1
|
Lin CY, Mathur M, Malinowski M, Timek TA, Rausch MK. The impact of thickness heterogeneity on soft tissue biomechanics: a novel measurement technique and a demonstration on heart valve tissue. Biomech Model Mechanobiol 2023; 22:1487-1498. [PMID: 36284075 PMCID: PMC10231866 DOI: 10.1007/s10237-022-01640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
The mechanical properties of soft tissues are driven by their complex, heterogeneous composition and structure. Interestingly, studies of soft tissue biomechanics often ignore spatial heterogeneity. In our work, we are therefore interested in exploring the impact of tissue heterogeneity on the mechanical properties of soft tissues. Therein, we specifically focus on soft tissue heterogeneity arising from spatially varying thickness. To this end, our first goal is to develop a non-destructive measurement technique that has a high spatial resolution, provides continuous thickness maps, and is fast. Our secondary goal is to demonstrate that including spatial variation in thickness is important to the accuracy of biomechanical analyses. To this end, we use mitral valve leaflet tissue as our model system. To attain our first goal, we identify a soft tissue-specific contrast protocol that enables thickness measurements using a Keyence profilometer. We also show that this protocol does not affect our tissues' mechanical properties. To attain our second goal, we conduct virtual biaxial, bending, and buckling tests on our model tissue both ignoring and considering spatial variation in thickness. Thereby, we show that the assumption of average, homogeneous thickness distributions significantly alters the results of biomechanical analyses when compared to including true, spatially varying thickness distributions. In conclusion, our work provides a novel measurement technique that can capture continuous thickness maps non-invasively, at high resolution, and in a short time. Our work also demonstrates the importance of including heterogeneous thickness in biomechanical analyses of soft tissues.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Mrudang Mathur
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, 78712, USA.
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Snyder Y, Jana S. Fibrin gel enhanced trilayer structure in cell-cultured constructs. Biotechnol Bioeng 2023; 120:1678-1693. [PMID: 36891782 PMCID: PMC10182258 DOI: 10.1002/bit.28371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/12/2022] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
Efficient cell seeding and subsequent support from a substrate ensure optimal cell growth and neotissue development during tissue engineering, including heart valve tissue engineering. Fibrin gel as a cell carrier may provide high cell seeding efficiency and adhesion property, improved cellular interaction, and structural support to enhance cellular growth in trilayer polycaprolactone (PCL) substrates that mimic the structure of native heart valve leaflets. This cell carrier gel coupled with a trilayer PCL substrate may enable the production of native-like cell-cultured leaflet constructs suitable for heart valve tissue engineering. In this study, we seeded valvular interstitial cells onto trilayer PCL substrates with fibrin gel as a cell carrier and cultured them for 1 month in vitro to determine if this gel can improve cell proliferation and production of extracellular matrix within the trilayer cell-cultured constructs. We observed that the fibrin gel enhanced cellular proliferation, their vimentin expression, and collagen and glycosaminoglycan production, leading to improved structure and mechanical properties of the developing PCL cell-cultured constructs. Fibrin gel as a cell carrier significantly improved the orientations of the cells and their produced tissue materials within trilayer PCL substrates that mimic the structure of native heart valve leaflets and, thus, may be highly beneficial for developing functional tissue-engineered leaflet constructs.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Cordoves EM, Vunjak-Novakovic G, Kalfa DM. Designing Biocompatible Tissue Engineered Heart Valves In Situ: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 81:994-1003. [PMID: 36889879 PMCID: PMC10666973 DOI: 10.1016/j.jacc.2022.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 03/08/2023]
Abstract
Valvular heart disease is a globally prevalent cause of morbidity and mortality, with both congenital and acquired clinical presentations. Tissue engineered heart valves (TEHVs) have the potential to radically shift the treatment landscape for valvular disease by functioning as life-long valve replacements that overcome the current limitations of bioprosthetic and mechanical valves. TEHVs are envisioned to meet these goals by functioning as bioinstructive scaffolds that guide the in situ generation of autologous valves capable of growth, repair, and remodeling within the patient. Despite their promise, clinical translation of in situ TEHVs has proven challenging largely because of the unpredictable and patient-specific nature of the TEHV and host interaction following implantation. In light of this challenge, we propose a framework for the development and clinical translation of biocompatible TEHVs, wherein the native valvular environment actively informs the valve's design parameters and sets the benchmarks by which it is functionally evaluated.
Collapse
Affiliation(s)
- Elizabeth M Cordoves
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA; Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Medicine, Columbia University, New York, New York, USA.
| | - David M Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian-Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
5
|
Snyder Y, Jana S. Elastomeric Trilayer Substrates with Native-like Mechanical Properties for Heart Valve Leaflet Tissue Engineering. ACS Biomater Sci Eng 2023; 9:1570-1584. [PMID: 36802499 DOI: 10.1021/acsbiomaterials.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart valve leaflets have a complex trilayered structure with layer-specific orientations, anisotropic tensile properties, and elastomeric characteristics that are difficult to mimic collectively. Previously, trilayer leaflet substrates intended for heart valve tissue engineering were developed with nonelastomeric biomaterials that cannot deliver native-like mechanical properties. In this study, by electrospinning polycaprolactone (PCL) polymer and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer, we created elastomeric trilayer PCL/PLCL leaflet substrates with native-like tensile, flexural, and anisotropic properties and compared them with trilayer PCL leaflet substrates (as control) to find their effectiveness in heart valve leaflet tissue engineering. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for 1 month in static conditions to produce cell-cultured constructs. The PCL/PLCL substrates had lower crystallinity and hydrophobicity but higher anisotropy and flexibility than PCL leaflet substrates. These attributes contributed to more significant cell proliferation, infiltration, extracellular matrix production, and superior gene expression in the PCL/PLCL cell-cultured constructs than in the PCL cell-cultured constructs. Further, the PCL/PLCL constructs showed better resistance to calcification than PCL constructs. Trilayer PCL/PLCL leaflet substrates with native-like mechanical and flexural properties could significantly improve heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Snyder Y, Jana S. Anisotropicity and flexibility in trilayered microfibrous substrates promote heart valve leaflet tissue engineering. Biomed Mater 2022; 17:10.1088/1748-605X/ac94ae. [PMID: 36150373 PMCID: PMC9629372 DOI: 10.1088/1748-605x/ac94ae] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Heart valve leaflet substrates with native trilayer and anisotropic structures are crucial for successful heart valve tissue engineering. In this study, we used the electrospinning technique to produce trilayer microfibrous leaflet substrates using two biocompatible and biodegradable polymers-poly (L-lactic acid) (PLLA) and polycaprolactone (PCL), separately. Different polymer concentrations for each layer were applied to bring a high degree of mechanical and structural anisotropy to the substrates. PCL leaflet substrates exhibited lower unidirectional tensile properties than PLLA leaflet substrates. However, the PLLA substrates exhibited a lower flexural modulus than the PCL substrates. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for one month in static conditions. Both substrates exhibited cellular adhesion and proliferation, resulting in the production of tissue-engineered constructs. The PLLA tissue-engineered constructs had more cellular growth than the PCL tissue-engineered constructs. The PLLA substrates showed higher hydrophilicity, lower crystallinity, and more significant anisotropy than PCL substrates, which may have enhanced their interactions with PVICs. Analysis of gene expression showed higherα-smooth muscle actin and collagen type 1 expression in PLLA tissue-engineered constructs than in PCL tissue-engineered constructs. The differences in anisotropic and flexural properties may have accounted for the different cellular behaviors in these two individual polymer substrates.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
circ-CCND1 regulates the CCND1/P53/P21 pathway through sponging miR-138-5p in valve interstitial cells to aggravate aortic valve calcification. J Physiol Biochem 2022; 78:845-854. [PMID: 35776289 DOI: 10.1007/s13105-022-00907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
To discuss the effect and mechanism of circular-CCND1 (circ-CCND1) on the regulation of calcified aortic valve disease (CAVD). Differentially expressed circRNAs were screened through the GSE155119 data set and biological prediction. Subsequently, the miR-138-5p, CCND1, and circ-CCND1 expression were detected in the non-calcified and calcified aortic valve. Then Pearson correlation analysis was performed to analyze the correlation between the above expression, and dual luciferase and RNA-pull down assays for verifying the target relationship. Porcine aortic valve interstitial cells (AVICs) were isolated and transfected with pcDNA-circ-CCND1, miR-138-5p inhibitor, and miR-138-5p mimics. The alkaline phosphatase (ALP) activity was quantitatively analyzed by ALP staining, and alizarin-red staining was to check the calcium nodules formation. Finally, Western blot was applied to detect the expression of proteins associated with osteogenic differentiation (Runx2, Osterix, OPN) and CCND1/P53/P21 pathway proteins. Circ-CCND1 was highly expressed in calcific aortic valves. After inhibiting circ-CCND1 expression, a significant reduction was shown in ALP activity, the degree of ossification and the formation of calcium nodules in AVICs, and osteogenic differentiation-related protein expression and CCND1/P53/P21 pathway protein expression. By contrast, inhibition of miR-138-5p and circ-CCND1 together promoted the calcification of AVICs and expression of CCND1/P53/P21 pathway proteins. P53 inhibitor (PFT-α) could significantly reduce activation of CCND1/P53/P21 pathway protein expression by circ-CCND1 overexpression. However, P53 activator (Nutlin-3) significantly restored the suppression of the above pathway-related protein expression by downregulation of circ-CCND1. Circ-CCND1 sponges miR-138-5p to regulate CCND1 expression, thereby promoting the calcification of AVICs.
Collapse
|
8
|
Wu S, Li Y, Zhang C, Tao L, Kuss M, Lim JY, Butcher J, Duan B. Tri-Layered and Gel-Like Nanofibrous Scaffolds with Anisotropic Features for Engineering Heart Valve Leaflets. Adv Healthc Mater 2022; 11:e2200053. [PMID: 35289986 PMCID: PMC10976923 DOI: 10.1002/adhm.202200053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Indexed: 12/17/2022]
Abstract
3D heterogeneous and anisotropic scaffolds that approximate native heart valve tissues are indispensable for the successful construction of tissue engineered heart valves (TEHVs). In this study, novel tri-layered and gel-like nanofibrous scaffolds, consisting of poly(lactic-co-glycolic) acid (PLGA) and poly(aspartic acid) (PASP), are fabricated by a combination of positive/negative conjugate electrospinning and bioactive hydrogel post-processing. The nanofibrous PLGA-PASP scaffolds present tri-layered structures, resulting in anisotropic mechanical properties that are comparable with native heart valve leaflets. Biological tests show that nanofibrous PLGA-PASP scaffolds with high PASP ratios significantly promote the proliferation and collagen and glycosaminoglycans (GAGs) secretions of human aortic valvular interstitial cells (HAVICs), compared to PLGA scaffolds. Importantly, the nanofibrous PLGA-PASP scaffolds are found to effectively inhibit the osteogenic differentiation of HAVICs. Two types of porcine VICs, from young and adult age groups, are further seeded onto the PLGA-PASP scaffolds. The adult VICs secrete higher amounts of collagens and GAGs and undergo a significantly higher level of osteogenic differentiation than young VICs. RNA sequencing analysis indicates that age has a pivotal effect on the VIC behaviors. This study provides important guidance and a reference for the design and development of 3D tri-layered, gel-like nanofibrous PLGA-PASP scaffolds for TEHV applications.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yiran Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Caidan Zhang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Litao Tao
- Department of Biomedical Science, Creighton University, Omaha, NE, 68178, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jonathan Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
9
|
Mendoza M, Chen MH, Huang P, Mahler GJ. Shear and endothelial induced late-stage calcific aortic valve disease-on-a-chip develops calcium phosphate mineralizations. LAB ON A CHIP 2022; 22:1374-1385. [PMID: 35234762 DOI: 10.1039/d1lc00931a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Calcific aortic valve disease (CAVD) is an active pathobiological process leading to severe aortic stenosis, where the only treatment is valve replacement. Late-stage CAVD is characterized by calcification, disorganization of collagen, and deposition of glycosaminoglycans, such as chondroitin sulfate (CS), in the fibrosa. We developed a three-dimensional microfluidic device of the aortic valve fibrosa to study the effects of shear stress (1 or 20 dyne per cm2), CS (1 or 20 mg mL-1), and endothelial cell presence on calcification. CAVD chips consisted of a collagen I hydrogel, where porcine aortic valve interstitial cells were embedded within and porcine aortic valve endothelial cells were seeded on top of the matrix for up to 21 days. Here, we show that this CAVD-on-a-chip is the first to develop human-like calcified nodules varying in calcium phosphate mineralization maturity resulting from high shear and endothelial cells, specifically di- and octa-calcium phosphates. Long-term co-culture microfluidic studies confirmed cell viability and calcium phosphate formations throughout 21 days. Given that CAVD has no targeted therapies, the creation of a physiologically relevant test-bed of the aortic valve could lead to advances in preclinical studies.
Collapse
Affiliation(s)
- Melissa Mendoza
- Department of Biomedical Engineering, Binghamton University, P.O Box 6000, Binghamton, NY, 13902, USA.
| | - Mei-Hsiu Chen
- Department of Mathematical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Peter Huang
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, P.O Box 6000, Binghamton, NY, 13902, USA.
| |
Collapse
|
10
|
Huang W, Huo M, Cheng N, Wang R. New Forms of Electrospun Nanofibers Applied in Cardiovascular Field. Front Cardiovasc Med 2022; 8:801077. [PMID: 35127862 PMCID: PMC8814313 DOI: 10.3389/fcvm.2021.801077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. In recent years, regenerative medicine, tissue engineering and the development of new materials have become the focus of attention this field, and electrospinning technology to prepare nanofibrous materials for the treatment of cardiovascular diseases has attracted people's attention. Unlike previous reviews, this research enumerates the experimental methods and applications of electrospinning technology combined with nanofibrous materials in the directions of myocardial infarction repair, artificial heart valves, artificial blood vessels and cardiovascular patches from the perspective of cardiovascular surgery. In the end, this review also summarizes the limitations, unresolved technical challenges, and possible future directions of this technology for cardiovascular disease applications.
Collapse
Affiliation(s)
- Weimin Huang
- Baotou Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Mengen Huo
- Institute of Poisons and Drugs, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Nan Cheng
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Rong Wang
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Rong Wang
| |
Collapse
|
11
|
Lutter G, Puehler T, Cyganek L, Seiler J, Rogler A, Herberth T, Knueppel P, Gorb SN, Sathananthan J, Sellers S, Müller OJ, Frank D, Haben I. Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves. Int J Mol Sci 2022; 23:527. [PMID: 35008953 PMCID: PMC8745109 DOI: 10.3390/ijms23010527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Clinically used heart valve prostheses, despite their progress, are still associated with limitations. Biodegradable poly-ε-caprolactone (PCL) nanofiber scaffolds, as a matrix, were seeded with human endothelial colony-forming cells (ECFCs) and human induced-pluripotent stem cells-derived MSCs (iMSCs) for the generation of tissue-engineered heart valves. Cell adhesion, proliferation, and distribution, as well as the effects of coating PCL nanofibers, were analyzed by fluorescence microscopy and SEM. Mechanical properties of seeded PCL scaffolds were investigated under uniaxial loading. iPSCs were used to differentiate into iMSCs via mesoderm. The obtained iMSCs exhibited a comparable phenotype and surface marker expression to adult human MSCs and were capable of multilineage differentiation. EFCFs and MSCs showed good adhesion and distribution on PCL fibers, forming a closed cell cover. Coating of the fibers resulted in an increased cell number only at an early time point; from day 7 of colonization, there was no difference between cell numbers on coated and uncoated PCL fibers. The mechanical properties of PCL scaffolds under uniaxial loading were compared with native porcine pulmonary valve leaflets. The Young's modulus and mean elongation at Fmax of unseeded PCL scaffolds were comparable to those of native leaflets (p = ns.). Colonization of PCL scaffolds with human ECFCs or iMSCs did not alter these properties (p = ns.). However, the native heart valves exhibited a maximum tensile stress at a force of 1.2 ± 0.5 N, whereas it was lower in the unseeded PCL scaffolds (0.6 ± 0.0 N, p < 0.05). A closed cell layer on PCL tissues did not change the values of Fmax (ECFCs: 0.6 ± 0.1 N; iMSCs: 0.7 ± 0.1 N). Here, a successful two-phase protocol, based on the timed use of differentiation factors for efficient differentiation of human iPSCs into iMSCs, was developed. Furthermore, we demonstrated the successful colonization of a biodegradable PCL nanofiber matrix with human ECFCs and iMSCs suitable for the generation of tissue-engineered heart valves. A closed cell cover was already evident after 14 days for ECFCs and 21 days for MSCs. The PCL tissue did not show major mechanical differences compared to native heart valves, which was not altered by short-term surface colonization with human cells in the absence of an extracellular matrix.
Collapse
Affiliation(s)
- Georg Lutter
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
| | - Thomas Puehler
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Jette Seiler
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
| | - Anita Rogler
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
| | - Tanja Herberth
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
| | - Philipp Knueppel
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | - Janarthanan Sathananthan
- Department of Centre for Heart Valve Innovation, St Paul’s Hospital, University of British Columbia, Vancouver, BC V6T 174, Canada; (J.S.); (S.S.)
| | - Stephanie Sellers
- Department of Centre for Heart Valve Innovation, St Paul’s Hospital, University of British Columbia, Vancouver, BC V6T 174, Canada; (J.S.); (S.S.)
| | - Oliver J. Müller
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany
| | - Derk Frank
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany
| | - Irma Haben
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (T.P.); (J.S.); (A.R.); (T.H.); (P.K.); (I.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (O.J.M.); (D.F.)
| |
Collapse
|
12
|
Tandon I, Ozkizilcik A, Ravishankar P, Balachandran K. Aortic valve cell microenvironment: Considerations for developing a valve-on-chip. BIOPHYSICS REVIEWS 2021; 2:041303. [PMID: 38504720 PMCID: PMC10903420 DOI: 10.1063/5.0063608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 03/21/2024]
Abstract
Cardiac valves are sophisticated, dynamic structures residing in a complex mechanical and hemodynamic environment. Cardiac valve disease is an active and progressive disease resulting in severe socioeconomic burden, especially in the elderly. Valve disease also leads to a 50% increase in the possibility of associated cardiovascular events. Yet, valve replacement remains the standard of treatment with early detection, mitigation, and alternate therapeutic strategies still lacking. Effective study models are required to further elucidate disease mechanisms and diagnostic and therapeutic strategies. Organ-on-chip models offer a unique and powerful environment that incorporates the ease and reproducibility of in vitro systems along with the complexity and physiological recapitulation of the in vivo system. The key to developing effective valve-on-chip models is maintaining the cell and tissue-level microenvironment relevant to the study application. This review outlines the various components and factors that comprise and/or affect the cell microenvironment that ought to be considered while constructing a valve-on-chip model. This review also dives into the advancements made toward constructing valve-on-chip models with a specific focus on the aortic valve, that is, in vitro studies incorporating three-dimensional co-culture models that incorporate relevant extracellular matrices and mechanical and hemodynamic cues.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Prashanth Ravishankar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
13
|
Jana S, Morse D, Lerman A. Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics. ACS APPLIED BIO MATERIALS 2021; 4:7836-7847. [PMID: 35006765 DOI: 10.1021/acsabm.1c00768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanical and bioprosthetic valves that are currently applied for replacing diseased heart valves are not fully efficient. Heart valve tissue engineering may solve the issues faced by the prosthetic valves in heart valve replacement. The leaflets of native heart valves have a trilayered structure with layer-specific orientations; thus, it is imperative to develop functional leaflet tissue constructs with a native trilayered, oriented structure. Its key solution is to develop leaflet scaffolds with a native morphology and structure. In this study, microfibrous leaflet scaffolds with a native trilayered and oriented structure were developed in an electrospinning system. The scaffolds were implanted for 3 months in rats subcutaneously to study the scaffold efficiencies in generating functional tissue-engineered leaflet constructs. These in vivo tissue-engineered leaflet constructs had a trilayered, oriented structure similar to native leaflets. The tensile properties of constructs indicated that they were able to endure the hydrodynamic load of the native heart valve. Collagen, glycosaminoglycans, and elastin─the predominant extracellular matrix components of native leaflets─were found sufficiently in the leaflet tissue constructs. The residing cells in the leaflet tissue constructs showed vimentin and α-smooth muscle actin expression, i.e., the constructs were in a growing state. Thus, the trilayered, oriented fibrous leaflet scaffolds produced in this study could be useful to develop heart valve scaffolds for successful heart valve replacements.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States.,Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - David Morse
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| |
Collapse
|
14
|
Jana S, Franchi F, Lerman A. Fibrous heart valve leaflet substrate with native-mimicked morphology. APPLIED MATERIALS TODAY 2021; 24:101112. [PMID: 34485682 PMCID: PMC8415466 DOI: 10.1016/j.apmt.2021.101112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tissue-engineered heart valves are a promising alternative solution to prosthetic valves. However, long-term functionalities of tissue-engineered heart valves depend on the ability to mimic the trilayered, oriented structure of native heart valve leaflets. In this study, using electrospinning, we developed trilayered microfibrous leaflet substrates with morphological characteristics similar to native leaflets. The substrates were implanted subcutaneously in rats to study the effect of their trilayered oriented structure on in vivo tissue engineering. The tissue constructs showed a well-defined structure, with a circumferentially oriented layer, a randomly oriented layer and a radially oriented layer. The extracellular matrix, produced during in vivo tissue engineering, consisted of collagen, glycosaminoglycans, and elastin, all major components of native leaflets. Moreover, the anisotropic tensile properties of the constructs were sufficient to bear the valvular physiological load. Finally, the expression of vimentin and α-smooth muscle actin, at the gene and protein level, was detected in the residing cells, revealing their growing state and their transdifferentiation to myofibroblasts. Our data support a critical role for the trilayered structure and anisotropic properties in functional leaflet tissue constructs, and indicate that the leaflet substrates have the potential for the development of valve scaffolds for heart valve replacements.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri,
Columbia, MO 65211, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| | - Federico Franchi
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Engineering the aortic valve extracellular matrix through stages of development, aging, and disease. J Mol Cell Cardiol 2021; 161:1-8. [PMID: 34339757 DOI: 10.1016/j.yjmcc.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023]
Abstract
For such a thin tissue, the aortic valve possesses an exquisitely complex, multi-layered extracellular matrix (ECM), and disruptions to this structure constitute one of the earliest hallmarks of fibrocalcific aortic valve disease (CAVD). The native valve structure provides a challenging target for engineers to mimic, but the development of advanced, ECM-based scaffolds may enable mechanistic and therapeutic discoveries that are not feasible in other culture or in vivo platforms. This review first discusses the ECM changes that occur during heart valve development, normal aging, onset of early-stage disease, and progression to late-stage disease. We then provide an overview of the bottom-up tissue engineering strategies that have been used to mimic the valvular ECM, and opportunities for advancement in these areas.
Collapse
|
16
|
Jana S, Lerman A. Trilayered tissue construct mimicking the orientations of three layers of a native heart valve leaflet. Cell Tissue Res 2020; 382:321-335. [PMID: 32676860 PMCID: PMC7606802 DOI: 10.1007/s00441-020-03241-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/11/2020] [Indexed: 02/03/2023]
Abstract
A tissue-engineered heart valve can be an alternative to a prosthetic valve in heart valve replacement; however, it is not fully efficient in terms of long-lasting functionality, as leaflets in engineered valves do not possess the trilayered native leaflet structure. Previously, we developed a flat, trilayered, oriented nanofibrous (TN) scaffold mimicking the trilayered structure and orientation of native heart valve leaflets. In vivo tissue engineering-a practical regenerative medicine technology-can be used to develop an autologous heart valve. Thus, in this study, we used our flat, trilayered, oriented nanofibrous scaffolds to develop trilayered tissue structures with native leaflet orientations through in vivo tissue engineering in a rat model. After 2 months of in vivo tissue engineering, infiltrated cells and their deposited collagen fibrils were found aligned in the circumferential and radial layers, and randomly oriented in the random layer of the scaffolds, i.e., trilayered tissue constructs (TTCs) were developed. Tensile properties of the TTCs were higher than that of the control tissue constructs (without any scaffolds) due to influence of fibers of the scaffolds in tissue engineering. Different extracellular matrix proteins-collagen, glycosaminoglycans, and elastin-that exist in native leaflets were observed in the TTCs. Gene expression of the TTCs indicated that the tissue constructs were in growing stage. There was no sign of calcification in the tissue constructs. The TTCs developed with the flat TN scaffolds indicate that an autologous leaflet-shaped, trilayered tissue construct that can function as a native leaflet can be developed.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, 1406 E Rollins St, Columbia, MO, 65211, USA.
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
17
|
Dos Santos DM, Correa DS, Medeiros ES, Oliveira JE, Mattoso LHC. Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45673-45701. [PMID: 32937068 DOI: 10.1021/acsami.0c12410] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Functional polymeric micro-/nanofibers have emerged as promising materials for the construction of structures potentially useful in biomedical fields. Among all kinds of technologies to produce polymer fibers, spinning methods have gained considerable attention. Herein, we provide a recent review on advances in the design of micro- and nanofibrous platforms via spinning techniques for biomedical applications. Specifically, we emphasize electrospinning, solution blow spinning, centrifugal spinning, and microfluidic spinning approaches. We first introduce the fundamentals of these spinning methods and then highlight the potential biomedical applications of such micro- and nanostructured fibers for drug delivery, tissue engineering, regenerative medicine, disease modeling, and sensing/biosensing. Finally, we outline the current challenges and future perspectives of spinning techniques for the practical applications of polymer fibers in the biomedical field.
Collapse
Affiliation(s)
- Danilo M Dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Eliton S Medeiros
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMAT), Federal University of Paraíba (UFPB), Cidade Universitária, 58.051-900, João Pessoa, Paraiba, Brazil
| | - Juliano E Oliveira
- Department of Engineering, Federal University of Lavras (UFLA), 37200-900, Lavras, Minas Gerais, Brazil
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
18
|
Jana S, Lerman A. In vivo tissue engineering of a trilayered leaflet-shaped tissue construct. Regen Med 2020; 15:1177-1192. [PMID: 32100626 PMCID: PMC7097987 DOI: 10.2217/rme-2019-0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/28/2020] [Indexed: 01/10/2023] Open
Abstract
Aim: We aimed to develop a leaflet-shaped trilayered tissue construct mimicking the morphology of native heart valve leaflets. Materials & methods: Electrospinning and in vivo tissue engineering methods were employed. Results: We developed leaflet-shaped microfibrous scaffolds, each with circumferentially, randomly and radially oriented three layers mimicking the trilayered, oriented structure of native leaflets. After 3 months in vivo tissue engineering with the scaffolds, the generated leaflet-shaped tissue constructs had a trilayered structure mimicking the orientations of native heart valve leaflets. Presence of collagen, glycosaminoglycans and elastin seen in native leaflets was observed in the engineered tissue constructs. Conclusion: Trilayered, oriented fibrous scaffolds brought the orientations of the infiltrated cells and their produced extracellular matrix proteins into the constructs.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Jana S, Franchi F, Lerman A. Trilayered tissue structure with leaflet-like orientations developed through in vivo tissue engineering. ACTA ACUST UNITED AC 2019; 15:015004. [PMID: 31814596 DOI: 10.1088/1748-605x/ab52e2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A tissue-engineered heart valve can be an alternative to current mechanical or bioprosthetic valves that face limitations, especially in pediatric patients. However, it remains challenging to produce a functional tissue-engineered heart valve with three leaflets mimicking the trilayered, oriented structure of a native valve leaflet. In our previous study, a flat, trilayered nanofibrous substrate mimicking the orientations of three layers in a native leaflet-circumferential, random and radial orientations in fibrosa, spongiosa and ventricularis layers, respectively, was developed through electrospinning. In this study, we sought to develop a trilayered tissue structure mimicking the orientations of a native valve leaflet through in vivo tissue engineering, a practical regenerative medicine technology that can be used to develop an autologous heart valve. Thus, the nanofibrous substrate was placed inside the closed trileaflet-shaped cavity of a mold and implanted subcutaneously in a rat model for in vivo tissue engineering. After two months, the explanted tissue construct had a trilayered structure mimicking the orientations of a native valve leaflet. The infiltrated cells and their deposited collagen fibrils were oriented along the nanofibers in each layer of the substrate. Besides collagen, presence of glycosaminoglycans and elastin in the construct was observed.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri Columbia, MO 65211, United States of America. Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | | | | |
Collapse
|
20
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
21
|
Jana S, Bhagia A, Lerman A. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. ACTA ACUST UNITED AC 2019; 14:065014. [PMID: 31593551 DOI: 10.1088/1748-605x/ab3d24] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pore size is generally small in nanofibrous scaffolds prepared by electrospinning polymeric solutions. Increase of scaffold thickness leads to decrease in pore size, causing impediment to cell infiltration into the scaffolds during tissue engineering. In contrast, comparatively larger pore size can be realized in microfibrous scaffolds prepared from polymeric solutions at higher concentrations. Further, microfibrous scaffolds are conducive to infiltration of reparative M2 phenotype macrophages during in vivo/in situ tissue engineering. However, rise of mechanical properties of a fibrous scaffold with the increase of polymer concentration may limit the functionality of a scaffold-based, tissue-engineered heart valve. In this study, we developed microfibrous scaffolds from 14%, 16% and 18% (wt/v) polycaprolactone (PCL) polymer solutions prepared with chloroform solvent. Porcine valvular interstitial cells were cultured in the scaffolds for 14 d to investigate the effect of microfibers prepared with different PCL concentrations on the seeded cells. Further, fresh microfibrous scaffolds were implanted subcutaneously in a rat model for two months to investigate the effect of microfibers on infiltrated cells. Cell proliferation, and its morphologies, gene expression and deposition of different extracellular matrix proteins in the in vitro study were characterized. During the in vivo study, we characterized cell infiltration, and myofibroblast and M1/M2 phenotypes expression of the infiltrated cells. Among different PCL concentrations, microfibrous scaffolds from 14% solution were suitable for heart valve tissue engineering for their sufficient pore size and low but adequate tensile properties, which promoted cell adhesion to and proliferation in the scaffolds, and effective gene expression and extracellular matrix deposition by the cells in vitro. They also encouraged the cells in vivo for their infiltration and effective gene expression, including M2 phenotype expression.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States of America. Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | | | | |
Collapse
|