correspondence: Xiang Gao; Jinlin Song, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China, Tel/Fax +86 23 88860105; Tel/Fax +86 23 88860026, Email ;
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
34
|
Jing X, Gong Y, Pan H, Meng Y, Ren Y, Diao Z, Mu R, Xu T, Zhang J, Ji Y, Li Y, Wang C, Qu L, Cui L, Ma B, Xu J. Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature. ISME COMMUNICATIONS 2022; 2:106. [PMID: 37938284 PMCID: PMC9723661 DOI: 10.1038/s43705-022-00188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023]
Abstract
Due to the challenges in detecting in situ activity and cultivating the not-yet-cultured, functional assessment and mining of living microbes from nature has typically followed a 'culture-first' paradigm. Here, employing phosphate-solubilizing microbes (PSM) as model, we introduce a 'screen-first' strategy that is underpinned by a precisely one-cell-resolution, complete workflow of single-cell Raman-activated Sorting and Cultivation (scRACS-Culture). Directly from domestic sewage, individual cells were screened for in-situ organic-phosphate-solubilizing activity via D2O intake rate, sorted by the function via Raman-activated Gravity-driven Encapsulation (RAGE), and then cultivated from precisely one cell. By scRACS-Culture, pure cultures of strong organic PSM including Comamonas spp., Acinetobacter spp., Enterobacter spp. and Citrobacter spp., were derived, whose phosphate-solubilizing activities in situ are 90-200% higher than in pure culture, underscoring the importance of 'screen-first' strategy. Moreover, employing scRACS-Seq for post-RACS cells that remain uncultured, we discovered a previously unknown, low-abundance, strong organic-PSM of Cutibacterium spp. that employs secretary metallophosphoesterase (MPP), cell-wall-anchored 5'-nucleotidase (encoded by ushA) and periplasmic-membrane located PstSCAB-PhoU transporter system for efficient solubilization and scavenging of extracellular phosphate in sewage. Therefore, scRACS-Culture and scRACS-Seq provide an in situ function-based, 'screen-first' approach for assessing and mining microbes directly from the environment.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Huihui Pan
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yishang Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Runzhi Mu
- Qingdao Zhang Cun River Water Co., Ltd, Qingdao, Shandong, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- Qingdao Single-Cell Biotechnology Co., Ltd, Qingdao, Shandong, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Chen Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Lingyun Qu
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| |
Collapse
|
35
|
Application of Elicitors, as Conventional and Nano Forms, in Viticulture: Effects on Phenolic, Aromatic and Nitrogen Composition of Tempranillo Wines. BEVERAGES 2022. [DOI: 10.3390/beverages8030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phenolic, aromatic and nitrogen composition of a wine determines its organoleptic profile and quality. Elicitors have been used as a tool to stimulate the plant’s defense systems, favoring the synthesis of secondary metabolites. In this pioneering study, the elicitor methyl jasmonate in conventional form (MeJ) and in nanoparticle form (ACP-MeJ), with a concentration ten times lower, was applied in a Tempranillo vineyard over two seasons. The phenolic, nitrogen and volatile composition and the sensory properties of the MeJ-based wines were determined. The results showed that the effects of foliar applications of MeJ modify the wine composition. Thus, although the total concentration of most of the groups of phenolic compounds was not altered, several compounds, such as petunidin-3-glucoside, quercetin-3-glucoside, epigallocatechin and most of the stilbenes, increased, in both years, in the treated wines. Amino acids were influenced differently in each of the years studied, and volatile compounds generally did not improve in the treated wines. However, the ACP-MeJ wines were the best rated by the tasters, highlighting their equilibrium on the taste and their genuineness and odor quality. Therefore, foliar applications of ACP-MeJ can be considered a useful tool to improve wine quality.
Collapse
|
36
|
Sarembe S, Ufer C, Kiesow A, Limeback H, Meyer F, Fuhrmann I, Enax J. Influence of the Amount of Toothpaste on Cleaning Efficacy: An In Vitro Study. Eur J Dent 2022. [PMID: 35785824 DOI: 10.1055/s-0042-1747953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES The aim of this in vitro study was to test the influence of the amount of toothpaste on enamel cleaning efficacy. MATERIALS AND METHODS The hydrated silica-based test toothpaste (radioactive dentin abrasion: 60.19 ± 1.35) contained all ingredients of a regular fluoride toothpaste. The cleaning efficacy of four different toothpaste amounts (1.00 g, 0.50 g [both "full length of brush"], 0.25 g ["pea-size"], and 0.125 g ["grain of rice-size"]) diluted in 1.00 mL water were each tested for different brushing times (10, 30, 60, 120, 180, and 300 seconds) using a standardized staining model on human molars with a brushing machine. Photographic documentation and colorimetric measurements were conducted, respectively, initially, after staining and after each brushing step. Colorimetric measurements were used to calculate the stain removal (in %). STATISTICAL ANALYSIS Results were analyzed by one-way analysis of variance with post hoc Tukey test and Levene's test for analysis of homogeneity of variance. The level of significance α was set at ≤ 0.05. RESULTS The cleaning efficacy decreased significantly when using smaller toothpaste amounts. Stain removal after 120 seconds brushing time was: 77.4 ± 5.0% (1.00 g toothpaste), 75.7 ± 3.4% (0.50 g toothpaste), 54.1 ± 6.7% (0.25 g toothpaste), and 48.2 ± 7.1% (0.125 g toothpaste), respectively. CONCLUSION In this in vitro study the cleaning efficacy of a medium-abrasive, hydrated silica-based toothpaste was analyzed. Note that 1.00 g toothpaste showed for all brushing times a significantly higher cleaning efficacy than 0.25 g toothpaste and 0.125 g toothpaste.
Collapse
Affiliation(s)
- Sandra Sarembe
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, Germany
| | - Carolin Ufer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, Germany
| | - Andreas Kiesow
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, Germany
| | - Hardy Limeback
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Ines Fuhrmann
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| |
Collapse
|
37
|
Lin C, Liu F, Chen G, Bai X, Ding Y, Chung SM, Lee IS, Bai H, Chen C. Apatite nanosheets inhibit initial smooth muscle cell proliferation by damaging cell membrane. BIOMATERIALS ADVANCES 2022; 137:212852. [PMID: 35929280 DOI: 10.1016/j.bioadv.2022.212852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Understanding how nanostructured coatings interact with cells is related to how they manipulate cell behaviors and is therefore critical for designing better biomaterials. The apatite nanosheets were deposited on metallic substrates via biomimetic precipitation. Cell viability of apatite nanosheets towards to smooth muscle cells (SMCs) were investigated, and the underlying mechanism was proposed. Apatite nanosheets presented inhibitory activity on SMC growth, and caused rupture of cell membranes. On the basis of measuring changes in intracellular calcium ([Ca2+]i), observing cell contraction and apatite nanosheets - SMC interaction, it was found that calcium ions released from apatite led to rises in [Ca2+]i, which induced vigorous SMC contraction on apatite nanosheets. Consequently, the cell membrane of individual SMCs was cut/penetrated by the sharp edges of apatite nanosheets, resulting in cell inactivation. This damage of cell membranes suggests a novel mechanism to manipulate cell viability, and may offer insights for the better design of calcium-based nanostructured coatings or other biomedical applications.
Collapse
Affiliation(s)
- Chenming Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fan Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Guiqian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xue Bai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yahui Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Sung-Min Chung
- Biomaterials R&D Center, GENOSS Co., Ltd., Suwon-si 443-270, Republic of Korea
| | - In-Seop Lee
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Institute of Human Materials, Suwon 16514, Republic of Korea
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
38
|
Zhang Y, Shu T, Wang S, Liu Z, Cheng Y, Li A, Pei D. The Osteoinductivity of Calcium Phosphate-Based Biomaterials: A Tight Interaction With Bone Healing. Front Bioeng Biotechnol 2022; 10:911180. [PMID: 35651546 PMCID: PMC9149242 DOI: 10.3389/fbioe.2022.911180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium phosphate (CaP)-based bioceramics are the most widely used synthetic biomaterials for reconstructing damaged bone. Accompanied by bone healing process, implanted materials are gradually degraded while bone ultimately returns to its original geometry and function. In this progress report, we reviewed the complex and tight relationship between the bone healing response and CaP-based biomaterials, with the emphasis on the in vivo degradation mechanisms of such material and their osteoinductive properties mediated by immune responses, osteoclastogenesis and osteoblasts. A deep understanding of the interaction between biological healing process and biomaterials will optimize the design of CaP-based biomaterials, and further translate into effective strategies for biomaterials customization.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Silin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yilong Cheng
- School of Chemistry, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| |
Collapse
|
39
|
Wang X, Li Y, Jia F, Cui X, Pan Z, Wu Y. Boosting nutrient starvation-dominated cancer therapy through curcumin-augmented mitochondrial Ca 2+ overload and obatoclax-mediated autophagy inhibition as supported by a novel nano-modulator GO-Alg@CaP/CO. J Nanobiotechnology 2022; 20:225. [PMID: 35551609 PMCID: PMC9097046 DOI: 10.1186/s12951-022-01439-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/26/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND By hindering energy supply pathway for cancer cells, an alternative therapeutic strategy modality is put forward: tumor starvation therapy. And yet only in this blockade of glucose supply which is far from enough to result in sheer apoptosis of cancer cells. RESULTS In an effort to boost nutrient starvation-dominated cancer therapy, here a novel mitochondrial Ca2+ modulator Alg@CaP were tailor-made for the immobilization of Glucose oxidase for depriving the intra-tumoral glucose, followed by the loading of Curcumin to augment mitochondrial Ca2+ overload to maximize the therapeutic efficiency of cancer starvation therapy via mitochondrial dysfunctions. Also, autophagy inhibitors Obatoclax were synchronously incorporated in this nano-modulator to highlight autophagy inhibition. CONCLUSION Here, a promising complementary modality for the trebling additive efficacy of starvation therapy was described for cutting off the existing energy sources in starvation therapy through Curcumin-augmented mitochondrial Ca2+ overload and Obatoclax-mediated autophagy inhibition.
Collapse
Affiliation(s)
- Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Zian Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
40
|
Meyer F, Enax J, Amaechi BT, Limeback H, Fabritius HO, Ganss B, Pawinska M, Paszynska E. Hydroxyapatite as Remineralization Agent for Children's Dental Care. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.859560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Children are prone to develop dental caries. This is supported by epidemiological data confirming early childhood caries (ECC) as a highly prevalent disease affecting more than every second child worldwide. ECC is known to result from an imbalance between re- and demineralization where demineralization dominates due to frequent acid production by cariogenic bacteria present in oral biofilms. The application of oral care formulations containing remineralizing agents helps to prevent dental caries. As young children are sensitive and usually swallow (intended or unintended) a majority of toothpaste or other oral care products during daily dental care, all ingredients, especially the actives, should be non-toxic. Biomimetic hydroxyapatite [HAP; Ca5(PO4)3(OH)] is known to have favorable remineralizing properties combined with an excellent biocompatibility, i.e., it is safe if accidently swallowed. Several clinical trials as well as in situ and in vitro studies have shown that HAP remineralizes enamel and dentin. Remineralization occurs due to deposition of HAP particles on tooth surfaces forming mineral-mineral bridges with enamel crystals, but also indirectly through calcium and phosphate ions release as well as HAP's buffering properties in acidic environments (i.e., in plaque). HAP induces a homogenous remineralization throughout the subsurface enamel lesions. This review summarizes the current evidence showing HAP as an effective remineralizing agent in oral care products for children. Additional studies showing also further beneficial effects of HAP such as the reduction of biofilm formation and the relief of hypersensitivity in children with molar incisor hypomineralization (MIH). It can be concluded that HAP is an effective and safe remineralizing agent for child dental care.
Collapse
|
41
|
Engineering the surfaces of orthopedic implants with osteogenesis and antioxidants to enhance bone formation in vitro and in vivo. Colloids Surf B Biointerfaces 2022; 212:112319. [PMID: 35051792 DOI: 10.1016/j.colsurfb.2022.112319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
Limited osteointegration of orthopedic implants with surrounding tissues has been the leading issue until the failure of orthopedic implants in the long term, which could be induced by multiple factors, including infection, limited abilities for bone formation and remodeling, and an overstressed reactive oxygen species (ROS) environment around implants. To address this challenge, a multifunctional coating composed of tannic acid (TA), nanohydroxyapatite (nHA) and gelatin (Gel) was fabricated by a layer-by-layer (LBL) technique, into which TA, nHA, and Gel were integrated, and their respective functions were utilized to synergistically promote osteogenesis. The fabrication process of (TA@nHA/Gel)n coatings and related bio-multifunctionalities were thoroughly investigated by various techniques. We found that the (TA@nHA/Gel)n coatings showed strong antioxidant activity and accelerated cellular attachment in the early stage and proliferation in the long term, largely enhancing osteogenesis in vitro and promoting bone formation in vivo. We believe our findings will guide the design of orthopedic implants in the future, and the strategy developed here could pave the way for multifunctional orthopedic implant coating and protein-related coatings with various potential applications, including biosensors, catalysis, tissue engineering, and life science.
Collapse
|
42
|
Hojabri N, Kunzelmann KH. Adhesion and whitening efficacy of P11-4 self-assembling peptide and HAP suspension after using NaOCl as a pre-treatment agent. BMC Oral Health 2022; 22:59. [PMID: 35246089 PMCID: PMC8895591 DOI: 10.1186/s12903-022-02080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background This study evaluated the adhesion and whitening efficacy of a mixture of hydroxyapatite and P11-4 self-assembling peptide (HAP-peptide) on bovine enamel after pre-treatment with low-concentrated sodium hypochlorite (NaOCl). Methods Fifty-two caries-free bovine incisors were selected. 50 teeth were randomly allocated to five groups (n = 10). The first group was treated with a mixture of 6.25 wt% HAP and 5 ml P11-4 peptide, using NaOCl 3% as pre-treatment. Second, third and fourth groups were treated with 6.25 wt% HAP, 5 ml P11-4 peptide, and NaOCl 3%, respectively. In the fifth group, only water was applied (control group). The color of samples was measured using a spectrophotometer (USB4000-VIS-NIR-ES, Ostfildern, Germany). To evaluate color changes, ΔE values were statistically analyzed. Finally, adherence of HAP particles on two enamel surfaces with and without pre-treatment with NaOCl was analyzed with SEM. Results It was observed that the ΔE of the HAP-peptide suspension after pre-treatment with NaOCl was significantly stronger than the control group. In contrast, the overall color changes of separate applications of HAP, peptide, and NaOCl did not differ notably from the control group. SEM observations confirmed that pre-treatment with NaOCl resulted in a more pronounced coverage of HAP on the enamel surface. Conclusions Pre-treatment with a low-concentrated NaOCl enhanced the adherence of the HAP layer on the enamel surface, resulting in a stronger whitening effect. Trial registration The peptide-HAP suspension is effective in improving tooth whiteness.
Collapse
Affiliation(s)
- Niloofar Hojabri
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University Munich, Goethestr. 70, 80336, Munich, Germany
| | - Karl-Heinz Kunzelmann
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University Munich, Goethestr. 70, 80336, Munich, Germany.
| |
Collapse
|
43
|
Stimulation of Metabolic Activity and Cell Differentiation in Osteoblastic and Human Mesenchymal Stem Cells by a Nanohydroxyapatite Paste Bone Graft Substitute. MATERIALS 2022; 15:ma15041570. [PMID: 35208112 PMCID: PMC8877199 DOI: 10.3390/ma15041570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023]
Abstract
Advances in nanotechnology have been exploited to develop new biomaterials including nanocrystalline hydroxyapatite (nHA) with physical properties close to those of natural bone mineral. While clinical data are encouraging, relatively little is understood regarding bone cells’ interactions with synthetic graft substitutes based on this technology. The aim of this research was therefore to investigate the in vitro response of both osteoblast cell lines and primary osteoblasts to an nHA paste. Cellular metabolic activity was assessed using the cell viability reagent PrestoBlue and quantitative, real-time PCR was used to determine gene expression related to osteogenic differentiation. A potential role of calcium-sensing receptor (CaSR) in the response of osteoblastic cells to nHA was also investigated. Indirect contact of the nHA paste with human osteoblastic cells (Saos-2, MG63, primary osteoblasts) and human bone marrow-derived mesenchymal stem cells enhanced the cell metabolic activity. The nHA paste also stimulated gene expression of runt-related transcription factor 2, collagen 1, alkaline phosphatase, and osteocalcin, thereby indicating an osteogenic response. CaSR was not involved in nHA paste-induced increases in cellular metabolic activity. This investigation demonstrated that the nHA paste has osteogenic properties that contribute to clinical efficacy when employed as an injectable bone graft substitute.
Collapse
|
44
|
Hrvat A, Schmidt M, Obholzer M, Benders S, Kollenda S, Horn PA, Epple M, Brandau S, Mallmann-Gottschalk N. Reactivity of NK Cells Against Ovarian Cancer Cells Is Maintained in the Presence of Calcium Phosphate Nanoparticles. Front Immunol 2022; 13:830938. [PMID: 35251021 PMCID: PMC8895254 DOI: 10.3389/fimmu.2022.830938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Calcium phosphate nanoparticles (CaP-NPs) are biodegradable carriers that can be functionalized with biologically active molecules. As such, they are potential candidates for delivery of therapeutic molecules in cancer therapies. In this context, it is important to explore whether CaP-NPs impair the natural or therapy-induced immune cell activity against cancer cells. Therefore, in this study, we have investigated the effects of different CaP-NPs on the anti-tumor activity of natural killer (NK) cells using different ovarian cancer (OC) cell line models. We explored these interactions in coculture systems consisting of NK cells, OC cells, CaP-NPs, and therapeutic Cetuximab antibodies (anti-EGFR, ADCC-inducing antibody). Our experiments revealed that aggregated CaP-NPs can serve as artificial targets, which activate NK cell degranulation and impair ADCC directed against tumor targets. However, when CaP-NPs were properly dissolved by sonication, they did not cause substantial activation. CaP-NPs with SiO2-SH-shell induced some activation of NK cells that was not observed with polyethyleneimine-coated CaP-NPs. Addition of CaP-NPs to NK killing assays did not impair conjugation of NK with OC and subsequent tumor cytolytic NK degranulation. Therapeutic antibody coupled to functionalized CaP-NPs maintained substantial levels of antibody-dependent cellular cytotoxic activity. Our study provides a cell biological basis for the application of functionalized CaP-NPs in immunologic anti-cancer therapies.
Collapse
Affiliation(s)
- Antonio Hrvat
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Mathias Schmidt
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Martin Obholzer
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Sonja Benders
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
- *Correspondence: Sven Brandau,
| | - Nina Mallmann-Gottschalk
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
45
|
van Rijt S, de Groot K, Leeuwenburgh SCG. Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Eng Part A 2022; 28:461-477. [PMID: 35107351 DOI: 10.1089/ten.tea.2021.0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bulk calcium phosphates and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale calcium phosphate and silicate-based particles of increased specific surface area, chemical reactivity and solubility which offer specific advantages as compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of calcium phosphate and silicate-based nanoparticles within the fields of i) local delivery of therapeutic agents, ii) functionalization of biomaterial scaffolds or implant coatings, and iii) bio-imaging applications.
Collapse
Affiliation(s)
- Sabine van Rijt
- Maastricht University, 5211, MERLN Institute-Instructive Biomaterial Engineering, Maastricht, Limburg, Netherlands;
| | - Klaas de Groot
- Vrije Universiteit Amsterdam, 1190, Academic Center for Dentistry Amsterdam (ACTA)-Department of Oral Implantology and Prosthetic Dentistry, Amsterdam, Noord-Holland, Netherlands;
| | - Sander C G Leeuwenburgh
- Radboudumc, 6034, Dept. of Dentistry-Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands;
| |
Collapse
|
46
|
Stuart B, Stan G, Popa A, Carrington M, Zgura I, Necsulescu M, Grant D. New solutions for combatting implant bacterial infection based on silver nano-dispersed and gallium incorporated phosphate bioactive glass sputtered films: A preliminary study. Bioact Mater 2022; 8:325-340. [PMID: 34541404 PMCID: PMC8427212 DOI: 10.1016/j.bioactmat.2021.05.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022] Open
Abstract
Ag/Ga were incorporated into resorbable orthopaedic phosphate bioactive glasses (PBG, containing P, Ca, Mg, Na, and Fe) thin films to demonstrate their potential to limit growth of Staphylococcus aureus and Escherichia coli in post-operative prosthetic implantation. Dual target consecutive co-sputtering was uniquely employed to produce a 46 nm Ag:PBG composite observed by high resolution TEM to consist of uniformly dispersed ~5 nm metallic Ag nano-particles in a glass matrix. Ga3+ was integrated into a phosphate glass preform target which was magnetron sputtered to film thicknesses of ~400 or 1400 nm. All coatings exhibited high surface energy of 75.4-77.3 mN/m, attributed to the presence of hydrolytic P-O-P structural surface bonds. Degradation profiles obtained in deionized water, nutrient broth and cell culture medium showed varying ion release profiles, whereby Ga release was measured in 1400 nm coating by ICP-MS to be ~6, 27, and 4 ppm respectively, fully dissolving by 24 h. Solubility of Ag nanoparticles was only observed in nutrient broth (~9 ppm by 24 h). Quantification of colony forming units after 24 h showed encouraging antibacterial efficacy towards both S. aureus (4-log reduction for Ag:PBG and 6-log reduction for Ga-PBG≈1400 nm) and E. coli (5-log reduction for all physical vapour deposited layers) strains. Human Hs27 fibroblast and mesenchymal stem cell line in vitro tests indicated good cytocompatibility for all sputtered layers, with a marginal cell proliferation inertia in the case of the Ag:PBG composite thin film. The study therefore highlights the (i) significant manufacturing development via the controlled inclusion of metallic nanoparticles into a PBG glass matrix by dual consecutive target co-sputtering and (ii) potential of PBG resorbable thin-film structures to incorporate and release cytocompatible/antibacterial oxides. Both architectures showed prospective bio-functional performance for a future generation of endo-osseous implant-type coatings.
Collapse
Affiliation(s)
- B.W. Stuart
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - G.E. Stan
- National Institute of Materials Physics, Magurele, RO, 077125, Romania
| | - A.C. Popa
- National Institute of Materials Physics, Magurele, RO, 077125, Romania
- Army Centre for Medical Research, Bucharest, RO, 010195, Romania
| | - M.J. Carrington
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - I. Zgura
- National Institute of Materials Physics, Magurele, RO, 077125, Romania
| | - M. Necsulescu
- Army Centre for Medical Research, Bucharest, RO, 010195, Romania
| | - D.M. Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
47
|
Iafisco M, Carella F, Esposti LD, Adamiano A, Catalucci D, Modica J, Bragonzi A, Vitali A, Torelli R, Sanguinetti M, Bugli F. Biocompatible antimicrobial colistin loaded calcium phosphate nanoparticles for the counteraction of biofilm formation in cystic fibrosis related infections. J Inorg Biochem 2022; 230:111751. [DOI: 10.1016/j.jinorgbio.2022.111751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022]
|
48
|
Deng Y, Wei W, Tang P. Applications of Calcium-Based Nanomaterials in Osteoporosis Treatment. ACS Biomater Sci Eng 2022; 8:424-443. [PMID: 35080365 DOI: 10.1021/acsbiomaterials.1c01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With rapidly aging populations worldwide, osteoporosis has become a serious global public health problem. Caused by disordered systemic bone remodeling, osteoporosis manifests as progressive loss of bone mass and microarchitectural deterioration of bone tissue, increasing the risk of fractures and eventually leading to osteoporotic fragility fractures. As fracture risk increases, antiosteoporosis treatments transition from nonpharmacological management to pharmacological intervention, and finally to the treatment of fragility fractures. Calcium-based nanomaterials (CBNMs) have unique advantages in osteoporosis treatment because of several characteristics including similarity to natural bone, excellent biocompatibility, easy preparation and functionalization, low pH-responsive disaggregation, and inherent pro-osteogenic properties. By combining additional ingredients, CBNMs can play multiple roles to construct antiosteoporotic biomaterials with different forms. This review covers recent advances in CBNMs for osteoporosis treatment. For ease of understanding, CBNMs for antiosteoporosis treatment can be classified as locally applied CBNMs, such as implant coatings and filling materials for osteoporotic bone regeneration, and systemically administered CBNMs for antiosteoporosis treatment. Locally applied CBNMs for osteoporotic bone regeneration develop faster than the systemically administered CBNMs, an important consideration given the serious outcomes of fragility fractures. Nevertheless, many innovations in construction strategies and preparation methods have been applied to build systemically administered CBNMs. Furthermore, with increasing interest in delaying osteoporosis progression and avoiding fragility fracture occurrence, research into systemic administration of CBNMs for antiosteoporosis treatment will have more development prospects. Deep understanding of the CBNM preparation process and optimizing CBNM properties will allow for increased application of CBNMs in osteoporosis treatments in the future.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 Bei-Er-Tiao, Beijing 100190, P. R. China
| | - Peifu Tang
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| |
Collapse
|
49
|
In vitro digestion and bioaccessibility studies of vitamin E-loaded nanohydroxyapatite Pickering emulsions and derived fortified foods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Fabritius-Vilpoux K, Enax J, Mayweg D, Meyer F, Herbig M, Raabe D, Fabritius HO. Ultrastructural changes of bovine tooth surfaces under erosion in presence of biomimetic hydroxyapatite. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enamel and dentin are susceptible to acids from food sources leading to dental erosion, a global problem affecting millions of individuals. Particulate hydroxyapatite (HAP) on the tooth surface can influence the effects of acid attacks. Standardized bovine enamel and dentin samples with artificial saliva are used in an in vitro cyclic demineralization–remineralization protocol to analyze the structural changes experienced by tooth surfaces using high-resolution scanning electron microscopy and to evaluate the potential of a HAP-based oral care gel in the protection of teeth from erosive attacks. The interfaces between HAP particle and enamel HAP crystallites are investigated using focused ion beam preparation and transmission electron microscopy. The results show that erosion with phosphoric acid severely affects enamel crystallites and dentin tubules, while artificial saliva leads to remineralization effects. The HAP-gel forms a microscopic layer on both enamel and dentin surfaces. Upon acid exposure, this layer is sacrificed before the native tooth tissues are affected, leading to significantly lower degrees of demineralization compared to the controls. This demonstrates that the use of particulate HAP as a biomaterial in oral care formulations can help protect enamel and dentin surfaces from erosive attacks during meals using a simple and effective protection principle.
Collapse
Affiliation(s)
- Kathia Fabritius-Vilpoux
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - David Mayweg
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Michael Herbig
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Dierk Raabe
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Helge-Otto Fabritius
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany; Bionics and Materials Development, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| |
Collapse
|