1
|
Yang Y, Yang DC, Long XY, Liu X, Lu JW, Zhang ZJ, Shi QQ, Zhou Y, Zou DH. Bioinspired triple-layered membranes for periodontal guided bone regeneration applications. J Mater Chem B 2024; 12:9938-9946. [PMID: 39267586 DOI: 10.1039/d4tb01658k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Barrier membranes have been used for the treatment of alveolar bone loss caused by periodontal diseases or trauma. However, an optimal barrier membrane must satisfy multiple requirements simultaneously, which are challenging to combine into a single material. We herein report the design of a bioinspired membrane consisting of three functional layers. The primary layer is composed of clay nanosheets and chitin, which form a nacre-inspired laminated structure. A calcium phosphate mineral layer is deposited on the inner surface of the nacre-inspired layer, while a poly(lactic acid) layer is coated on the outer surface. The composite membrane integrates good mechanical strength and deformability because of the nacre-inspired structure, facilitating operations during the implant surgery. The mineral layer induces the osteogenic differentiation of bone marrow mesenchymal stem cells and increases the stiffness of the membrane, which is an important factor for the regeneration process. The poly(lactic acid) layer can prevent unwanted mineralization on the outer surface of the membrane in oral environments. Cell experiments reveal that the membrane exhibits good biocompatibility and anti-infiltration capability toward connective tissue/epithelium cells. Furthermore, in vitro analyses show that the membrane does not degrade too fast, allowing enough time for bone regeneration. In vivo experiments prove that the membrane can effectively induce better bone regeneration and higher trabecular bone density in alveolar bone defects. This study demonstrates the potential of this bioinspired triple-layered membrane with hierarchical structures as a promising barrier material for periodontal guided tissue regeneration.
Collapse
Affiliation(s)
- Yang Yang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Periodontology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Deng-Cheng Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Xian-Yan Long
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Xiang Liu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Jing-Wen Lu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Zhou-Jing Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Qian-Qian Shi
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Yong Zhou
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Dental Implantology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Duo-Hong Zou
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, School of Medicine, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
2
|
Wang Z, Liang W, Wang G, Wu H, Dang W, Zhen Y, An Y. Construction Form and Application of Three-Dimensional Bioprinting Ink Containing Hydroxyapatite. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:507-521. [PMID: 38569169 DOI: 10.1089/ten.teb.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
With the increasing prevalence of bone tissue diseases, three-dimensional (3D) bioprinting applied to bone tissue engineering for treatment has received a lot of interests in recent years. The research and popularization of 3D bioprinting in bone tissue engineering require bioinks with good performance, which is closely related to ideal material and appropriate construction form. Hydroxyapatite (HAp) is the inorganic component of natural bone and has been widely used in bone tissue engineering and other fields due to its good biological and physicochemical properties. Previous studies have prepared different bioinks containing HAp and evaluated their properties in various aspects. Most bioinks showed significant improvement in terms of rheology and biocompatibility; however, not all of them had sufficiently favorable mechanical properties and antimicrobial activity. The deficiencies in properties of bioink and 3D bioprinting technology limited the applications of bioinks containing HAp in clinical trials. This review article summarizes the construction forms of bioinks containing HAp and its modifications in previous studies, as well as the 3D bioprinting techniques adopted to print bioink containing HAp. In addition, this article summarizes the advantages and underlying mechanisms of bioink containing HAp, as well as its limitations, and suggests possible improvement to facilitate the development of bone tissue engineering bioinks containing HAp in the future.
Collapse
Affiliation(s)
- Zimo Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wanwen Dang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Chen L, Tang S, Zhang J, Zhong C, Xu X, Yan J, Hu K, Guo Z, Zhang F. Prussian Blue Nanohybridized Multicellular Spheroids as Composite Engraftment for Antioxidant Bone Regeneration and Photoacoustic Tomography. ACS NANO 2024; 18:24770-24783. [PMID: 39164631 DOI: 10.1021/acsnano.3c06835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Regulating the complex microenvironment after tooth extraction to promote alveolar bone regeneration is a pressing challenge for restorative dentistry. In this study, through modulating the mechanical properties of the cellular matrix, we guided various types of cells by self-organizing to form multicellular spheroids (MCSs) and hybridized MCSs with Prussian Blue nanoparticles (PBNPs) in the process. The constructed Prussian Blue nanohybridized multicellular spheroids (PBNPs@MCSs) with empowered antioxidant functions effectively reduced cell apoptosis under peroxidative conditions and exhibited enhanced ability to regulate the microenvironment and promote bone repair both in vitro and in vivo. In addition, the PBNPs@MCSs exhibited enhanced photoacoustic imaging ability to trace low doses of PBNPs. Therefore, the constructed PBNPs@MCSs based on the biomimetic hydrogel can be used as a form of an engraftment building block, with a greater potential for pro-bone repair application in the complex microenvironment of the oral cavity.
Collapse
Affiliation(s)
- Lu Chen
- Department of Prosthodontics, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
- Shaoxing Stomatological Hospital, Shaoxing 312000, Zhejiang, China
| | - Shijia Tang
- Department of Prosthodontics, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jiamin Zhang
- School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiying Zhong
- School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xueqin Xu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Jia Yan
- Department of Prosthodontics, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ke Hu
- School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhaobin Guo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feimin Zhang
- Department of Prosthodontics, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
4
|
Wang Z, Xue H, Sun Y, Wang Q, Sun W, Zhang H. Deciphering the Biological Aging Impact on Alveolar Bone Loss: Insights From α-Klotho and Renal Function Dynamics. J Gerontol A Biol Sci Med Sci 2024; 79:glae172. [PMID: 38995226 DOI: 10.1093/gerona/glae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 07/13/2024] Open
Abstract
Alveolar bone loss is generally considered a chronological age-related disease. As biological aging process is not absolutely determined by increasing age, whether alveolar bone loss is associated with increasing chronological age or biological aging remains unclear. Accurately distinguishing whether alveolar bone loss is chronological age-related or biological aging-related is critical for selecting appropriate clinical treatments. This study aimed to identify the relationship between alveolar bone loss and body aging. In total, 3 635 participants from the National Health and Nutrition Examination Survey and 71 living kidney transplant recipients from Gene Expression Omnibus Datasets were enrolled. Multivariate regression analysis, smooth curve fittings, and generalized additive models were used to explore the association among alveolar bone loss, age, serum α-Klotho level, renal function markers, as well as between preoperative creatinine and renal cortex-related α-Klotho gene expression level. Meanwhile, a 2-sample Mendelian randomization (MR) study was conducted to assess the causal relationship between α-Klotho and periodontal disease (4 376 individuals vs 361 194 individuals). As a biological aging-related indicator, the α-Klotho level was negatively correlated with impaired renal function and alveolar bone loss. Correspondingly, accompanied by decreasing renal function, it was manifested with a downregulated expression level of α-Klotho in the renal cortex and aggravated alveolar bone loss. The MR analysis further identified the negative association between higher genetically predicted α-Klotho concentrations with alveolar bone loss susceptibility using the IVW (odds ratio [OR] = 0.999, p = .005). However, an inversely U-shaped association was observed between chronological age and alveolar bone loss, which is especially stable in men (the optimal cutoff values were both 62 years old). For men above 62 years old, increasing age is converted to protective factor and is accompanied by alleviated alveolar bone loss. Alveolar bone loss that is directly associated with decreased renal function and α-Klotho level was related to biological aging rather than chronological age. The renal-alveolar bone axis could provide a new sight of clinical therapy in alveolar bone loss.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Hao Xue
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqiang Sun
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Qing Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Lin H, Weng E, Rong X, Yu L, Chen Y, Jiang Y, Hu H, Wang Z, Zou S, Hu Z. ECM-Mimicking Strontium-Doped Nanofibrous Microspheres for Periodontal Tissue Regeneration in Osteoporosis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042857 DOI: 10.1021/acsami.4c06286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Regenerating periodontal defects in osteoporosis patients presents a significant clinical challenge. Unlike the relatively straightforward regeneration of homogeneous bone tissue, periodontal regeneration requires the intricate reconstruction of the cementum-periodontal ligament-alveolar bone interface. Strontium (Sr)-doped biomaterials have been extensively utilized in bone tissue engineering due to their remarkable pro-osteogenic attributes. However, their application in periodontal tissue regeneration has been scarcely explored. In this study, we synthesized an innovative injectable Sr-BGN/GNM scaffold by integrating Sr-doped bioactive glass nanospheres (Sr-BGNs) into the nanofiber architecture of gelatin nanofiber microspheres (GNMs). This design, mimicking the natural bone extracellular matrix (ECM), enhanced the scaffold's mechanical properties and effectively controlled the sustained release of Sr ions (Sr2+), thereby promoting the proliferation, osteogenic differentiation, and ECM secretion of PDLSCs and BMSCs, as well as enhancing vascularization in endothelial cells. In vivo experiments further indicated that the Sr-BGNs/GNMs significantly promoted osteogenesis and angiogenesis. Moreover, the scaffold's tunable degradation kinetics optimized the prolonged release and pro-regenerative effects of Sr2+ in vivo, matching the pace of periodontal regeneration and thereby facilitating the regeneration of functional periodontal tissues under osteoporotic conditions. Therefore, Sr-BGNs/GNMs emerge as a promising candidate for advancing periodontal regeneration strategies.
Collapse
Affiliation(s)
- Hengyi Lin
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Enhuai Weng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Rong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiling Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haikun Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiai Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Muresan GC, Boca S, Lucaciu O, Hedesiu M. The Applicability of Nanostructured Materials in Regenerating Soft and Bone Tissue in the Oral Cavity-A Review. Biomimetics (Basel) 2024; 9:348. [PMID: 38921228 PMCID: PMC11201588 DOI: 10.3390/biomimetics9060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Two of the most exciting new technologies are biotechnology and nanotechnology. The science of nanostructures, or nanotechnology, is concerned with the development, testing, and use of structures and molecules with nanoscale dimensions ranging from 1 to 100 nm. The development of materials and tools with high specificity that interact directly at the subcellular level is what makes nanotechnology valuable in the medical sciences. At the cellular or tissue level, this might be converted into focused clinical applications with the greatest possible therapeutic benefits and the fewest possible side effects. The purpose of the present study was to review the literature and explore the applicability of the nanostructured materials in the process of the regeneration of the soft and hard tissues of the oral cavity. MATERIALS AND METHODS An electronic search of articles was conducted in several databases, such as PubMed, Embase, and Web of Science, to conduct this study, and the 183 articles that were discovered were chosen and examined, and only 22 articles met the inclusion criteria in this review. RESULTS The findings of this study demonstrate that using nanoparticles can improve the mechanical properties, biocompatibility, and osteoinductivity of biomaterials. CONCLUSIONS Most recently, breakthroughs in tissue engineering and nanotechnology have led to significant advancements in the design and production of bone graft substitutes and hold tremendous promise for the treatment of bone abnormalities. The creation of intelligent nanostructured materials is essential for various applications and therapies, as it allows for the precise and long-term delivery of medication, which yields better results.
Collapse
Affiliation(s)
- Giorgiana Corina Muresan
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania;
| | - Ondine Lucaciu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mihaela Hedesiu
- Department of Oral Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
7
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Øvrebø Ø, De Lauretis A, Ma Q, Lyngstadaas SP, Perale G, Nilsen O, Rossi F, Haugen HJ. Towards bone regeneration: Understanding the nucleating ability of proline-rich peptides in biomineralisation. BIOMATERIALS ADVANCES 2024; 159:213801. [PMID: 38401402 DOI: 10.1016/j.bioadv.2024.213801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Obtaining rapid mineralisation is a challenge in current bone graft materials, which has been attributed to the difficulty of guiding the biological processes towards osteogenesis. Amelogenin, a key protein in enamel formation, inspired the design of two intrinsically disordered peptides (P2 and P6) that enhance in vivo bone formation, but the process is not fully understood. In this study, we have elucidated the mechanism by which these peptides induce improved mineralisation. Our molecular dynamics analysis demonstrated that in an aqueous environment, P2 and P6 fold to interact with the surrounding Ca2+, PO43- and OH- ions, which can lead to apatite nucleation. Although P2 has a less stable backbone, it folds to a stable structure that allows for the nucleation of larger calcium phosphate aggregates than P6. These results were validated experimentally in a concentrated simulated body fluid solution, where the peptide solutions accelerated the mineralisation process compared to the control and yielded mineral structures mimicking the amorphous calcium phosphate crystals that can be found in lamella bone. A pH drop for the peptide groups suggests depletion of calcium and phosphate, a prerequisite for intrinsic osteoinduction, while S/TEM and SEM suggested that the peptide regulated the mineral nucleation into lamella flakes. Evidently, the peptides accelerate and guide mineral formation, elucidating the mechanism for how these peptides can improve the efficacy of P2 or P6 containing devices for bone regeneration. The work also demonstrates how experimental mineralisation study coupled with molecular dynamics is a valid method for understanding and predicting in vivo performance prior to animal trials.
Collapse
Affiliation(s)
- Øystein Øvrebø
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milano, Italy; Material Biomimetic AS, Oslo Science Park, 0349 Oslo, Norway
| | - Angela De Lauretis
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milano, Italy
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
| | - Giuseppe Perale
- Industrie Biomediche Insubri SA, Mezzovico-Vira 6805, Switzerland; Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano 6900, Switzerland; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Ola Nilsen
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milano, Italy
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway.
| |
Collapse
|
9
|
Staples R, Ivanovski S, Vaswani K, Vaquette C. Melt electrowriting scaffolds with fibre-guiding features for periodontal attachment. Acta Biomater 2024; 180:337-357. [PMID: 38583749 DOI: 10.1016/j.actbio.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Periodontal regeneration requires the re-attachment of oblique and perpendicular periodontal ligament (PDL) fibres to newly formed cementum and alveolar bone, which has proven elusive with existing approaches. In this study, multiple fibre-guiding biphasic tissue engineered constructs were fabricated by melt electrowriting. The biphasic scaffolds were 95 % porous and consisted of a pore size gradient bone compartment and periodontal compartment made of fibre-guiding channels with micro-architectural features ranging from 100 to 60 µm aimed to direct PDL fibre alignment and attachment. In vitro evaluations over 3 and 7 days demonstrated a marked improvement in collagen fibre orientation (over 60 % fully aligned) for scaffolds with micro-architecture ≤100 µm. The biphasic scaffolds were placed on a dentine slice and implanted ectopically, and this demonstrated that all micro-channels groups facilitated oblique and perpendicular alignment and attachment on the dentine with a mean nuclei angle and mean collagen fibre angle of approximately 60° resembling the native periodontal ligament attachment. A further in vivo testing using a surgically created rodent periodontal model highlighted the 80 µm micro-channel group's effectiveness, showing a significant increase in oblique PDL fibre attachment (72 %) and periodontal regeneration (56 %) when compared to all other groups onto the tooth root compared to control groups. Further to this, immunohistochemistry demonstrated the presence of periostin in the newly formed ligament indicating that functional regeneration occurred These findings suggest that scaffold micro-architectures of 100 µm or below can play a crucial role in directing periodontal tissue regeneration, potentially addressing a critical gap in periodontal therapy. STATEMENT OF SIGNIFICANCE: Periodontal regeneration remains a significant clinical challenge. Essential to restoring dental health and function is the proper attachment of the periodontal ligament, which is functionally oriented, to regenerated bone and cementum. Our research presents an innovative biphasic scaffold, utilizing Melt Electrowriting to systematically guide tissue growth. Distinct from existing methods, our scaffold is highly porous, adaptable, and precisely guides periodontal ligament fibre attachment to the opposing tooth root and alveolar bone interfaces, a critical step for achieving periodontal functional regeneration. Our findings not only bridge a significant gap in biomaterial driven tissue guidance but also promise more predictable outcomes for patients, marking a transformative advancement in the field.
Collapse
Affiliation(s)
- Reuben Staples
- The University of Queensland, School of Dentistry, Herston 4006, QLD, Australia; Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston 4006, QLD, Australia; Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Kanchan Vaswani
- The University of Queensland, School of Dentistry, Herston 4006, QLD, Australia; Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Herston 4006, QLD, Australia; Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia.
| |
Collapse
|
10
|
Kamaraj M, Moghimi N, Chen J, Morales R, Chen S, Khademhosseini A, John JV. New dimensions of electrospun nanofiber material designs for biotechnological uses. Trends Biotechnol 2024; 42:631-647. [PMID: 38158307 PMCID: PMC11065627 DOI: 10.1016/j.tibtech.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Electrospinning technology has garnered wide attention over the past few decades in various biomedical applications including drug delivery, cell therapy, and tissue engineering. This technology can create nanofibers with tunable fiber diameters and functionalities. However, the 2D membrane nature of the nanofibers, as well as the rigidity and low porosity of electrospun fibers, lower their efficacy in tissue repair and regeneration. Recently, new avenues have been explored to resolve the challenges associated with 2D electrospun nanofiber membranes. This review discusses recent trends in creating different electrospun nanofiber microstructures from 2D nanofiber membranes by using various post-processing methods, as well as their biotechnological applications.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Ramon Morales
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
11
|
Huang X, Lou Y, Duan Y, Liu H, Tian J, Shen Y, Wei X. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances. Bioact Mater 2024; 33:129-156. [PMID: 38024227 PMCID: PMC10665588 DOI: 10.1016/j.bioactmat.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Maxillofacial bone defects caused by congenital malformations, trauma, tumors, and inflammation can severely affect functions and aesthetics of maxillofacial region. Despite certain successful clinical applications of biomaterial scaffolds, ideal bone regeneration remains a challenge in maxillofacial region due to its irregular shape, complex structure, and unique biological functions. Scaffolds that address multiple needs of maxillofacial bone regeneration are under development to optimize bone regeneration capacity, costs, operational convenience. etc. In this review, we first highlight the special considerations of bone regeneration in maxillofacial region and provide an overview of the biomaterial scaffolds for maxillofacial bone regeneration under clinical examination and their efficacy, which provide basis and directions for future scaffold design. Latest advances of these scaffolds are then discussed, as well as future perspectives and challenges. Deepening our understanding of these scaffolds will help foster better innovations to improve the outcome of maxillofacial bone tissue engineering.
Collapse
Affiliation(s)
- Xiangya Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaxin Lou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
12
|
Valamvanos TF, Dereka X, Katifelis H, Gazouli M, Lagopati N. Recent Advances in Scaffolds for Guided Bone Regeneration. Biomimetics (Basel) 2024; 9:153. [PMID: 38534838 DOI: 10.3390/biomimetics9030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The rehabilitation of alveolar bone defects of moderate to severe size is often challenging. Currently, the therapeutic approaches used include, among others, the guided bone regeneration technique combined with various bone grafts. Although these techniques are widely applied, several limitations and complications have been reported such as morbidity, suboptimal graft/membrane resorption rate, low structural integrity, and dimensional stability. Thus, the development of biomimetic scaffolds with tailor-made characteristics that can modulate cell and tissue interaction may be a promising tool. This article presents a critical consideration in scaffold's design and development while also providing information on various fabrication methods of these nanosystems. Their utilization as delivery systems will also be mentioned.
Collapse
Affiliation(s)
- Theodoros-Filippos Valamvanos
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Xanthippi Dereka
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Greece Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
13
|
Wei Y, Pan H, Yang J, Zeng C, Wan W, Chen S. Aligned cryogel fibers incorporated 3D printed scaffold effectively facilitates bone regeneration by enhancing cell recruitment and function. SCIENCE ADVANCES 2024; 10:eadk6722. [PMID: 38324693 PMCID: PMC10849600 DOI: 10.1126/sciadv.adk6722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Reconstructing extensive cranial defects represents a persistent clinical challenge. Here, we reported a hybrid three-dimensional (3D) printed scaffold with modification of QK peptide and KP peptide for effectively promoting endogenous cranial bone regeneration. The hybrid 3D printed scaffold consists of vertically aligned cryogel fibers that guide and promote cell penetration into the defect area in the early stages of bone repair. Then, the conjugated QK peptide and KP peptide further regulate the function of the recruited cells to promote vascularization and osteogenic differentiation in the defect area. The regenerated bone volume and surface coverage of the dual peptide-modified hybrid scaffold were significantly higher than the positive control group. In addition, the dual peptide-modified hybrid scaffold demonstrated sustained enhancement of bone regeneration and avoidance of bone resorption compared to the collagen sponge group. We expect that the design of dual peptide-modified hybrid scaffold will provide a promising strategy for bone regeneration.
Collapse
Affiliation(s)
- Yuxuan Wei
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, the Third Affiliated Hospital of Southern Medical University. Guangzhou, Guangdong 510630, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Hao Pan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jianqiu Yang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Orthopaedic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006 China
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, the Third Affiliated Hospital of Southern Medical University. Guangzhou, Guangdong 510630, China
| | - Wenbing Wan
- Department of Orthopaedic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006 China
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
14
|
Wu J, Wang P, Yin Y, Liang J, Fan Y, Zhang X, Han X, Sun Y. Cationic Biopolymeric Scaffold of Chelating Nanohydroxyapatite Self-Regulates Intraoral Microenvironment for Periodontal Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55409-55422. [PMID: 37942935 DOI: 10.1021/acsami.3c13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Periodontal bone defect is a common but longstanding healthcare issue since traditional bone grafts have limited functionalities in regulating complex intraoral microenvironments. Here, a porous cationic biopolymeric scaffold (CSC-g-nHAp) with microenvironment self-regulating ability was synthesized by chitosan-catechol chelating the Ca2+ of nanohydroxyapatite and bonding type I collagen. Chitosan-catechol's inherent antibacterial and antioxidant abilities endowed this scaffold with desirable abilities to eliminate periodontal pathogen infection and maintain homeostatic balances between free radical generation and elimination. Meanwhile, this scaffold promoted rat bone marrow stromal cells' osteogenic differentiation and achieved significant ectopic mineralization after 4 weeks of subcutaneous implantation in nude mice. Moreover, after 8 weeks of implantation in the rat critical-sized periodontal bone defect model, CSC-g-nHAp conferred 5.5-fold greater alveolar bone regeneration than the untreated group. This cationic biopolymeric scaffold could regulate the local microenvironment through the synergistic effects of its antibacterial, antioxidant, and osteoconductive activities to promote solid periodontal bone regeneration.
Collapse
Affiliation(s)
- Jingwen Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
16
|
Karmakar R, Dey S, Alam A, Khandelwal M, Pati F, Rengan AK. Attributes of Nanomaterials and Nanotopographies for Improved Bone Tissue Engineering and Regeneration. ACS APPLIED BIO MATERIALS 2023; 6:4020-4041. [PMID: 37691480 DOI: 10.1021/acsabm.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bone tissue engineering (BTE) is a multidisciplinary area that can solve the limitation of conventional grafting methods by developing viable and biocompatible bone replacements. The three essential components of BTE, i.e., Scaffold material and Cells and Growth factors altogether, facilitate support and guide for bone formation, differentiation of the bone tissues, and enhancement in the cellular activities and bone regeneration. However, there is a scarcity of the appropriate materials that can match the mechanical property as well as functional similarity to native tissue, considering the bone as hard tissue. In such scenarios, nanotechnology can be leveraged upon to achieve the desired aspects of BTE, and that is the key point of this review article. This review article examines the significant areas of nanotechnology research that have an impact on regeneration of bone: (a) scaffold with nanomaterials helps to enhance physicochemical interactions, biocompatibility, mechanical stability, and attachment; (b) nanoparticle-based approaches for delivering bioactive chemicals, growth factors, and genetic material. The article begins with the introduction of components and healing mechanisms of bone and the factors associated with them. The focus of this article is on the various nanotopographies that are now being used in scaffold formation, by describing how they are made, and how these nanotopographies affect the immune system and potential underlying mechanisms. The advantages of 4D bioprinting in BTE by using nanoink have also been mentioned. Additionally, we have investigated the importance of an in silico approach for finding the interaction between drugs and their related receptors, which can help to formulate suitable systems for delivery. This review emphasizes the role of nanoscale approach and how it helps to increase the efficacy of parameters of scaffold as well as drug delivery system for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Rounik Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aszad Alam
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| |
Collapse
|
17
|
Gai Y, Yin Y, Guan L, Zhang S, Chen J, Yang J, Zhou H, Li J. Rational Design of Bioactive Materials for Bone Hemostasis and Defect Repair. CYBORG AND BIONIC SYSTEMS 2023; 4:0058. [PMID: 37829507 PMCID: PMC10566342 DOI: 10.34133/cbsystems.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Everyday unnatural events such as trauma, accidents, military conflict, disasters, and even medical malpractice create open wounds and massive blood loss, which can be life-threatening. Fractures and large bone defects are among the most common types of injuries. Traditional treatment methods usually involve rapid hemostasis and wound closure, which are convenient and fast but may result in various complications such as nerve injury, deep infection, vascular injury, and deep hematomas. To address these complications, various studies have been conducted on new materials that can be degraded in the body and reduce inflammation and abscesses in the surgical area. This review presents the latest research progress in biomaterials for bone hemostasis and repair. The mechanisms of bone hemostasis and bone healing are first introduced and then principles for rational design of biomaterials are summarized. After providing representative examples of hemostatic biomaterials for bone repair, future challenges and opportunities in the field are proposed.
Collapse
Affiliation(s)
- Yuqi Gai
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Yin
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Ling Guan
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing, 100081, China
- Department of Medicine,
University of British Columbia, Vancouver, BC, Canada
- National Center for Neurological Disorders, Beijing Tiantan Hospital,
Capital Medical University, Beijing 100070, China
| | - Shengchang Zhang
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Jiatian Chen
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Junyuan Yang
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing, 100081, China
| | - Jinhua Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
18
|
Fan Z, Liu H, Ding Z, Xiao L, Lu Q, Kaplan DL. Simulation of Cortical and Cancellous Bone to Accelerate Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2301839. [PMID: 37601745 PMCID: PMC10437128 DOI: 10.1002/adfm.202301839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 08/22/2023]
Abstract
Different tissues have complex anisotropic structures to support biological functions. Mimicking these complex structures in vitro remains a challenge in biomaterials designs in support of tissue regeneration. Here, inspired by different types of silk nanofibers, a composite materials strategy was pursued towards this challenge. A combination of fabrication methods was utilized to achieve separate control of amorphous and beta-sheet rich silk nanofibers in the same solution. Aqueous solutions containing these two structural types of silk nanofibers were then simultaneously treated with an electric field and with ethylene glycol diglycidyl ether (EGDE). Under these conditions, the beta-sheet rich silk nanofibers in the mixture responded to the electric field while the amorphous nanofibers were active in the crosslinking process with the EGDE. As a result, cryogels with anisotropic structures were prepared, including mimics for cortical- and cancellous-like bone biomaterials as a complex osteoinductive niche. In vitro studies revealed that mechanical cues of the cryogels induced osteodifferentiation of stem cells while the anisotropy inside the cryogels influenced immune reactions of macrophages. These bioactive cryogels also stimulated improved bone regeneration in vivo through modulation of inflammation, angiogenesis and osteogenesis responses, suggesting an effective strategy to develop bioactive matrices with complex anisotropic structures beneficial to tissue regeneration.
Collapse
Affiliation(s)
- Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People’s Republic of China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People’s Republic of China
| | - Zhaozhao Ding
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
19
|
Zhou S, Liu S, Wang Y, Li W, Wang J, Wang X, Wang S, Chen W, Lv H. Advances in the Study of Bionic Mineralized Collagen, PLGA, Magnesium Ionomer Materials, and Their Composite Scaffolds for Bone Defect Treatment. J Funct Biomater 2023; 14:406. [PMID: 37623651 PMCID: PMC10455784 DOI: 10.3390/jfb14080406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The healing of bone defects after a fracture remains a key issue to be addressed. Globally, more than 20 million patients experience bone defects annually. Among all artificial bone repair materials that can aid healing, implantable scaffolds made from a mineralized collagen (MC) base have the strongest bionic properties. The MC/PLGA scaffold, created by adding Poly (lactic-co-glycolic acid) copolymer (PLGA) and magnesium metal to the MC substrate, plays a powerful role in promoting fracture healing because, on the one hand, it has good biocompatibility similar to that of MC; on the other hand, the addition of PLGA provides the scaffold with an interconnected porous structure, and the addition of magnesium allows the scaffold to perform anti-inflammatory, osteogenic, and angiogenic activities. Using the latest 3D printing technology for scaffold fabrication, it is possible to model the scaffold in advance according to the requirement and produce a therapeutic scaffold suitable for various bone-defect shapes with less time and effort, which can promote bone tissue healing and regeneration to the maximum extent. This study reviews the material selection and technical preparation of MC/PLGA scaffolds, and the progress of their research on bone defect treatment.
Collapse
Affiliation(s)
- Shuai Zhou
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Shihang Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenjing Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Hongzhi Lv
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| |
Collapse
|
20
|
Gu Y, Hu Y, Huang S, Ruiz S, Kawai T, Bai Y, Han X. CpG ODN/Mangiferin Dual Delivery through Calcium Alginate Hydrogels Inhibits Immune-Mediated Osteoclastogenesis and Promotes Alveolar Bone Regeneration in Mice. BIOLOGY 2023; 12:976. [PMID: 37508406 PMCID: PMC10376397 DOI: 10.3390/biology12070976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
The immune system plays an important role in the skeletal system during bone repair and regeneration. The controlled release of biological factors from the immune system could facilitate and optimize the bone remodeling process through the regulation of the activities of bone cells. This study aimed to determine the effect of the controlled delivery of immunomodulatory biologicals on bone regeneration. Immunostimulatory cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) and glucosylxanthone Mangiferin (MAG)-embedded microbeads were incubated with P. gingivalis-challenged splenocytes, or co-cultured with RAW264.7 cells. The effect of CpG ODN/MAG-containing microbeads on bone regeneration was then tested in vivo in a mouse alveolar bone defect model. The results demonstrated that MAG significantly antagonized P. gingivalis proliferation and reduced the live/dead cell ratio. After the addition of CpG ODN + MAG microbeads, anti-inflammatory cytokines IL-10 and IL-4 were upregulated on day 2 but not day 4, whereas pro-inflammatory cytokine IL-1β responses showed no difference at both timepoints. RANKL production by splenocytes and TRAP+ cell formation of RAW264.7 cells were inhibited by the addition of CpG ODN + MAG microbeads. Alveolar bony defects, filled with CpG ODN + MAG microbeads, showed significantly increased new bone after 4 weeks. In summary, this study evaluated a new hydrogel-based regimen for the local delivery and controlled release of biologicals to repair and regenerate alveolar bony defects. The combined CpG ODN + MAG treatment may promote alveolar bone regeneration through the anti-microbial/anti-inflammatory effects and the inhibition of RANKL-mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Yang Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Shengyuan Huang
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Sunniva Ruiz
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
21
|
Zong C, Bronckaers A, Willems G, He H, Cadenas de Llano-Pérula M. Nanomaterials for Periodontal Tissue Regeneration: Progress, Challenges and Future Perspectives. J Funct Biomater 2023; 14:290. [PMID: 37367254 DOI: 10.3390/jfb14060290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Bioactive nanomaterials are increasingly being applied in oral health research. Specifically, they have shown great potential for periodontal tissue regeneration and have substantially improved oral health in translational and clinical applications. However, their limitations and side effects still need to be explored and elucidated. This article aims to review the recent advancements in nanomaterials applied for periodontal tissue regeneration and to discuss future research directions in this field, especially focusing on research using nanomaterials to improve oral health. The biomimetic and physiochemical properties of nanomaterials such as metals and polymer composites are described in detail, including their effects on the regeneration of alveolar bone, periodontal ligament, cementum and gingiva. Finally, the biomedical safety issues of their application as regenerative materials are updated, with a discussion about their complications and future perspectives. Although the applications of bioactive nanomaterials in the oral cavity are still at an initial stage, and pose numerous challenges, recent research suggests that they are a promising alternative in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Chen Zong
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute, Faculty of Life Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Guy Willems
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Center for Dentofacial Development and Sleep Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Maria Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
22
|
EzEldeen M, Moroni L, Nejad ZM, Jacobs R, Mota C. Biofabrication of engineered dento-alveolar tissue. BIOMATERIALS ADVANCES 2023; 148:213371. [PMID: 36931083 DOI: 10.1016/j.bioadv.2023.213371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Oral health is essential for a good overall health. Dento-alveolar conditions have a high prevalence, ranging from tooth decay periodontitis to alveolar bone resorption. However, oral tissues exhibit a limited regenerative capacity, and full recovery is challenging. Therefore, regenerative therapies for dento-alveolar tissue (e.g., alveolar bone, periodontal membrane, dentin-pulp complex) have gained much attention, and novel approaches have been proposed in recent decades. This review focuses on the cells, biomaterials and the biofabrication methods used to develop therapies for tooth root bioengineering. Examples of the techniques covered are the multitude of additive manufacturing techniques and bioprinting approaches used to create scaffolds or tissue constructs. Furthermore, biomaterials and stem cells utilized during biofabrication will also be described for different target tissues. As these new therapies gradually become a reality in the lab, the translation to the clinic is still minute, with a further need to overcome multiple challenges and broaden the clinical application of these alternatives.
Collapse
Affiliation(s)
- Mostafa EzEldeen
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Lorenzo Moroni
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands
| | - Zohre Mousavi Nejad
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Biomaterials Research Group, Department of Nanotechnology and Advance Materials, Materials and Energy Research Center, P.O. Box: 31787-316, Karaj, Alborz, Iran
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlos Mota
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
23
|
Kupka JR, Sagheb K, Al-Nawas B, Schiegnitz E. The Sympathetic Nervous System in Dental Implantology. J Clin Med 2023; 12:jcm12082907. [PMID: 37109243 PMCID: PMC10143978 DOI: 10.3390/jcm12082907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The sympathetic nervous system plays a vital role in various regulatory mechanisms. These include the well-known fight-or-flight response but also, for example, the processing of external stressors. In addition to many other tissues, the sympathetic nervous system influences bone metabolism. This effect could be highly relevant concerning osseointegration, which is responsible for the long-term success of dental implants. Accordingly, this review aims to summarize the current literature on this topic and to reveal future research perspectives. One in vitro study showed differences in mRNA expression of adrenoceptors cultured on implant surfaces. In vivo, sympathectomy impaired osseointegration in mice, while electrical stimulation of the sympathetic nerves promoted it. As expected, the beta-blocker propranolol improves histological implant parameters and micro-CT measurements. Overall, the present data are considered heterogeneous. However, the available publications reveal the potential for future research and development in dental implantology, which helps to introduce new therapeutic strategies and identify risk factors for dental implant failure.
Collapse
Affiliation(s)
- Johannes Raphael Kupka
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Keyvan Sagheb
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
24
|
Niu Y, Du T, Liu Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J Funct Biomater 2023; 14:jfb14040212. [PMID: 37103302 PMCID: PMC10146666 DOI: 10.3390/jfb14040212] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone.
Collapse
Affiliation(s)
- Yumiao Niu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
25
|
Ilhan M, Kilicarslan M, Alcigir ME, Bagis N, Ekim O, Orhan K. Clindamycin phosphate and bone morphogenetic protein-7 loaded combined nanoparticle-graft and nanoparticle-film formulations for alveolar bone regeneration - An in vitro and in vivo evaluation. Int J Pharm 2023; 636:122826. [PMID: 36918117 DOI: 10.1016/j.ijpharm.2023.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Commonly utilized techniques for healing alveolar bone destruction such as the use of growth factors, suffering from short half-life, application difficulties, and the ability to achieve bioactivity only in the presence of high doses of growth factor. The sustained release of growth factors through a scaffold-based delivery system offers a promising and innovative tool in dentistry. Furthermore, it is suggested to guide the host response by using antimicrobials together with growth factors to prevent recovery and achieve ideal regeneration. Herein, the aim was to prepare and an in vitro - in vivo evaluation of bone morphogenetic protein 7 (BMP-7) and clindamycin phosphate (CDP) loaded polymeric nanoparticles, and their loading into the alginate-chitosan polyelectrolyte complex film or alloplastic graft to accelerate hard tissue regeneration. PLGA nanoparticles containing CDP and BMP-7, separately or together, were prepared using the double emulsion solvent evaporation technique. Through in vitro assays, it was revealed that spherical particles were homogeneously distributed in the combination formulations, and sustained release could be achieved for >12 weeks with all formulations. Also, results from the micro-CT and histopathological analyses indicated that CDP and BMP-7 loaded nanoparticle-film formulations were more effective in treatment than the nanoparticle loaded grafts.
Collapse
Affiliation(s)
- Miray Ilhan
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Türkiye; Duzce University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 81620 Duzce, Türkiye.
| | - Muge Kilicarslan
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Türkiye.
| | - Mehmet Eray Alcigir
- Kirikkale University, Faculty of Veterinary Medicine, Department of Pathology, 71450 Kirikkale, Türkiye.
| | - Nilsun Bagis
- Ankara University, Faculty of Dentistry, Department of Periodontology, 06560 Ankara, Türkiye.
| | - Okan Ekim
- Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, 06110 Ankara, Türkiye.
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of Dentomaxillofacial Radiology, 06560 Ankara, Türkiye.
| |
Collapse
|
26
|
Xu Z, Wang C, Song G, Wang Y, Zhang X, Li X. Covalent binding modes between BMP-2-derived peptides and graphene in 3D scaffolds determine their osteoinductivity and capacity for calvarial defect repair in vivo. Int J Biol Macromol 2023; 237:124077. [PMID: 36934820 DOI: 10.1016/j.ijbiomac.2023.124077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
Covalent introduction of bioactive molecules is one of main strategies to significantly enhance the biological activities of bone repair materials. In this study, three most-commonly used chemical groups were respectively introduced on graphene (GP), followed by covalent binding with bone morphogenetic protein-2 (BMP-2) -derived peptides, ensuring that the same molar mass of peptides was bound to different functionalized GP (f-GP). Then the same amount of composites composed of different f-GP and peptides were respectively compounded with poly (lactic-co-glycolic acid) to fabricate 3D scaffolds. In vivo study demonstrated that the scaffolds containing ammonized GP covalently bound with the peptides through amide binding could reach best efficiency of promoting ectopic bone regeneration and repairing calvarial defect probably because the most positive charges on the peptide chain and surface of the ammonized GP could absorb more specific proteins in vivo and have better interactions with them, thereby differentiating most inducible cells into osteogenic cells. Our results indicate that the performances of scaffolds containing covalently bound bioactive molecules can be controlled by the covalent binding mode, and that our prepared scaffold containing ammonized GP covalently bound with the BMP-2-derived peptides through amide binding possess inspiring potential applicable prospects for bone tissue regeneration and engineering.
Collapse
Affiliation(s)
- Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Guiqin Song
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yan Wang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoyun Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
27
|
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, Liu Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Dusenge MA, Feng YZ, Guo Y. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther 2023; 14:39. [PMID: 36927449 PMCID: PMC10022059 DOI: 10.1186/s13287-023-03265-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Jaw-bone defects caused by various diseases lead to aesthetic and functional complications, which can seriously affect the life quality of patients. Current treatments cannot fully meet the needs of reconstruction of jaw-bone defects. Thus, the research and application of bone tissue engineering are a "hot topic." As seed cells for engineering of jaw-bone tissue, oral cavity-derived stem cells have been explored and used widely. Models of jaw-bone defect are excellent tools for the study of bone defect repair in vivo. Different types of bone defect repair require different stem cells and bone defect models. This review aimed to better understand the research status of oral and maxillofacial bone regeneration. MAIN TEXT Data were gathered from PubMed searches and references from relevant studies using the search phrases "bone" AND ("PDLSC" OR "DPSC" OR "SCAP" OR "GMSC" OR "SHED" OR "DFSC" OR "ABMSC" OR "TGPC"); ("jaw" OR "alveolar") AND "bone defect." We screened studies that focus on "bone formation of oral cavity-derived stem cells" and "jaw bone defect models," and reviewed the advantages and disadvantages of oral cavity-derived stem cells and preclinical model of jaw-bone defect models. CONCLUSION The type of cell and animal model should be selected according to the specific research purpose and disease type. This review can provide a foundation for the selection of oral cavity-derived stem cells and defect models in tissue engineering of the jaw bone.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ya-Qing Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
28
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
29
|
Tahmasebi E, Mohammadi M, Alam M, Abbasi K, Gharibian Bajestani S, Khanmohammad R, Haseli M, Yazdanian M, Esmaeili Fard Barzegar P, Tebyaniyan H. The current regenerative medicine approaches of craniofacial diseases: A narrative review. Front Cell Dev Biol 2023; 11:1112378. [PMID: 36926524 PMCID: PMC10011176 DOI: 10.3389/fcell.2023.1112378] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Craniofacial deformities (CFDs) develop following oncological resection, trauma, or congenital disorders. Trauma is one of the top five causes of death globally, with rates varying from country to country. They result in a non-healing composite tissue wound as they degenerate in soft or hard tissues. Approximately one-third of oral diseases are caused by gum disease. Due to the complexity of anatomical structures in the region and the variety of tissue-specific requirements, CFD treatments present many challenges. Many treatment methods for CFDs are available today, such as drugs, regenerative medicine (RM), surgery, and tissue engineering. Functional restoration of a tissue or an organ after trauma or other chronic diseases is the focus of this emerging field of science. The materials and methodologies used in craniofacial reconstruction have significantly improved in the last few years. A facial fracture requires bone preservation as much as possible, so tiny fragments are removed initially. It is possible to replace bone marrow stem cells with oral stem cells for CFDs due to their excellent potential for bone formation. This review article discusses regenerative approaches for different types of craniofacial diseases.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Gharibian Bajestani
- Student Research Committee, Dentistry Research Center, Research Institute of Dental Sciences, Dental School, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Rojin Khanmohammad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Haseli
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
30
|
Fan L, Ren Y, Emmert S, Vučković I, Stojanovic S, Najman S, Schnettler R, Barbeck M, Schenke-Layland K, Xiong X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24043744. [PMID: 36835168 PMCID: PMC9963569 DOI: 10.3390/ijms24043744] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has played a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structures, and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.
Collapse
Affiliation(s)
- Lu Fan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
| | - Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Ivica Vučković
- Department of Maxillofacial Surgery, Clinic for Dental Medicine, 18000 Niš, Serbia
| | - Sanja Stojanovic
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
- BerlinAnalytix GmbH, Ullsteinstraße 108, 12109 Berlin, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| |
Collapse
|
31
|
Hardan L, Chedid JCA, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Tosco V, Monjarás-Ávila AJ, Jabra M, Salloum-Yared F, Kharouf N, Mancino D, Haikel Y. Peptides in Dentistry: A Scoping Review. Bioengineering (Basel) 2023; 10:bioengineering10020214. [PMID: 36829708 PMCID: PMC9952573 DOI: 10.3390/bioengineering10020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Currently, it remains unclear which specific peptides could be appropriate for applications in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific papers related to the types, uses and applications of peptides in dentistry at the moment. Literature database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related applications were included. The studies involved experimental designs in animals, microorganisms, or cells; clinical trials were also identified within this review. Most of the applications of peptides included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth implants, and the modification of other restorative materials such as dental adhesives and denture base resins. The in vitro and in vivo studies included in this review suggested that peptides may have beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available for the investigation of peptides in dentistry.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Jean Claude Abou Chedid
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | | | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology (DISCO), Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ana Josefina Monjarás-Ávila
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | - Massa Jabra
- Faculty of Medicine, Damascus University, Damascus 0100, Syria
| | | | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| |
Collapse
|
32
|
Xiao X, Liu Z, Shu R, Wang J, Zhu X, Bai D, Lin H. Periodontal bone regeneration with a degradable thermoplastic HA/PLCL bone graft. J Mater Chem B 2023; 11:772-786. [PMID: 36444735 DOI: 10.1039/d2tb02123d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Strategic bone grafts are required to regenerate periodontal bone defects owing to limited self-healing. Current bioceramic particle or deproteinized bovine bone (DBB) products are not able to ideally meet clinical requirements, such as insufficient operability and slow degradation rates. Herein, a strong-interacted bone graft was designed and synthesized by modifying hydroxyapatite (HA) with a lactide-caprolactone copolymer (PLCL) to improve component homogeneity and mechanical properties. The physical-chemical analysis indicated that HA particles were homogenously distributed in HA/PLCL bone grafts, possessed outstanding thermoplasticity, and facilitated clinic operability and initial mechanical support. The in vitro study suggested that HA/PLCL bone graft degraded in a spatiotemporal model. Micropores were formed on the non-porous surface at the beginning, and interconnected porous structures were gradually generated. Furthermore, HA/PLCL bone grafts exhibited excellent biocompatibility and osteogenic ability as revealed in vitro cell culture and in vivo animal experiments. When applied to rat periodontal bone defects, the HA/PLCL bone graft showed a non-inferior bone regeneration compared to the commercial DBB. This study proposes a potential bone graft for periodontal bone repair with thermoplastic, spatiotemporal degraded, and osteogenic characteristics.
Collapse
Affiliation(s)
- Xueling Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jiangyue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
33
|
Gan Q, Chen L, Bei HP, Ng SW, Guo H, Liu G, Pan H, Liu C, Zhao X, Zheng Z. Artificial cilia for soft and stable surface covalent immobilization of bone morphogenetic protein-2. Bioact Mater 2023; 24:551-562. [PMID: 36714333 PMCID: PMC9845954 DOI: 10.1016/j.bioactmat.2022.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Preservation of growth factor sensitivity and bioactivity (e.g., bone morphogenetic protein-2 (BMP-2)) post-immobilization to tissue engineering scaffolds remains a great challenge. Here, we develop a stable and soft surface modification strategy to address this issue. BMP-2 (a model growth factor) is covalently immobilized onto homogeneous poly (glycidyl methacrylate) (PGMA) polymer brushes which are grafted onto substrate surfaces (Au, quartz glass, silica wafer, or common biomaterials) via surface-initiated atom transfer radical polymerization. This surface modification method multiplies the functionalized interfacial area; it is simple, fast, gentle, and has little effect on the loaded protein owing to the cilia motility. The immobilized BMP-2 (i-BMP-2) on the surface of homogeneous PGMA polymer brushes exhibits excellent bioactivity (⁓87% bioactivity of free BMP-2 in vitro and 20%-50% higher than scaffolds with free BMP-2 in vivo), with conformation and secondary structure well-preserved after covalent immobilization and ethanol sterilization. Moreover, the osteogenic activity of i-BMP-2 on the nanoline pattern (PGMA-poly (N-isopropylacrylamide)) shows ⁓110% bioactivity of free BMP-2. This is superior compared to conventional protein covalent immobilization strategies in terms of both bioactivity preservation and therapeutic efficacy. PGMA polymer brushes can be used to modify surfaces of different tissue-engineered scaffolds, which facilitates in situ immobilization of growth factors, and accelerates repair of a wide range of tissue types.
Collapse
Affiliation(s)
- Qi Gan
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 99077, Hong Kong Special Administrative Region of China,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lina Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 99077, Hong Kong Special Administrative Region of China
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region of China
| | - Sze-Wing Ng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 99077, Hong Kong Special Administrative Region of China
| | - Han Guo
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, PR China
| | - Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 99077, Hong Kong Special Administrative Region of China
| | - Hao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China,Corresponding author.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region of China,Corresponding author.
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 99077, Hong Kong Special Administrative Region of China,Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, 99077, Hong Kong Special Administrative Region of China,Corresponding author. Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 99077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
34
|
Tayanloo-Beik A, Nikkhah A, Roudsari PP, Aghayan H, Rezaei-Tavirani M, Nasli-Esfahani E, Mafi AR, Nikandish M, Shouroki FF, Arjmand B, Larijani B. Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:83-110. [PMID: 35999347 DOI: 10.1007/5584_2022_734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA- CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
The roles of heteromorphic crystals and organic compounds in the formation of the submandibular stones. Heliyon 2022; 8:e12329. [PMID: 36582680 PMCID: PMC9792800 DOI: 10.1016/j.heliyon.2022.e12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Objective The study aimed to analyze the formation process of submandibular stones based on the theory of biological mineralization and inorganic crystal structure variation. Study design From January 2021 to December 2021, patients with submandibular stones treated in the Affiliated Hospital of Stomatology, Sun Yat-sen University (Guangzhou, China) were selected. According to the criterion of maximum transverse diameter ≥3 mm, a total of five submandibular stones meeting the requirement were included. After the surface of sample stones were washed, they were cut along the maximum transverse diameter. Next, the study employed Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and polycrystalline X-ray Diffraction (XRD) to analyze the composition and structure of submandibular stones. Results Five submandibular stones were included. The organic and inorganic compounds showed a rhythmic or irregular distribution. Submandibular stones were highly occupied with carbon (C), oxygen (O), calcium (Ca), and phosphorus (P). Hydroxyapatite (HAP) was the primary inorganic component. In addition, the precursor of HAP, namely Amorphous Calcium Phosphate (ACP), was also found. Tetrahedral Substitution Index (TSI) and Ca/P ratio reflected the degree of structural variation in HAP crystal, which fluctuated from 5.62-90.71 and 1.10-1.35, respectively. Conclusions The development of submandibular stones was influenced by inorganic crystals' chemical and structural variation as well as the organics' regulation towards the inorganic. The isomorphic substitution was accompanied by the occurrence of inorganic crystals, resulting in the crystal structure change. Organics might influence the appearance, aggregation, and mineralization of HAP during its formation.
Collapse
|
36
|
Xu X, Zhou Y, Zheng K, Li X, Li L, Xu Y. 3D Polycaprolactone/Gelatin-Oriented Electrospun Scaffolds Promote Periodontal Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46145-46160. [PMID: 36197319 DOI: 10.1021/acsami.2c03705] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Periodontitis is a worldwide chronic inflammatory disease, where surgical treatment still shows an uncertain prognosis. To break through the dilemma of periodontal treatment, we fabricated a three-dimensional (3D) multilayered scaffold by stacking and fixing electrospun polycaprolactone/gelatin (PCL/Gel) fibrous membranes. The biomaterial displayed good hydrophilic and mechanical properties. Besides, we found human periodontal ligament stem cell (hPDLSC) adhesion and proliferation on it. The following scanning electron microscopy (SEM) and cytoskeleton staining results proved the guiding function of fibers to hPDLSCs. Then, we further analyzed periodontal regeneration-related proteins and mRNA expression between groups. In vivo results in a rat acute periodontal defect model confirmed that the topographic cues of materials could directly guide cellular orientation and might provide the prerequisite for further differentiation. In the aligned scaffold group, besides new bone regeneration, we also observed that angular concentrated fiber regeneration in the root surface of the defect is similar to the normal periodontal tissue. To sum up, we have constructed electrospun membrane-based 3D biological scaffolds, which provided a new treatment strategy for patients undergoing periodontal surgery.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Kai Zheng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| |
Collapse
|
37
|
Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022; 17:4137-4162. [PMID: 36118177 PMCID: PMC9480606 DOI: 10.2147/ijn.s370340] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a major threat to oral health, prompting scientists to continuously study new treatment techniques. The nanofibrous membrane prepared via electrospinning has a large specific surface area and high porosity. On the one hand, electrospun nanofibers can improve the absorption capacity of proteins and promote the expression of specific genes. On the other hand, they can improve cell adhesion properties and prevent fibroblasts from passing through the barrier membrane. Therefore, electrospinning has unique advantages in periodontal treatment. At present, many oral nanofibrous membranes with antibacterial, anti-inflammatory, and tissue regeneration properties have been prepared for periodontal treatment. First, this paper introduces the electrospinning process. Then, the commonly used polymers of electrospun nanofibrous membranes for treating periodontitis are summarized. Finally, different types of nanofibrous membranes prepared via electrospinning for periodontal treatment are presented, and the future evolution of electrospinning to treat periodontitis is described.
Collapse
Affiliation(s)
- Ping Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.,Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yufeng Xie
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, 200093, People's Republic of China
| |
Collapse
|
38
|
Bai B, Hao J, Hou M, Wang T, Wu X, Liu Y, Wang Y, Dai C, Hua Y, Ji G, Zhou G. Repair of Large-Scale Rib Defects Based on Steel-Reinforced Concrete-Designed Biomimetic 3D-Printed Scaffolds with Bone-Mineralized Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42388-42401. [PMID: 36094886 DOI: 10.1021/acsami.2c08422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tissue engineering technology provides a promising approach for large-scale bone reconstruction in cases of extensive chest wall defects. However, previous studies did not consider meticulous scaffold design specific to large-scale rib regeneration in terms of three-dimensional (3D) shape, proper porous structures, enough mechanical strength, and osteogenic microenvironments. Thus, there is an urgent need to develop an appropriate bone biomimetic scaffold (BBS) to address this problem. In this study, a BBS with controllable 3D morphology, appropriate mechanical properties, good biocompatibility and biodegradability, porous structure suitable for cell loading, and a biomimetic osteogenic inorganic salt (OIS) microenvironment was successfully prepared by integrating computer-aided design, 3D-printing, cast-molding, and freeze-drying technologies. The addition of the OIS in the scaffold substantially promoted ectopic bone regeneration in vivo, which might be attributed to the activation of osteogenic and angiogenic signaling pathways as well as upregulated expression of osteogenic genes. More importantly, dual long rib defects could be successfully repaired and medullary cavity recanalized by the rib-shaped mature cortical bone, which might be mediated by the activation of osteoclast signaling pathways. Thus, this paper presents a reliable BBS and proposes a new strategy for the repair of large-scale bone defects.
Collapse
Affiliation(s)
- Baoshuai Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Tao Wang
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Xiaodi Wu
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Yanhan Liu
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Yiyang Wang
- National Tissue Engineering Center of China, Shanghai 200001, China
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Incorporated, No. 85 Faladi Road, Building 3, Pudong New Area, Shanghai 201210, China
| | - Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Guangyu Ji
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
39
|
Liu Z, Wei P, Cui Q, Mu Y, Zhao Y, Deng J, Zhi M, Wu Y, Jing W, Liu X, Zhao J, Zhao B. Guided bone regeneration with extracellular matrix scaffold of small intestinal submucosa membrane. J Biomater Appl 2022; 37:805-813. [PMID: 35924456 DOI: 10.1177/08853282221114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Guided bone regeneration (GBR) is a promising strategy for repairing bone defects using bioactive membranes. In this study, a new type of GBR membrane based on the small intestinal submucosa (SIS) was created, and its surface structure, cytological characteristics, and bone defect repair ability were compared with commonly used membranes. Our results show that compared to the Heal-all and Dentium membranes, the SIS membrane has an asymmetric structure that does not affect the proliferation of bone marrow mesenchymal stem cells (BMSCs). Instead, it increased their formation of calcium nodules and expression of bone morphogenetic protein-2 (BMP-2), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin (OPN). Six weeks after their insertion into a rat calvarial defect model, increased bone growth was observed in the SIS membrane group. Our results indicate that the SIS membrane has good biocompatibility and is more effective in promoting early bone formation than existing membranes. Given the wide range of source materials and simple preparation processes available, SIS membrane is a promising candidate for guided bone regeneration.
Collapse
Affiliation(s)
- Zihao Liu
- Tianjin Nankai Zhongnuo Stomatological Hospital, Tianjin, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China
| | - Qingying Cui
- School of Stomatology Kunming Medical University, Kunming, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Min Zhi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yi Wu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, ChengDu, China
| | - Jihong Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China
| |
Collapse
|
40
|
Cordeiro JM, Barão VAR, de Avila ED, Husch JFA, Yang F, van den Beucken JJJP. Tailoring Cu 2+-loaded electrospun membranes with antibacterial ability for guided bone regeneration. BIOMATERIALS ADVANCES 2022; 139:212976. [PMID: 35882133 DOI: 10.1016/j.bioadv.2022.212976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Copper (Cu)-loaded electrospun membranes were tailored for guided bone regeneration (GBR), targeting the stimulation of innate cells active in bone growth and the prevention of bacterial infections. Functional GBR membranes were produced via an electrospinning set-up using a silk-based solution associated with polyethylene oxide (Silk/PEO - control). Experimental groups were loaded with copper oxide using varying weight percentages (0.05 % to 1 % of CuO). The morphological, structural, chemical, and mechanical properties of membranes were evaluated. Direct and indirect in vitro cytocompatibility experiments were performed with primary human bone mesenchymal stem cells and primary human umbilical vein endothelial cells. The antibacterial potential of membranes was tested with Staphylococcus aureus and Fusobacterium nucleatum biofilm. CuO was successfully incorporated into membranes as clusters without compromising their mechanical properties for clinical applicability. Increased Cu concentrations generated membranes with thinner nanofibers, greater pore areas, and stronger antimicrobial effect (p < 0.01). Cu2+ ion was released from the nanofiber membranes during 1 week, showing higher release in acidic conditions. CuO 0.1 % and CuO 0.05 % membranes were able to support and stimulate cell adhesion and proliferation (p < 0.05), and favor angiogenic responses of vascular cells. In addition, detailed quantitative and qualitative analysis determined that amount of the attached biofilm was reduced on the tailored functional Cu2+-loaded GBR membrane. Importantly, these qualities represent a valuable strategy to improve the bone regeneration process and diminish the risk of bacterial infections.
Collapse
Affiliation(s)
- Jairo M Cordeiro
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, the Netherlands.
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Johanna F A Husch
- Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | - Fang Yang
- Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | | |
Collapse
|
41
|
Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol 2022; 12:908859. [PMID: 35937695 PMCID: PMC9353524 DOI: 10.3389/fcimb.2022.908859] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic periapical periodontitis (CAP) is a typical oral disease in which periodontal inflammation caused by an odontogenic infection eventually leads to bone loss. Uncontrolled infections often lead to extensive bone loss around the root tip, which ultimately leads to tooth loss. The main clinical issue in the treatment of periapical periodontitis is the repair of jawbone defects, and infection control is the first priority. However, the oral cavity is an open environment, and the distribution of microorganisms through the mouth in jawbone defects is inevitable. The subversion of host cell metabolism by oral microorganisms initiates disease. The presence of microorganisms stimulates a series of immune responses, which in turn stimulates bone healing. Given the above background, we intended to examine the paradoxes and connections between microorganisms and jaw defect repair in anticipation of new ideas for jaw defect repair. To this end, we reviewed the microbial factors, human signaling pathways, immune cells, and cytokines involved in the development of CAP, as well as concentrated growth factor (CGF) and stem cells in bone defect repair, with the aim of understanding the impact of microbial factors on host cell metabolism to inform the etiology and clinical management of CAP.
Collapse
Affiliation(s)
| | | | - Lei Cheng
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| | - Ruoshi Xu
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| |
Collapse
|
42
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
43
|
Xun X, Qiu J, Zhang J, Wang H, Han F, Xu X, Yuan R. Triple-functional injectable liposome-hydrogel composite enhances bacteriostasis and osteo/angio-genesis for advanced maxillary sinus floor augmentation. Colloids Surf B Biointerfaces 2022; 217:112706. [PMID: 35870422 DOI: 10.1016/j.colsurfb.2022.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Bone-grafting biological materials are commonly used to increase the height of the alveolar bone in the maxillary posterior region during maxillary sinus floor augmentation. However, there has been little research on the development of an injectable bone-grafting material with bacteriostatic, angiogenic, and osteogenic properties. In this work, we developed a triple-functional vancomycin/deferoxamine/dexamethasone (Van/DFO/Dex) liposome-hydrogel composite with desirable injectability. The release kinetics confirmed orderly sustained release of Van (a bacteriostat), DFO (a vascularised small molecule), and Dex (an osteogenic small molecule). In vitro findings demonstrated the favourable cytocompatibility and antibacterial ability of this composite against Staphylococcus aureus. Additionally, the angiogenic ability of human umbilical vein endothelial cells and osteogenic differentiation activity of MC3T3-E1 cells were enhanced. An in vivo bacteriostasis assay and rabbit maxillary sinus floor augmentation model corroborated the enhanced bacteriostasis and vascularised bone regeneration properties of this functionalised composite. Overall, the favourable injectability to be fit for the minimally invasive procedure, locally sustained release property, and prominent biological functions underscore the clinical potential of Van/DFO/Dex as an ideal bone-grafting material for irregular bone defect repairs, such as maxillary sinus floor augmentation.
Collapse
Affiliation(s)
- Xingxiang Xun
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Jianzhong Qiu
- Center of Oral Medicine, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China
| | - Jing Zhang
- Department of Operation, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China
| | - Hejing Wang
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xiao Xu
- Center of Oral Medicine, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China.
| | - Rongtao Yuan
- School of Stomatology of Qingdao University, Qingdao 266003, PR China; Center of Oral Medicine, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China.
| |
Collapse
|
44
|
Jia X, Zhou J, Ning J, Li M, Yao Y, Wang X, Jian Y, Zhao K. The polycaprolactone/silk fibroin/carbonate hydroxyapatite electrospun scaffold promotes bone reconstruction by regulating the polarization of macrophages. Regen Biomater 2022; 9:rbac035. [PMID: 35801011 PMCID: PMC9255275 DOI: 10.1093/rb/rbac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Macrophages are known to modulate the osteogenic environment of bone regeneration elicited by biological bone grafts. Alteration in certain chemical components tends to affect macrophages polarization. Comparatively to hydroxyapatite (HAp), carbonate hydroxyapatite (CHA) consists of 7.4 (wt%) carbonate ions and more closely resembles the mineral content of bone. It remains unknown whether CHA scaffolds or HA scaffolds have better osteogenic properties. In this study, we fabricated PCL/SF scaffold, PCL/SF/HAp scaffold and PCL/SF/CHA scaffold using the electrospinning technique. Despite comparable mechanical properties, the PCL/SF/CHA scaffold exhibited better osteogenic properties than the PCL/SF/HAp scaffold. Although no significant differences were observed between the two scaffolds for promoting osteoblast differentiation in vitro, the PCL/SF/CHA group appeared to be more effective at promoting bone regeneration in cranial defects in vivo. The PCL/SF/CHA scaffold was found to promote macrophage polarization toward M2 via activating the JAK/STAT5 pathway which caused a pro-osteogenic microenvironment to facilitate osteoblast differentiation. The results of this study indicated a higher potential of CHA to substitute HAp in the production of bone scaffolds for better bone regeneration.
Collapse
Affiliation(s)
- Xiaoshi Jia
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jing Zhou
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jinqiu Ning
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Maoquan Li
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yitong Yao
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xiaodong Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yutao Jian
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Ke Zhao
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| |
Collapse
|
45
|
Rizzo MG, Palermo N, D’Amora U, Oddo S, Guglielmino SPP, Conoci S, Szychlinska MA, Calabrese G. Multipotential Role of Growth Factor Mimetic Peptides for Osteochondral Tissue Engineering. Int J Mol Sci 2022; 23:ijms23137388. [PMID: 35806393 PMCID: PMC9266819 DOI: 10.3390/ijms23137388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-β and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Nicoletta Palermo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials—National Research Council, Viale J. F. Kennedy 54, Mostra d’Oltremare, Pad. 20, 80125 Naples, Italy;
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Correspondence: (S.C.); (G.C.)
| | - Marta Anna Szychlinska
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy;
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Correspondence: (S.C.); (G.C.)
| |
Collapse
|
46
|
John JV, McCarthy A, Karan A, Xie J. Electrospun Nanofibers for Wound Management. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2022; 8:e202100349. [PMID: 35990019 PMCID: PMC9384963 DOI: 10.1002/cnma.202100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 06/15/2023]
Abstract
Electrospun nanofibers show great potential in biomedical applications. This mini review article traces the recent advances in electrospun nanofibers for wound management via various approaches. Initially, we provide a short note on the four phases of wound healing, including hemostasis, inflammation, proliferation, and remodeling. Then, we state how the nanofiber dressings can stop bleeding and reduce the pain. Following that, we discuss the delivery of therapeutics and cells using different types of nanofibers for enhancing cell migration, angiogenesis, and re-epithelialization, resulting in the promotion of wound healing. Finally, we present the conclusions and future perspectives regarding the use of electrospun nanofibers for wound management.
Collapse
Affiliation(s)
- Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198 (USA)
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198 (USA)
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198 (USA)
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198 (USA)
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE 68588 (USA)
| |
Collapse
|
47
|
Fang CH, Lin HY, Sun CK, Lin YW, Hung MC, Li CH, Lin IP, Chang HC, Sun JS, Chang JZC. Decoronation-induced infected alveolar socket defect rat model for ridge preservation. Sci Rep 2022; 12:9940. [PMID: 35705614 PMCID: PMC9200756 DOI: 10.1038/s41598-022-14064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Current rat alveolar ridge preservation models have not been well standardized. In this study, we proposed decoronation-induced infected alveolar socket model of rat. The bilateral maxillary first molars (M1) of twenty-four rats were decoronized or extracted. After 2, 6, 10, and 14 weeks, bone and soft tissue changes at M1 and periodontal conditions of maxillary second (M2) and third molars (M3) were evaluated by micro-computed tomography and histological analysis. Additional eighteen rats with standardized size defects were grafted with Bio-Oss Collagen to compare with unmanipulated contralateral side. Decoronation preserved greater bone and soft tissue dimensions at M1, provided larger three-dimensional (3D) bone contour volume, but also promoted periodontal breakdown of M2 Histological results showed intense inflammatory cell infiltrations and severe bone resorption within M1 socket and at mesial aspect of M2. The critical dimensions to accommodate largest standardized defect at M1 were 2.2-2.3 mm at vertical bone height and 2.8-3.2 mm at alveolar crestal width. Bio-Oss Collagen could not fully preserve buccal or palatal bone height but could be beneficial in preserving ridge width in large alveolar defects. Collectively, if periodontally-involved alveolar bone defect is preferred, we suggest extracting M1 roots 6 weeks after decoronation to allow periodontitis to occur at M2. If standardized critical dimension defect is preferred, we suggest extracting M1 roots 2 weeks after decoronation, and creating defect in the middle of M1 site with size no larger than 2.7 mm diameter to its full depth.
Collapse
Affiliation(s)
- Chih-Hsiang Fang
- Trauma and Emergency Center, China Medical University Hospital, No. 2, Xueshi Rd., North Dist., Taichung City, 404018, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, College of Medicine, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Chung-Kai Sun
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 11221, Taiwan
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Min-Chih Hung
- Department of Dentistry, College of Medicine, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Ching-Hung Li
- Department of Dentistry, College of Medicine, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - I-Ping Lin
- Department of Dentistry, National Taiwan University Hospital, Hisnchu Branch, No. 25, Lane 442, Sec. 1 Jingguo Rd., Hsinchu City, 30059, Taiwan
| | - Hung-Chen Chang
- Gin Chen Dental Clinic, No. 31, Long Chiang Rd, Taipei, Taiwan
| | - Jui-Sheng Sun
- Trauma and Emergency Center, China Medical University Hospital, No. 2, Xueshi Rd., North Dist., Taichung City, 404018, Taiwan. .,School of Medicine, China Medical University-YingCai Campus, No. 91, Xueshi Rd., North Dist., Taichung City, 404333, Taiwan. .,Department of Orthopedic Surgery, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10002, Taiwan. .,Department of Orthopedic Surgery, College of Medicine, China Medical University, No. 2, Yu-Der Rd, Taichung City, 40447, Taiwan.
| | - Jenny Zwei-Chieng Chang
- Department of Dentistry, College of Medicine, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, 10048, Taiwan. .,School of Dentistry, College of Medicine, National Taiwan University, No 1, Chang-Te Street, Taipei, 10048, Taiwan.
| |
Collapse
|
48
|
Xie X, Xu C, Zhao L, Wu Y, Feng JQ, Wang J. Axin2-expressing cells in the PDL are regulated by BMP signaling and play a pivotal role in periodontium development. J Clin Periodontol 2022; 49:945-956. [PMID: 35634660 DOI: 10.1111/jcpe.13666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To date, controversies still exist regarding the exact cellular origin and regulatory mechanisms of periodontium development, which hinders efforts to achieve ideal periodontal tissue regeneration. Axin2-expressing cells in the periodontal ligament (PDL) have been shown to be a novel progenitor cell population that is essential for periodontal homeostasis. In the current study, we aimed to elucidate the regulatory role of bone morphogenetic protein receptor type 1A (BMPR1A)-mediated BMP signaling in Axin2-expressing cells during periodontium development. METHODS Two strains of Axin2 gene reporter mice, Axin2lacZ/+ and Axin2CreERT2/+ ; R26RtdTomato/+ mice, were used. We next generated Axin2CreERT2/+ ; R26RDTA/+ ; R26RtdTomato/+ mice to genetically ablate of Axin2-lineage cells. Axin2CreERT2/+ ; Bmpr1afl/fl ; R26RtdTomato/+ mice were established to conditionally knock out Bmpr1a in Axin2-lineage cells. Multiple approaches, including micro-CT, calcein green and alizarin red double-labeling, scanning electron microscopy, and histological and immunostaining assays, were used to analyze periodontal phenotypes and molecular mechanisms. RESULTS X-gal staining revealed that Axin2-expressing cells in the PDL were mainly distributed along the alveolar bone and cementum surface. Cell lineage tracing and cell ablation assays further demonstrated the indispensable role of Axin2-expressing cells in periodontium development. Next, we found that conditional knockout of Bmpr1a in Axin2-lineage cells led to periodontal defects, which were characterized by alveolar bone loss, impaired cementogenesis, and abnormal Sharpey's fibers. CONCLUSIONS Our findings suggest that Axin2-expressing cells in the PDL are essential for periodontium development, which is regulated by BMP signaling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102123. [PMID: 35632005 PMCID: PMC9146582 DOI: 10.3390/polym14102123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.
Collapse
|
50
|
Toledano M, Vallecillo C, Gutierrez-Corrales A, Torres-Lagares D, Toledano-Osorio M, Serrera-Figallo MA. Histomorphometric Analysis of Differential Regional Bone Regeneration Induced by Distinct Doped Membranes. Polymers (Basel) 2022; 14:polym14102078. [PMID: 35631960 PMCID: PMC9147672 DOI: 10.3390/polym14102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Our objective is to evaluate the regional regenerative potential of calvarial bone in critical-sized defects in a rabbit model using novel nanostructured silica-loaded membranes doped with zinc or doxycycline. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5 wt% of SiO2 nanoparticles (HOOC-Si-Membranes) were doped with zinc (Zn-HOOC-Si-Membrane) or doxycycline (Dox-HOOC-Si-Membrane). Critical bone defects were created on six New-Zealand-breed rabbit skulls and covered with the membranes. A sham defect without a membrane was used as the control. After six weeks, a histological analysis (toluidine blue technique) was employed to determine the area percentages of newly formed bone, osteoid bone, and soft tissue. The measurements were performed by dividing the total defect area into top (close to the membrane) and bottom (close to the dura mater) regions, or peripheral (adjacent to the old bone) and central (the sum of the remaining zones) regions. The peripheral regions of the defects showed higher osteogenic capacity than the central areas when the membranes were present. The proportion of new bone adjacent to the dura was similar to that adjacent to the membrane only when the HOOC-Si-Membranes and Zn-HOOC-Si-Membranes were used, indicating a direct osteoinductive effect of the membranes.
Collapse
Affiliation(s)
- Manuel Toledano
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.); (C.V.)
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.); (C.V.)
| | - Aida Gutierrez-Corrales
- Faculty of Dentistry, Oral Surgery Section, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (A.G.-C.); (D.T.-L.); (M.-A.S.-F.)
| | - Daniel Torres-Lagares
- Faculty of Dentistry, Oral Surgery Section, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (A.G.-C.); (D.T.-L.); (M.-A.S.-F.)
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.); (C.V.)
- Correspondence: ; Tel.: +34-958-243-789
| | - María-Angeles Serrera-Figallo
- Faculty of Dentistry, Oral Surgery Section, University of Sevilla, Avicena s/n, 41009 Sevilla, Spain; (A.G.-C.); (D.T.-L.); (M.-A.S.-F.)
| |
Collapse
|