1
|
Liu W, Jiang H, Chen J, Tian Y, He Y, Jiao Y, Guan Y, Jia Z, Wu Y, Huang C, Ouyang Y, Xu W, Qi J, Peng J, Wang A. High paracrine activity of hADSCs cartilage microtissues inhibits extracellular matrix degradation and promotes cartilage regeneration. Mater Today Bio 2025; 30:101372. [PMID: 39839494 PMCID: PMC11745967 DOI: 10.1016/j.mtbio.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Due to its unique structure, articular cartilage has limited self-repair capacity. Microtissues are tiny tissue clusters that can mimic the function of target organs or tissues. Using cells alone for microtissue construction often results in the formation of necrotic cores. However, the extracellular matrix (ECM) of native cartilage can provide structural support and is an ideal source of microcarriers. Autologous adipose-derived mesenchymal stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMSCs) are widely used in cartilage tissue engineering. In this study, we fabricated microcarriers and compared the behavior of two homologous cell types in the microcarrier environment. The microcarrier environment highlighted the advantages of ADSCs and promoted the proliferation and migration of these cells. Then, ADSCs microtissues (ADSCs-MT) and BMSCs microtissues (BMSCs-MT) were fabricated using a three-dimensional dynamic culture system. In vitro and in vivo experiments verified that the cartilage regeneration ability of ADSCs-MT was significantly superior to that of BMSCs-MT. Transcriptomics revealed that ADSCs-MT showed significantly lower expression levels of ECM degradation, osteogenesis, and fibrocartilage markers. Finally, the protective effect of microtissues on inflammatory chondrocytes was validated. Overall, the ADSCs-MT constructed in this study achieved excellent cartilage regeneration and could be promising for the autologous application of cartilage microtissues.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Hongyu Jiang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Department of Orthopedic, The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajie Chen
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Yue Tian
- The Second Medical Center of Chinese PLA General Hospital, PR China
| | - Ying He
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Ying Jiao
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Zhibo Jia
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Yanbin Wu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Cheng Huang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Department of Orthopedic, The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Yiben Ouyang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Wenjing Xu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Jianhong Qi
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Aiyuan Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
2
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
3
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
4
|
Mazetyte-Godiene A, Vailionyte A, Jelinskas T, Denkovskij J, Usas A. Promotion of hMDSC differentiation by combined action of scaffold material and TGF-β superfamily growth factors. Regen Ther 2024; 27:307-318. [PMID: 38633416 PMCID: PMC11021853 DOI: 10.1016/j.reth.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/08/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Herein we propose a combined action of collagen type I (CA) or synthetic collagen-like-peptide functionalized with the cell adhesive RGD motif (PEG-CLP-RGD) hydrogels and selected growth factors to promote chondrogenic differentiation of human muscle-derived stem cells (hMDSCs) under normal and reduced oxygen conditions. Methods hMDSCs were set for differentiation towards chondrogenic lineage using BMP-7 and TGF-β3. Cells were seeded onto hydrogels loaded with growth factors (75ng/scaffold) and cultured for 28 days under normal (21%) and severe hypoxic (1%) conditions. Chondrogenesis was evaluated by monitoring collagen type II and GAG deposition, and quantification of ACAN expression by RT-PCR. Results Sustained release of TGFβ3 from the hydrogels was observed, 8.7 ± 0.5% of the initially loaded amount diffused out after 24 h from both substrates. For the BMP-7 growth factor, 14.8 ± 0.3% and 18.2 ± 0.6% of the initially loaded amount diffused out after 24 h from CA and CLP-RGD, respectively. The key findings of this study are: i) the self-supporting hydrogels themselves can stimulate hMDSC chondrogenesis by inducing gene expression of cartilage-specific proteoglycan aggrecan and ECM production; ii) the effect of dual BMP-7 and TGF-β3 loading was more pronounced on CA hydrogel under normal oxygen conditions; iii) dual loading on PEG-CLP-RGD hydrogels did not have the synergistic effect, TGF-β3 was more effective under both oxygen conditions; iv) BMP-7 can improve chondrogenic effect of TGF-β3 on CA scaffolds, and hydrogels loaded with both growth factors can induce cartilage formation in hMDSC cultures. Conclusion Our results support the potential strategy of combining implantable hydrogels functionalized with differentiation factors toward improving cartilaginous repair.
Collapse
Affiliation(s)
- Airina Mazetyte-Godiene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- UAB Ferentis, Savanoriu ave. 235, Vilnius, Lithuania
- Department of Nanoengineering, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | | | - Tadas Jelinskas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Arvydas Usas
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
5
|
Liu YY, Intini C, Dobricic M, O'Brien FJ, LLorca J, Echeverry-Rendon M. Collagen-based 3D printed poly (glycerol sebacate) composite scaffold with biomimicking mechanical properties for enhanced cartilage defect repair. Int J Biol Macromol 2024; 280:135827. [PMID: 39306177 DOI: 10.1016/j.ijbiomac.2024.135827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Cartilage defect repair with optimal efficiency remains a significant challenge due to the limited self-repair capability of native tissues. The development of bioactive scaffolds with biomimicking mechanical properties and degradation rates matched with cartilage regeneration while simultaneously driving chondrogenesis, plays a crucial role in enhancing cartilage defect repair. To this end, a novel composite scaffold with hierarchical porosity was manufactured by incorporating a pro-chondrogenic collagen type I/II-hyaluronic acid (CI/II-HyA) matrix to a 3D-printed poly(glycerol sebacate) (PGS) framework. Based on the mechanical enforcement of PGS framework, the composite scaffold exhibited a compressive modulus of 167.0 kPa, similar to that of native cartilage, as well as excellent fatigue resistance, similar to that of native joint tissue. In vitro degradation tests demonstrated that the composite scaffold maintained structural, mass, and mechanical stability during the initial cartilage regeneration period of 4 weeks, while degraded linearly over time. In vitro biological tests with rat-derived mesenchymal stem cell (MSC) revealed that, the composite scaffold displayed increased cell loading efficiency and improved overall cell viability due to the incorporation of CI/II-HyA matrix. Additionally, it also sustained an effective and high-quality MSC chondrogenesis and abundant de-novo cartilage-like matrix deposition up to day 28. Overall, the biomimetic composite scaffold with sufficient mechanical support, matched degradation rate with cartilage regeneration, and effective chondrogenesis stimulation shows great potential to be an ideal candidate for enhancing cartilage defect repair.
Collapse
Affiliation(s)
- Yu-Yao Liu
- IMDEA Materials Institute, 28906 Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Claudio Intini
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland
| | - Marko Dobricic
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland.
| | - Javier LLorca
- IMDEA Materials Institute, 28906 Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | | |
Collapse
|
6
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. 3D printing and computer-aided design techniques for drug delivery scaffolds in tissue engineering. Expert Opin Drug Deliv 2024; 21:1615-1636. [PMID: 39323396 DOI: 10.1080/17425247.2024.2409913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The challenge in tissue engineering lies in replicating the intricate structure of the native extracellular matrix. Recent advancements in AM, notably 3D printing, offer unprecedented capabilities to tailor scaffolds precisely, controlling properties like structure and bioactivity. CAD tools complement this by facilitating design using patient-specific data. AREA’S COVERED This review introduces additive manufacturing (AM) and computer-aided design (CAD) as pivotal tools in advancing tissue engineering, particularly cartilage regeneration. This article explores various materials utilized in AM, focusing on polymers and hydrogels for their advantageous properties in tissue engineering applications. Integrating bioactive molecules, including growth factors, into scaffolds to promote tissue regeneration is discussed alongside strategies involving different cell sources, such as stem cells, to enhance tissue development within scaffold matrices. EXPERT OPINION Applications of AM and CAD in addressing specific challenges like osteochondral defects and osteoarthritis in cartilage tissue engineering are highlighted. This review consolidates current research findings, offering expert insights into the evolving landscape of AM and CAD technologies in advancing tissue engineering, particularly in cartilage regeneration.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
7
|
Zhang M, Ye Q, Zhu Z, Shi S, Xu C, Xie R, Li Y. Hyaluronic Acid-Based Dynamic Hydrogels for Cartilage Repair and Regeneration. Gels 2024; 10:703. [PMID: 39590059 PMCID: PMC11594165 DOI: 10.3390/gels10110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hyaluronic acid (HA), an important natural polysaccharide and meanwhile, an essential component of extracellular matrix (ECM), has been widely used in tissue repair and regeneration due to its high biocompatibility, biodegradation, and bioactivity, and the versatile chemical groups for modification. Specially, HA-based dynamic hydrogels, compared with the conventional hydrogels, offer an adaptable network and biomimetic microenvironment to optimize tissue repair and the regeneration process with a striking resemblance to ECM. Herein, this review comprehensively summarizes the recent advances of HA-based dynamic hydrogels and focuses on their applications in articular cartilage repair. First, the fabrication methods and advantages of HA dynamic hydrogels are presented. Then, the applications of HA dynamic hydrogels in cartilage repair are illustrated from the perspective of cell-free and cell-encapsulated and/or bioactive molecules (drugs, factors, and ions). Finally, the current challenges and prospective directions are outlined.
Collapse
Affiliation(s)
- Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Zebo Zhu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuanglian Shi
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
8
|
Xie B, Ma H, Yang F, Chen H, Guo Y, Zhang H, Li T, Huang X, Zhao Y, Li X, Du J. Development and evaluation of 3D composite scaffolds with piezoelectricity and biofactor synergy for enhanced articular cartilage regeneration. J Mater Chem B 2024; 12:10416-10433. [PMID: 39291892 DOI: 10.1039/d4tb01319k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The inability of articular cartilage to self-repair following injuries frequently precipitates osteoarthritis, profoundly affecting patients' quality of life. Given the limitations inherent in current clinical interventions, an urgent need exists for more effective cartilage regeneration methodologies. Previous studies have underscored the potential of electrical stimulation in cartilage repair, thus motivating the investigation of innovative strategies. The present study introduces a three-dimensional scaffold fabricated through a composite technique that leverages the synergy between piezoelectricity and biofactors to enhance cartilage repair. This scaffold is composed of polylactic acid (PLLA) and barium titanate (BT) for piezoelectric stimulation and at the bottom with a collagen-coated layer infused with fibroblast growth factor-18 (FGF-18) for biofactor delivery. Designed to emulate the properties of natural cartilage, the scaffold enables controlled generation of piezoelectric charges and the sustained release of biofactors. In vitro tests confirm that the scaffold promotes chondrocyte proliferation, matrix hyperplasia, cellular migration, and the expression of genes associated with cartilage formation. Moreover, in vivo studies on rabbits have illustrated its efficacy in catalyzing the in situ regeneration of articular cartilage defects and remodeling the extracellular matrix. This innovative approach offers significant potential for enhancing cartilage repair and holds profound implications for regenerative medicine.
Collapse
Affiliation(s)
- Bowen Xie
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
- Air Force Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
| | - Hebin Ma
- Medical School of the PLA General Hospital, Beijing 100853, China
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Fengyuan Yang
- Graduate School of Medicine, China Medical University, Shenyang 110122, China
| | - Hongguang Chen
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Ya'nan Guo
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Hongxing Zhang
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Tengfei Li
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Xiaogang Huang
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of the PLA General Hospital, Beijing 100048, China.
| | - Xiaojie Li
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
| | - Junjie Du
- Department of Orthopedics, Air Force Medical Center, Beijing 100142, China.
- Air Force Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China.
- Graduate School of Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
9
|
Karjalainen VP, Herrera Millar VR, Modina S, Peretti GM, Pallaoro M, Elkhouly K, Saarakkala S, Mobasheri A, Di Giancamillo A, Finnilä MAJ. Age and anatomical region-related differences in vascularization of the porcine meniscus using microcomputed tomography imaging. J Orthop Res 2024; 42:2095-2105. [PMID: 38685793 DOI: 10.1002/jor.25862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Meniscal lesions in vascularized regions are known to regenerate while lack of vascular supply leads to poor healing. Here, we developed and validated a novel methodology for three-dimensional structural analysis of meniscal vascular structures with high-resolution microcomputed tomography (µCT). We collected porcine medial menisci from 10 neonatal (not-developed meniscus, n-) and 10 adults (fully developed meniscus, a-). The menisci were cut into anatomical regions (anterior horn (n-AH and a-AH), central body (n-CB and a-CB), and posterior horn (n-PH and a-PH). Specimens were cut in half, fixed, and one specimen underwent critical point drying and µCT imaging, while other specimen underwent immunohistochemistry and vascularity biomarker CD31 staining for validation of µCT. Parameters describing vascular structures were calculated from µCT. The vascular network in neonatal spread throughout meniscus, while in adult was limited to a few vessels in outer region, mostly on femoral side. n-AH, n-CB, and n-PH had 20, 17, and 11 times greater vascular volume fraction than adult, respectively. Moreover, thickness of blood vessels, in three regions, was six times higher in adults than in neonatal. a-PH appeared to have higher vascular fraction, longer and thicker blood vessels than both a-AH and a-CB. Overall, neonatal regions had a higher number of blood vessels, more branching, and higher tortuosity compared to adult regions. For the first time, critical point drying-based µCT imaging allowed detailed three-dimensional visualization and quantitative analysis of vascularized meniscal structures. We showed more vascularity in neonatal menisci, while adult menisci had fewer and thicker vascularity especially limited to the femoral surface.
Collapse
Affiliation(s)
- Ville-Pauli Karjalainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Silvia Modina
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Giuseppe M Peretti
- Tissue Engineering and Biomaterials Lab, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Khaled Elkhouly
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Mikko A J Finnilä
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
10
|
Gao Y, Wang J, Dai W, Li S, Zhao X, Fu W, Guo L, Fan Y, Zhang X. Collagen-based hydrogels induce stem cell chondrogenesis and hyaline cartilage regeneration: an in vivo study. Int J Biol Macromol 2024; 276:133818. [PMID: 39002909 DOI: 10.1016/j.ijbiomac.2024.133818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Injectable, self-crosslinking collagen-based hydrogels are beneficial for chondrocytes to secrete matrix, positioning them as promising candidates for cartilage tissue engineering. However, previous studies lacked insight into the ability of cell-free collagen-based hydrogels to regenerate hyaline cartilage defect. Therefore, this study aimed to evaluate the potential of collagen-based hydrogels (Col and ColHA) to induce chondrogenic differentiation of stem cells and in situ hyaline cartilage regeneration. Both Col and ColHA hydrogels self-crosslinked in situ and exhibited similar physical properties. In vitro experiments showed they supported the survival, adhesion, spreading, and proliferation of bone marrow stem cells (BMSCs). Moreover, both hydrogels induced ectopic differentiation of BMSCs into chondrocytes when implanted subcutaneously into the back of nude mice. ColHA hydrogel notably enhanced type II collagen secretion. The results of repairing cartilage defects in situ revealed both hydrogels facilitated hyaline cartilage regeneration and maintained cartilage phenotype without exogenous BMSCs. Hydrogels encapsulating BMSCs expedited cartilage repair, and ColHA/BMSC constructs showed better mechanical properties, suggesting their potential for cartilage repair applications. This study implies that collagen-based hydrogels are good candidates for hyaline cartilage regeneration.
Collapse
Affiliation(s)
- Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Wenling Dai
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Shikui Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Xingchen Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Weili Fu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| |
Collapse
|
11
|
Zhang Y, Huang W, Xiao H, Ruan S, Deng J. NGF-BMSC-SF/CS composites for repairing knee joint osteochondral defects in rabbits: evaluation of the repair effect and potential underlying mechanisms. J Orthop Surg Res 2024; 19:443. [PMID: 39075502 PMCID: PMC11285204 DOI: 10.1186/s13018-024-04801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND With the rapid growth of the ageing population, chronic diseases such as osteoarthritis have become one of the major diseases affecting the quality of life of elderly people. The main pathological manifestation of osteoarthritis is articular cartilage damage. Alleviating and repairing damaged cartilage has always been a challenge. The application of cartilage tissue engineering methods has shown promise for articular cartilage repair. Many studies have used cartilage tissue engineering methods to repair damaged cartilage and obtained good results, but these methods still cannot be used clinically. Therefore, this study aimed to investigate the effect of incorporating nerve growth factor (NGF) into a silk fibroin (SF)/chitosan (CS) scaffold containing bone marrow-derived mesenchymal stem cells (BMSCs) on the repair of articular cartilage defects in the knees of rabbits and to explore the possible underlying mechanism involved. MATERIALS AND METHODS Nerve growth factor-loaded sustained-release microspheres were prepared by a double emulsion solvent evaporation method. SF/CS scaffolds were prepared by vacuum drying and chemical crosslinking. BMSCs were isolated and cultured by density gradient centrifugation and adherent culture. NGF-SF/CS-BMSC composites were prepared and implanted into articular cartilage defects in the knees of rabbits. The repair of articular cartilage was assessed by gross observation, imaging and histological staining at different time points after surgery. The repair effect was evaluated by the International Cartilage Repair Society (ICRS) score and a modified Wakitani score. In vitro experiments were also performed to observe the effect of different concentrations of NGF on the proliferation and directional differentiation of BMSCs on the SF/CS scaffold. RESULTS In the repair of cartilage defects in rabbit knees, NGF-SF/CS-BMSCs resulted in higher ICRS scores and lower modified Wakitani scores. The in vitro results showed that there was no significant correlation between the proliferation of BMSCs and the addition of different concentrations of NGF. Additionally, there was no significant difference in the protein and mRNA expression of COL2a1 and ACAN between the groups after the addition of different concentrations of NGF. CONCLUSION NGF-SF/CS-BMSCs improved the repair of articular cartilage defects in the knees of rabbits. This repair effect may be related to the early promotion of subchondral bone repair.
Collapse
Affiliation(s)
- Yong Zhang
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi City, Guizhou Province, 563000, China
- The People's Hospital of Bozhou District, Zunyi City, Guizhou Province, 563000, China
| | - Wenliang Huang
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi City, Guizhou Province, 563000, China
| | - Hongli Xiao
- The First People's Hospital of Guiyang City, Guiyang, Guizhou Province, 550002, China
| | - Shiqiang Ruan
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi City, Guizhou Province, 563000, China
| | - Jiang Deng
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi City, Guizhou Province, 563000, China.
| |
Collapse
|
12
|
Nordberg RC, Bielajew BJ, Takahashi T, Dai S, Hu JC, Athanasiou KA. Recent advancements in cartilage tissue engineering innovation and translation. Nat Rev Rheumatol 2024; 20:323-346. [PMID: 38740860 PMCID: PMC11524031 DOI: 10.1038/s41584-024-01118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Articular cartilage was expected to be one of the first successfully engineered tissues, but today, cartilage repair products are few and they exhibit considerable limitations. For example, of the cell-based products that are available globally, only one is marketed for non-knee indications, none are indicated for severe osteoarthritis or rheumatoid arthritis, and only one is approved for marketing in the USA. However, advances in cartilage tissue engineering might now finally lead to the development of new cartilage repair products. To understand the potential in this field, it helps to consider the current landscape of tissue-engineered products for articular cartilage repair and particularly cell-based therapies. Advances relating to cell sources, bioactive stimuli and scaffold or scaffold-free approaches should now contribute to progress in therapeutic development. Engineering for an inflammatory environment is required because of the need for implants to withstand immune challenge within joints affected by osteoarthritis or rheumatoid arthritis. Bringing additional cartilage repair products to the market will require an understanding of the translational vector for their commercialization. Advances thus far can facilitate the future translation of engineered cartilage products to benefit the millions of patients who suffer from cartilage injuries and arthritides.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Takumi Takahashi
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Shuyan Dai
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
13
|
Hasson M, Fernandes LM, Solomon H, Pepper T, Huffman NL, Pucha SA, Bariteau JT, Kaiser JM, Patel JM. Considering the Cellular Landscape in Marrow Stimulation Techniques for Cartilage Repair. Cells Tissues Organs 2024; 213:523-537. [PMID: 38599194 PMCID: PMC11633897 DOI: 10.1159/000538530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Marrow stimulation is a common reparative approach to treat injuries to cartilage and other soft tissues (e.g., rotator cuff). It involves the recruitment of bone marrow elements and mesenchymal stem cells (MSCs) into the defect, theoretically initiating a regenerative process. However, the resulting repair tissue is often weak and susceptible to deterioration with time. The populations of cells at the marrow stimulation site (beyond MSCs), and their contribution to inflammation, vascularity, and fibrosis, may play a role in quality of the repair tissue. SUMMARY In this review, we accomplish three goals: (1) systematically review clinical trials on the augmentation of marrow stimulation and evaluate their assumptions on the biological elements recruited; (2) detail the cellular populations in bone marrow and their impact on healing; and (3) highlight emerging technologies and approaches that could better guide these specific cell populations towards enhanced cartilage or soft tissue formation. KEY MESSAGES We found that most clinical trials do not account for cell heterogeneity, nor do they specify the regenerative element recruited, and those that do typically utilize descriptions such as "clots," "elements," and "blood." Furthermore, our review of bone marrow cell populations demonstrates a dramatically heterogenous cell population, including hematopoietic cells, immune cells, fibroblasts, macrophages, and only a small population of MSCs. Finally, the field has developed numerous innovative techniques to enhance the chondrogenic potential (and reduce the anti-regenerative impacts) of these various cell types. We hope this review will guide approaches that account for cellular heterogeneity and improve marrow stimulation techniques to treat chondral defects.
Collapse
Affiliation(s)
- Maddie Hasson
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Hanna Solomon
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Tristan Pepper
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas L. Huffman
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Saitheja A. Pucha
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jason T. Bariteau
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jarred M. Kaiser
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jay M. Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| |
Collapse
|
14
|
Huang H, Hwang J, Anilkumar S, Kiick KL. Controlled Release of Drugs from Extracellular Matrix-Derived Peptide-Based Nanovesicles through Tailored Noncovalent Interactions. Biomacromolecules 2024; 25:2408-2422. [PMID: 38546162 PMCID: PMC11661555 DOI: 10.1021/acs.biomac.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Elastin-collagen nanovesicles (ECnV) have emerged as a promising platform for drug delivery due to their tunable physicochemical properties and biocompatibility. The potential of nine distinct ECnVs to serve as drug-delivery vehicles was investigated in this study, and it was demonstrated that various small-molecule cargo (e.g., dexamethasone, methotrexate, doxorubicin) can be encapsulated in and released from a set of ECnVs, with extents of loading and rates of release dictated by the composition of the elastin domain of the ECnV and the type of cargo. Elastin-like peptides (ELPs) and collagen-like peptides (CLPs) of various compositions were produced; the secondary structure of the corresponding peptides was determined using CD, and the morphology and average hydrodynamic diameter (∼100 nm) of the ECnVs were determined using TEM and DLS. It was observed that hydrophobic drugs exhibited slower release kinetics than hydrophilic drugs, but higher drug loading was achieved for the more hydrophilic Dox. The collagen-binding ability of the ECnVs was demonstrated through a 2D collagen-binding assay, suggesting the potential for longer retention times in collagen-enriched tissues or matrices. Sustained release of drugs for up to 7 days was observed and, taken together with the collagen-binding data, demonstrates the potential of this set of ECnVs as a versatile drug delivery vehicle for longer-term drug release of a variety of cargo. This study provides important insights into the drug delivery potential of ECnVs and offers useful information for future development of ECnV-based drug delivery systems for the treatment of various diseases.
Collapse
Affiliation(s)
- Haofu Huang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sudha Anilkumar
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Wen S, Huang X, Ma J, Zhao G, Ma T, Chen K, Huang G, Chen J, Shi J, Wang S. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front Bioeng Biotechnol 2024; 12:1331218. [PMID: 38576449 PMCID: PMC10993706 DOI: 10.3389/fbioe.2024.1331218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joint with irreversible cartilage damage as the main pathological feature. With the development of regenerative medicine, mesenchymal stem cells (MSCs) have been found to have strong therapeutic potential. However, intraarticular MSCs injection therapy is limited by economic costs and ethics. Exosomes derived from MSC (MSC-Exos), as the important intercellular communication mode of MSCs, contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. With excellent editability and specificity, MSC-Exos function as a targeted delivery system for OA treatment, modulating immunity, inhibiting apoptosis, and promoting regeneration. This article reviews the mechanism of action of MSC-Exos in the treatment of osteoarthritis, the current research status of the preparation of MSC-Exos and its application of drug delivery in OA therapy.
Collapse
Affiliation(s)
- Shuzhan Wen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingchun Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanglei Zhao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tiancong Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Kangming Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Gangyong Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqun Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Grzelak A, Hnydka A, Higuchi J, Michalak A, Tarczynska M, Gaweda K, Klimek K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int J Mol Sci 2024; 25:1525. [PMID: 38338805 PMCID: PMC10855389 DOI: 10.3390/ijms25031525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor β, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Aleksandra Hnydka
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Prymasa Tysiaclecia Avenue 98, 01-142 Warsaw, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland;
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| |
Collapse
|
17
|
Shen J, Song W, Liu J, Peng X, Tan Z, Xu Y, Liu S, Ren L. 3D bioprinting by reinforced bioink based on photocurable interpenetrating networks for cartilage tissue engineering. Int J Biol Macromol 2024; 254:127671. [PMID: 37884244 DOI: 10.1016/j.ijbiomac.2023.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cartilage has a limited ability to repair itself, highlighting the urgent need for suitable materials for cartilage regeneration. Achieving a balance between cell survival environment and hydrogel crosslinking density is crucial for photosensitive cell-laden cartilage repair materials to achieve both high strength and good cell viability. Here, an interpenetrating hydrogel consisted of methacrylate gelatin (GelMA) and glycidyl methacrylate silk fibroin (SG) was introduced. Compared to GelMA hydrogel, GelMA/SG had desired mechanical properties, with achieving up to 5 times of compression modulus and 6 times of compression failure energy. Meanwhile, the chondrocytes inside GelMA/SG exhibited great viability which was over 90 %. GelMA/SG as a bioink had favorable printability for digital light processing (DLP) bioprinting. The mesh DLP-printed scaffolds with high precision were created and GelMA/SG had a better shape retention ability than GelMA. Moreover, GelMA/SG cell-laden scaffolds had high strength while chondrocytes proliferated significantly in vitro culture. They were implanted under the skin of nude mice to evaluate ectopic chondrogenesis in vivo. The GelMA/SG cell-laden scaffolds indicated little deformation and high expression of collagen type II and glycosaminoglycans, which was advantageous for cartilage regeneration. The scaffold and its fabrication strategy provide potential solutions for clinical cartilage repair problems in the future.
Collapse
Affiliation(s)
- Jingjie Shen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Xiaoyun Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zhuhao Tan
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yingni Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Jeyaraman M, Nallakumarasamy A, Jeyaraman N, Ramasubramanian S. Tissue engineering in chondral defect. COMPUTATIONAL BIOLOGY FOR STEM CELL RESEARCH 2024:361-378. [DOI: 10.1016/b978-0-443-13222-3.00033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Luo Z, Xie J, Ye H, Zhang J, Liu Y, Ma C, Cao J, Pan H, Liu X, Zhou X, Kong J, Chen D, Liu A. Novel-miR-81 Promotes the Chondrocytes Differentiation of Bone Marrow Mesenchymal Stem Cells Through Inhibiting Rac2 Expression. Cartilage 2023:19476035231207778. [PMID: 37997349 DOI: 10.1177/19476035231207778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) play a key role in the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes. Our previous study found that novel-miR-81 can relieve osteoarthritis, but its role in chondrogenic differentiation of BMSCs remains unclear. The purpose of this study was to explore the role of novel-miR-81 in chondrogenic differentiation of BMSCs. METHODS We used a model in which transforming growth factor (TGF)-β3-induced BMSCs differentiation into chondrocytes. We detected the expression Sox9, Collagen Ⅱ, Aggrecan, novel-miR-81, and Rac2 by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blot was performed to detect the expression of Sox9, Collagen Ⅱ, and Rac2. Dual-luciferase reporter gene assay confirmed that the association between novel-miR-81 and Rac2. In addition, the ectopic chondrocyte differentiation of BMSCs was performed subcutaneously in nude mice. The effect of novel-miR-81 and Rac2 on ectopic chondrogenic differentiation of BMSCs was determined by immunohistochemical staining. RESULTS Novel-miR-81 upregulated in chondrogenic differentiation of BMSCs. Rac2 was a key target of novel-miR-81. Mimic novel-miR-81 and siRac2 upregulated the expression of Sox9, Collagen Ⅱ, and Aggrecan. CONCLUSION Novel-miR-81 promotes the chondrocytes differentiation of BMSCs by inhibiting the expression of target gene Rac2, which provides potential targets for BMSCs transplantation to repair cartilage defects.
Collapse
Affiliation(s)
- Ziwei Luo
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P.R. China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jinqi Xie
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Haoxiang Ye
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jie Zhang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yangping Liu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P.R. China
| | - Chunmei Ma
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jiahui Cao
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Hao Pan
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Xiaosheng Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Xianxi Zhou
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jiechen Kong
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Dongfeng Chen
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Aijun Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
20
|
Gao L, Beninatto R, Oláh T, Goebel L, Tao K, Roels R, Schrenker S, Glomm J, Venkatesan JK, Schmitt G, Sahin E, Dahhan O, Pavan M, Barbera C, Lucia AD, Menger MD, Laschke MW, Cucchiarini M, Galesso D, Madry H. A Photopolymerizable Biocompatible Hyaluronic Acid Hydrogel Promotes Early Articular Cartilage Repair in a Minipig Model In Vivo. Adv Healthc Mater 2023; 12:e2300931. [PMID: 37567219 PMCID: PMC11468502 DOI: 10.1002/adhm.202300931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Articular cartilage defects represent an unsolved clinical challenge. Photopolymerizable hydrogels are attractive candidates supporting repair. This study investigates the short-term safety and efficacy of two novel hyaluronic acid (HA)-triethylene glycol (TEG)-coumarin hydrogels photocrosslinked in situ in a clinically relevant large animal model. It is hypothesized that HA-hydrogel-augmented microfracture (MFX) is superior to MFX in enhancing early cartilage repair, and that the molar degree of substitution and concentration of HA affects repair. Chondral full-thickness defects in the knees of adult minipigs are treated with either 1) debridement (No MFX), 2) debridement and MFX, 3) debridement, MFX, and HA hydrogel (30% molar derivatization, 30 mg mL-1 HA; F3) (MFX+F3), and 4) debridement, MFX, and HA hydrogel (40% molar derivatization, 20 mg mL-1 HA; F4) (MFX+F4). After 8 weeks postoperatively, MFX+F3 significantly improves total macroscopic and histological scores compared with all other groups without negative effects, besides significantly enhancing the individual repair parameters "defect architecture," "repair tissue surface" (compared with No MFX, MFX), and "subchondral bone" (compared with MFX). These data indicate that photopolymerizable HA hydrogels enable a favorable metastable microenvironment promoting early chondrogenesis in vivo. This work also uncovers a mechanism for effective HA-augmented cartilage repair by combining lower molar derivatization with higher concentrations.
Collapse
Affiliation(s)
- Liang Gao
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Riccardo Beninatto
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Tamás Oláh
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Lars Goebel
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ke Tao
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Rebecca Roels
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Steffen Schrenker
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Julianne Glomm
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Gertrud Schmitt
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ebrar Sahin
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Ola Dahhan
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Mauro Pavan
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Alba Di Lucia
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland UniversityKirrberger Straße 100, Building 65 and 66D‐66421HomburgGermany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland UniversityKirrberger Straße 100, Building 65 and 66D‐66421HomburgGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| | - Devis Galesso
- Fidia Farmaceutici S.p.A.Via Ponte della Fabbrica 3/AAbano Terme (PD)35031Italy
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland UniversityKirrberger Straße 100, Building 37D‐66421HomburgGermany
| |
Collapse
|
21
|
Li J, Li X, Zhou S, Wang Y, Ying T, Wang Q, Wu Y, Zhao F. Circular RNA circARPC1B functions as a stabilisation enhancer of Vimentin to prevent high cholesterol-induced articular cartilage degeneration. Clin Transl Med 2023; 13:e1415. [PMID: 37740460 PMCID: PMC10517209 DOI: 10.1002/ctm2.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent and debilitating condition, that is, directly associated with cholesterol metabolism. Nevertheless, the molecular mechanisms of OA remain largely unknown, and the role of cholesterol in this process has not been thoroughly investigated. This study aimed to investigate the role of a novel circular RNA, circARPC1B in the relationship between cholesterol and OA progression. METHODS We measured total cholesterol (TC) levels in the synovial fluid of patients with or without OA to determine the diagnostic role of cholesterol in OA. The effects of cholesterol were explored in human and mouse chondrocytes in vitro. An in vivo OA model was also established in mice fed a high-cholesterol diet (HCD) to explore the role of cholesterol in OA. RNAseq analysis was used to study the influence of cholesterol on circRNAs in chondrocytes. The role of circARPC1B in the OA development was verified through circARPC1B overexpression and knockdown. Additionally, RNA pulldown assays and RNA binding protein immunoprecipitation were used to determine the interaction between circARPC1B and Vimentin. CircARPC1B adeno-associated virus (AAV) was used to determine the role of circARPC1B in cholesterol-induced OA. RESULTS TC levels in synovial fluid of OA patients were found to be elevated and exhibited high sensitivity and specificity as predictors of OA diagnosis. Moreover, elevated cholesterol accelerated OA progression. CircARPC1B was downregulated in chondrocytes treated with cholesterol and played a crucial role in preserving the extracellular matrix (ECM). Mechanistically, circARPC1B is competitively bound to the E3 ligase synoviolin 1 (SYVN1) binding site on Vimentin, inhibiting the proteasomal degradation of Vimentin. Furthermore, circARPC1B AAV infection alleviates Vimentin degradation and OA progression caused by high cholesterol. CONCLUSIONS These findings indicate that the cholesterol-circARPC1B-Vimentin axis plays a crucial role in OA progression, and circARPC1B gene therapy has the opportunity to provide a potential therapeutic approach for OA.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tiantian Ying
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Quan Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of MedicineHangzhouChina
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
22
|
Yang X, Li X, Wu Z, Cao L. Photocrosslinked methacrylated natural macromolecular hydrogels for tissue engineering: A review. Int J Biol Macromol 2023; 246:125570. [PMID: 37369259 DOI: 10.1016/j.ijbiomac.2023.125570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
A hydrogel is a three-dimensional (3D) network structure formed through polymer crosslinking, and these have emerged as a popular research topic in recent years. Hydrogel crosslinking can be classified as physical, chemical, or enzymatic, and photocrosslinking is a branch of chemical crosslinking. Compared with other methods, photocrosslinking can control the hydrogel crosslinking initiation, crosslinking time, and crosslinking strength using light. Owing to these properties, photocrosslinked hydrogels have important research prospects in tissue engineering, in situ gel formation, 3D bioprinting, and drug delivery. Methacrylic anhydride modification is a common method for imparting photocrosslinking properties to polymers, and graft-substituted polymers can be photocrosslinked under UV irradiation. In this review, we first introduce the characteristics of common natural polysaccharide- and protein-based hydrogels and the processes used for methacrylate group modification. Next, we discuss the applications of methacrylated natural hydrogels in tissue engineering. Finally, we summarize and discuss existing methacrylated natural hydrogels in terms of limitations and future developments. We expect that this review will help researchers in this field to better understand the synthesis of methacrylate-modified natural hydrogels and their applications in tissue engineering.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Histology and Embryology, Fuzhou Medical College of Nanchang University, Fuzhou 344000, PR China
| | - Xiaojing Li
- Department of Histology and Embryology, Fuzhou Medical College of Nanchang University, Fuzhou 344000, PR China
| | - Zhaoping Wu
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, PR China
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, PR China.
| |
Collapse
|
23
|
Zhou L, Xu J, Schwab A, Tong W, Xu J, Zheng L, Li Y, Li Z, Xu S, Chen Z, Zou L, Zhao X, van Osch GJ, Wen C, Qin L. Engineered biochemical cues of regenerative biomaterials to enhance endogenous stem/progenitor cells (ESPCs)-mediated articular cartilage repair. Bioact Mater 2023; 26:490-512. [PMID: 37304336 PMCID: PMC10248882 DOI: 10.1016/j.bioactmat.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 06/13/2023] Open
Abstract
As a highly specialized shock-absorbing connective tissue, articular cartilage (AC) has very limited self-repair capacity after traumatic injuries, posing a heavy socioeconomic burden. Common clinical therapies for small- to medium-size focal AC defects are well-developed endogenous repair and cell-based strategies, including microfracture, mosaicplasty, autologous chondrocyte implantation (ACI), and matrix-induced ACI (MACI). However, these treatments frequently result in mechanically inferior fibrocartilage, low cost-effectiveness, donor site morbidity, and short-term durability. It prompts an urgent need for innovative approaches to pattern a pro-regenerative microenvironment and yield hyaline-like cartilage with similar biomechanical and biochemical properties as healthy native AC. Acellular regenerative biomaterials can create a favorable local environment for AC repair without causing relevant regulatory and scientific concerns from cell-based treatments. A deeper understanding of the mechanism of endogenous cartilage healing is furthering the (bio)design and application of these scaffolds. Currently, the utilization of regenerative biomaterials to magnify the repairing effect of joint-resident endogenous stem/progenitor cells (ESPCs) presents an evolving improvement for cartilage repair. This review starts by briefly summarizing the current understanding of endogenous AC repair and the vital roles of ESPCs and chemoattractants for cartilage regeneration. Then several intrinsic hurdles for regenerative biomaterials-based AC repair are discussed. The recent advances in novel (bio)design and application regarding regenerative biomaterials with favorable biochemical cues to provide an instructive extracellular microenvironment and to guide the ESPCs (e.g. adhesion, migration, proliferation, differentiation, matrix production, and remodeling) for cartilage repair are summarized. Finally, this review outlines the future directions of engineering the next-generation regenerative biomaterials toward ultimate clinical translation.
Collapse
Affiliation(s)
- Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Jietao Xu
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Andrea Schwab
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences - CRMH, 999077, Hong Kong SAR, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Zhuo Li
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Li Zou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Xin Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), 2600 AA, Delft, the Netherlands
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, 518000, Shenzhen, China
| |
Collapse
|
24
|
Köck H, Striegl B, Kraus A, Zborilova M, Christiansen S, Schäfer N, Grässel S, Hornberger H. In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes. Bioengineering (Basel) 2023; 10:767. [PMID: 37508794 PMCID: PMC10376441 DOI: 10.3390/bioengineering10070767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and structural damage in all joint tissues. Given the limited regenerative capacity of articular cartilage, methods to support the native structural properties of articular cartilage are highly anticipated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-cartilage explants to replace lost proteoglycans. The study included polymerization and deposition of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated that zwitterionic cartilage-hydrogel networks are formed by infiltration. In general, cytotoxic effects of the monomer solutions were observed, as was a time-dependent infiltration behavior into the tissue accompanied by increasing cell death and penetration depth. The successful deposition of zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface, instead of complete infiltration. An alternative treatment option for focal cartilage defects could be the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based monomer solution, as bionic for cell-based 3D bioprintable hydrogels.
Collapse
Affiliation(s)
- Hannah Köck
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Birgit Striegl
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Annalena Kraus
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Magdalena Zborilova
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Helga Hornberger
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Galarraga JH, Zlotnick HM, Locke RC, Gupta S, Fogarty NL, Masada KM, Stoeckl BD, Laforest L, Castilho M, Malda J, Levato R, Carey JL, Mauck RL, Burdick JA. Evaluation of surgical fixation methods for the implantation of melt electrowriting-reinforced hyaluronic acid hydrogel composites in porcine cartilage defects. Int J Bioprint 2023; 9:775. [PMID: 37457945 PMCID: PMC10339416 DOI: 10.18063/ijb.775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/11/2023] [Indexed: 07/18/2023] Open
Abstract
The surgical repair of articular cartilage remains an ongoing challenge in orthopedics. Tissue engineering is a promising approach to treat cartilage defects; however, scaffolds must (i) possess the requisite material properties to support neocartilage formation, (ii) exhibit sufficient mechanical integrity for handling during implantation, and (iii) be reliably fixed within cartilage defects during surgery. In this study, we demonstrate the reinforcement of soft norbornene-modified hyaluronic acid (NorHA) hydrogels via the melt electrowriting (MEW) of polycaprolactone to fabricate composite scaffolds that support encapsulated porcine mesenchymal stromal cell (pMSC, three donors) chondrogenesis and cartilage formation and exhibit mechanical properties suitable for handling during implantation. Thereafter, acellular MEW-NorHA composites or MEW-NorHA composites with encapsulated pMSCs and precultured for 28 days were implanted in full-thickness cartilage defects in porcine knees using either bioresorbable pins or fibrin glue to assess surgical fixation methods. Fixation of composites with either biodegradable pins or fibrin glue ensured implant retention in most cases (80%); however, defects treated with pinned composites exhibited more subchondral bone remodeling and inferior cartilage repair, as evidenced by micro-computed tomography (micro-CT) and safranin O/fast green staining, respectively, when compared to defects treated with glued composites. Interestingly, no differences in repair tissue were observed between acellular and cellularized implants. Additional work is required to assess the full potential of these scaffolds for cartilage repair. However, these results suggest that future approaches for cartilage repair with MEW-reinforced hydrogels should be carefully evaluated with regard to their fixation approach for construct retention and surrounding cartilage tissue damage.
Collapse
Affiliation(s)
- Jonathan H. Galarraga
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah M. Zlotnick
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan C. Locke
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Sachin Gupta
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie L. Fogarty
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendall M. Masada
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Brendan D. Stoeckl
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorielle Laforest
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center—Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center—Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center—Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - James L. Carey
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| |
Collapse
|
26
|
Sahin N, Yesil H. Regenerative methods in osteoarthritis. Best Pract Res Clin Rheumatol 2023; 37:101824. [PMID: 37244803 DOI: 10.1016/j.berh.2023.101824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/29/2023]
Abstract
Osteoarthritis (OA) is the most common type of arthritis that can affect all joint structures. The primary goals of osteoarthritis treatment are to alleviate pain, reduce functional limitations, and improve quality of life. Despite its high prevalence, treatment options for osteoarthritis are limited, with most therapeutic approaches focusing on symptom management. Tissue engineering and regenerative strategies based on biomaterials, cells, and other bioactive molecules have emerged as viable options for osteoarthritis cartilage repair. Platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) are the most commonly used regenerative therapies today to protect, restore, or increase the function of damaged tissues. Despite promising results, there is conflicting evidence regarding the efficacy of regenerative therapies, and their efficacy remains unknown. The data suggest that more research and standardization are required for the use of these therapies in osteoarthritis. This article provides an overview of the application of MSCs and PRP applications.
Collapse
Affiliation(s)
- Nilay Sahin
- Balikesir University, Faculty of Medicine, Physical Medicine and Rehabilitation Department, Balıkesir, Turkey.
| | - Hilal Yesil
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Physical Medicine and Rehabilitation Department, Afyon, Turkey.
| |
Collapse
|
27
|
Baei P, Daemi H, Aramesh F, Baharvand H, Eslaminejad MB. Advances in mechanically robust and biomimetic polysaccharide-based constructs for cartilage tissue engineering. Carbohydr Polym 2023; 308:120650. [PMID: 36813342 DOI: 10.1016/j.carbpol.2023.120650] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The purpose of cartilage tissue engineering is to provide artificial constructs with biological functions and mechanical features that resemble native tissue to improve tissue regeneration. Biochemical characteristics of the cartilage extracellular matrix (ECM) microenvironment provide a platform for researchers to develop biomimetic materials for optimal tissue repair. Due to the structural similarity of polysaccharides into physicochemical characteristics of cartilage ECM, these natural polymers capture special attention for developing biomimetic materials. The mechanical properties of constructs play a crucial influence in load-bearing cartilage tissues. Moreover, the addition of appropriate bioactive molecules to these constructs can promote chondrogenesis. Here, we discuss polysaccharide-based constructs that can be used to create substitutes for cartilage regeneration. We intend to focus on newly developed bioinspired materials, fine-tuning the mechanical properties of constructs, the design of carriers loaded by chondroinductive agents, and development of appropriate bioinks as a bioprinting approach for cartilage regeneration.
Collapse
Affiliation(s)
- Payam Baei
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran, Iran.
| | - Fatemeh Aramesh
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University ofTehran, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
28
|
Yuan X, Wan J, Yang Y, Huang L, Zhou C, Su J, Hua S, Pu H, Zou Y, Zhu H, Jiang X, Xiao J. Thermosensitive hydrogel for cartilage regeneration via synergistic delivery of SDF-1α like polypeptides and kartogenin. Carbohydr Polym 2023; 304:120492. [PMID: 36641179 DOI: 10.1016/j.carbpol.2022.120492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022]
Abstract
Regeneration of injured articular cartilage is limited by low early-stage recruitment of stem cells and insufficient chondrogenic differentiation. Hydrogels are widely used to repair cartilage because they have excellent mechanical and biological properties. In this study, a dual drug-loaded thermosensitive hydroxypropyl chitin hydrogel (HPCH) system was prepared to release stromal-derived factor-1α-like polypeptides (SDFP) and kartogenin (KGN) for stem-cell recruitment and chondrogenic differentiation. The hydrogel had a network structure that promoted cell growth and nutrient exchange. Moreover, it was temperature sensitive and suitable for filling irregular defects. The system showed good biocompatibility in vitro and promoted stem-cell recruitment and chondrogenic differentiation. Furthermore, it reduced chondrocyte catabolism under inflammatory conditions. Animal experiments demonstrated that the dual-drug hydrogel systems can promote the regeneration of articular cartilage in rats. This study confirmed that an HPCH system loaded with KGN and SDFP could effectively repair articular cartilage defects and represents a viable treatment strategy.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junlai Wan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Chuankun Zhou
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan 430074, China
| | - Shuaibin Hua
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan 430074, China
| | - Hongxu Pu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zou
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Zhu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
29
|
Gu Z, Wang J, Fu Y, Pan H, He H, Gan Q, Liu C. Smart Biomaterials for Articular Cartilage Repair and Regeneration. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202212561] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage defects bring about disability and worldwide socioeconomic loss, therefore, articular cartilage repair and regeneration is recognized as a global issue. However, due to its avascular and nearly acellular characteristic, cartilage tissue regeneration ability is limited to some extent. Despite the availability of various treatment methods, including palliative drugs and surgical regenerative therapy, articular cartilage repair and regeneration still face major challenges due to the lack of appropriate methods and materials. Smart biomaterials can regulate cell behavior and provide excellent tissue repair and regeneration microenvironment, thus inducing articular cartilage repair and regeneration. This process is adjusted by controlling drug/bioactive factors release via responding to exogenous/endogenous stimuli, tailoring materials’ structure and function similar to native cartilage or providing physiochemical and physical signaling factors. Herein, smart biomaterials, recently applied in articular cartilage repair and regeneration, are elaborated from two aspects: smart drug release system and smart scaffolds. Furthermore, articular cartilage and its defects and advanced manufacturing techniques of smart biomaterials are discussed in brief. Finally, perspectives for smart biomaterials used in articular cartilage repair and regeneration are presented and the clinical translation of smart biomaterials is emphasized.
Collapse
Affiliation(s)
- Zhanghao Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics Tongji University Zhangwu Road 100 Shanghai 200092 P. R. China
| | - Hao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
30
|
Huang H, Lin Y, Jiang Y, Yao Q, Chen R, Zhao YZ, Kou L. Recombinant protein drugs-based intra articular drug delivery systems for osteoarthritis therapy. Eur J Pharm Biopharm 2023; 183:33-46. [PMID: 36563886 DOI: 10.1016/j.ejpb.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease. It weakens the motor function of patients and imposes a significant economic burden on society. The current medications commonly used in clinical practice do not meet the need for the treatment of OA. Recombinant protein drugs (RPDs) can treat OA by inhibiting inflammatory pathways, regulating catabolism/anabolism, and promoting cartilage repair, thereby showing promise as disease-modifying OA drugs (DMOADs). However, the rapid clearance and short half-life of them in the articular cavity limit their clinical translation. Therefore, the reliable drug delivery systems for extending drug treatment are necessary for the further development. This review introduces RPDs with therapeutic potential for OA, and summarizes their research progress on related drug delivery systems, and make proper discussion on the certain keys for optimal development of this area.
Collapse
Affiliation(s)
- Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujie Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Yiling Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China; Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou 325027, China.
| |
Collapse
|
31
|
Guo X, Xi L, Yu M, Fan Z, Wang W, Ju A, Liang Z, Zhou G, Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J Tissue Eng 2023; 14:20417314231164765. [PMID: 37025158 PMCID: PMC10071204 DOI: 10.1177/20417314231164765] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Articular cartilage (AC), a bone-to-bone protective device made of up to 80% water and populated by only one cell type (i.e. chondrocyte), has limited capacity for regeneration and self-repair after being damaged because of its low cell density, alymphatic and avascular nature. Resulting repair of cartilage defects, such as osteoarthritis (OA), is highly challenging in clinical treatment. Fortunately, the development of tissue engineering provides a promising method for growing cells in cartilage regeneration and repair by using hydrogels or the porous scaffolds. In this paper, we review the therapeutic strategies for AC defects, including current treatment methods, engineering/regenerative strategies, recent advances in biomaterials, and present emphasize on the perspectives of gene regulation and therapy of noncoding RNAs (ncRNAs), such as circular RNA (circRNA) and microRNA (miRNA).
Collapse
Affiliation(s)
- Xueqiang Guo
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Lingling Xi
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Weiyun Wang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Andong Ju
- Abdominal Surgical Oncology, Xinxiang
Central Hospital, Institute of the Fourth Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Guangdong Zhou, Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639
Shanghai Manufacturing Bureau Road, Shanghai 200011, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Wenjie Ren, Institute of Regenerative
Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical
University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China.
| |
Collapse
|
32
|
Sun D, Liu X, Xu L, Meng Y, Kang H, Li Z. Advances in the Treatment of Partial-Thickness Cartilage Defect. Int J Nanomedicine 2022; 17:6275-6287. [PMID: 36536940 PMCID: PMC9758915 DOI: 10.2147/ijn.s382737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/23/2022] [Indexed: 04/17/2024] Open
Abstract
Partial-thickness cartilage defects (PTCDs) of the articular surface is the most common problem in cartilage degeneration, and also one of the main pathogenesis of osteoarthritis (OA). Due to the lack of a clear diagnosis, the symptoms are often more severe when full-thickness cartilage defect (FTCDs) is present. In contrast to FTCDs and osteochondral defects (OCDs), PTCDs does not injure the subchondral bone, there is no blood supply and bone marrow exudation, and the nearby microenvironment is unsuitable for stem cells adhesion, which completely loses the ability of self-repair. Some clinical studies have shown that partial-thickness cartilage defects is as harmful as full-thickness cartilage defects. Due to the poor effect of conservative treatment, the destructive surgical treatment is not suitable for the treatment of partial-thickness cartilage defects, and the current tissue engineering strategies are not effective, so it is urgent to develop novel strategies or treatment methods to repair PTCDs. In recent years, with the interdisciplinary development of bioscience, mechanics, material science and engineering, many discoveries have been made in the repair of PTCDs. This article reviews the current status and research progress in the treatment of PTCDs from the aspects of diagnosis and modeling of PTCDs, drug therapy, tissue transplantation repair technology and tissue engineering ("bottom-up").
Collapse
Affiliation(s)
- Daming Sun
- Wuhan Sports University, Wuhan, People’s Republic of China
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xiangzhong Liu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Liangliang Xu
- Wuhan Sports University, Wuhan, People’s Republic of China
| | - Yi Meng
- Wuhan Sports University, Wuhan, People’s Republic of China
| | - Haifei Kang
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People’s Republic of China
| | - Zhanghua Li
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
33
|
Combinatorial Effect of Mesenchymal Stem Cells and Extracellular Vesicles in a Hydrogel on Cartilage Regeneration. Tissue Eng Regen Med 2022; 20:143-154. [PMID: 36482140 PMCID: PMC9852407 DOI: 10.1007/s13770-022-00509-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are used for tissue regeneration due to their wide differentiation capacity and anti-inflammatory effects. Extracellular vesicles (EVs) derived from MSCs are also known for their regenerative effects as they contain nucleic acids, proteins, lipids, and cytokines similar to those of parental cells. There are several studies on the use of MSCs or EVs for tissue regeneration. However, the combinatorial effect of human MSCs (hMSCs) and EVs is not clear. In this study, we investigated the combinatorial effect of hMSCs and EVs on cartilage regeneration via co-encapsulation in a hyaluronic-acid (HA)-based hydrogel. METHODS A methacrylic-acid-based HA hydrogel was prepared to encapsulate hMSCs and EVs in hydrogels. Through in vitro and in vivo analyses, we investigated the chondrogenic potential of the HA hydrogel-encapsulated with hMSCs and EVs. RESULTS Co-encapsulation of hMSCs with EVs in the HA hydrogel increased the chondrogenic differentiation of hMSCs and regeneration of damaged cartilage tissue compared with that of the HA hydrogel loaded with hMSCs only. CONCLUSION Co-encapsulation of hMSCs and EVs in the HA hydrogel effectively enhances cartilage tissue regeneration due to the combinatorial therapeutic effect of hMSCs and EVs. Thus, in addition to cartilage tissue regeneration for the treatment of osteoarthritis, this approach would be a useful strategy to improve other types of tissue regeneration.
Collapse
|
34
|
Kowalski MA, Fernandes LM, Hammond KE, Labib S, Drissi H, Patel JM. Cartilage-penetrating hyaluronic acid hydrogel preserves tissue content and reduces chondrocyte catabolism. J Tissue Eng Regen Med 2022; 16:1138-1148. [PMID: 36178309 DOI: 10.1002/term.3352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2023]
Abstract
Articular cartilage injuries have a limited healing capacity and, due to inflammatory and catabolic activities, often experience progressive degeneration towards osteoarthritis. Current repair techniques generally provide short-term symptomatic relief; however, the regeneration of hyaline cartilage remains elusive, leaving both the repair tissue and surrounding healthy tissue susceptible to long-term wear. Therefore, methods to preserve cartilage following injury, especially from matrix loss and catabolism, are needed to delay, or even prevent, the deteriorative process. The goal of this study was to develop and evaluate a cartilage-penetrating hyaluronic-acid (HA) hydrogel to improve damaged cartilage biomechanics and prevent tissue degeneration. At time zero, the HA-based hydrogel provided a 46.5% increase in compressive modulus and a decrease in permeability after simulated degeneration of explants (collagenase application). Next, in a degenerative culture model (interleukin-1β [IL-1β] for 2 weeks), hydrogel application prior to or midway through the culture mitigated detrimental changes to compressive modulus and permeability observed in non-treated explants. Furthermore, localized loss of proteoglycan was observed in degenerative culture conditions alone (non-treated), but hydrogel administration significantly improved the retention of matrix elements. Finally, NITEGE staining and gene expression analysis showed the ability of the HA gel to decrease chondrocyte catabolic activity. These results highlight the importance of reinforcing damaged cartilage with a biomaterial system to both preserve tissue content and reduce catabolism associated with injury and inflammation.
Collapse
Affiliation(s)
- Michael A Kowalski
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lorenzo M Fernandes
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kyle E Hammond
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sameh Labib
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hicham Drissi
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jay M Patel
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Miguel F, Barbosa F, Ferreira FC, Silva JC. Electrically Conductive Hydrogels for Articular Cartilage Tissue Engineering. Gels 2022; 8:710. [PMID: 36354618 PMCID: PMC9689960 DOI: 10.3390/gels8110710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 09/10/2023] Open
Abstract
Articular cartilage is a highly specialized tissue found in diarthrodial joints, which is crucial for healthy articular motion. Despite its importance, articular cartilage has limited regenerative capacities, and the degeneration of this tissue is a leading cause of disability worldwide, with hundreds of millions of people affected. As current treatment options for cartilage degeneration remain ineffective, tissue engineering has emerged as an exciting approach to create cartilage substitutes. In particular, hydrogels seem to be suitable candidates for this purpose due to their biocompatibility and high customizability, being able to be tailored to fit the biophysical properties of native cartilage. Furthermore, these hydrogel matrices can be combined with conductive materials in order to simulate the natural electrochemical properties of articular cartilage. In this review, we highlight the most common conductive materials combined with hydrogels and their diverse applications, and then present the current state of research on the development of electrically conductive hydrogels for cartilage tissue engineering. Finally, the main challenges and future perspectives for the application of electrically conductive hydrogels on articular cartilage repair strategies are also discussed.
Collapse
Affiliation(s)
- Filipe Miguel
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Barbosa
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Carlos Silva
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
36
|
Jalageri MB, Mohan Kumar GC. Hydroxyapatite Reinforced Polyvinyl Alcohol/Polyvinyl Pyrrolidone Based Hydrogel for Cartilage Replacement. Gels 2022; 8:gels8090555. [PMID: 36135266 PMCID: PMC9498870 DOI: 10.3390/gels8090555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
Polyvinyl alcohol (PVA) and Polyvinyl Pyrrolidone (PVP) hydrogels are desirable biomaterials for soft tissue repair and replacement. However, the bio-inertness and poor cell adhesive potency of the PVA and PVP hinder the wide range of biomedical applications. In the present work, PVA and PVP were blended with a one-dimensional hydroxyapatite nanorod (HNr), and PVA/PVP/HNr composite hydrogel was synthesized by the freeze-thaw process. The developed hydrogels were characterized by Scanning Electron Microscope (SEM). The bio-ceramic nanohydroxyapatite content was optimized, and it was found that reinforcement improves mechanical strength as well as bioactivity. The compression strength values are 2.47 ± 0.73 MPa for the composite having 2 wt% of nanohydroxyapatite. The storage modulus was much higher than the loss modulus, which signifies the elastic dominancy similar to cartilage. Besides, the antimicrobial activity of nanohydroxyapatite reinforced PVA hydrogel towards bacterial species, Escherichia coli (E. Coli), Staphylococcus aureus (S. aureus) was satisfactory, and the in vitro biocompatibility response towards Human Mesenchymal stem cells(hMSC) after 72 h of culture confirms nanohydroxyapatite reinforced PVA/PVP hydrogels are the promising alternatives for next-generation cartilage substitutes.
Collapse
|
37
|
A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydr Polym 2022; 292:119667. [DOI: 10.1016/j.carbpol.2022.119667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
38
|
Muthuchamy M, Subramanian K, Padhiar C, Dhanraj AK, Desireddy S. Feasibility study on intact human umbilical cord Wharton's jelly as a scaffold for human autologous chondrocyte: In-vitro study. Int J Artif Organs 2022; 45:936-944. [PMID: 35982588 DOI: 10.1177/03913988221118102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Placental tissue is an established biomaterial used in many clinical applications. However, its use for tissue engineering purposes has not been fully realized. Though articular cartilage extracellular matrix (ECM)-derived oriented scaffolds for cartilage tissue engineering were developed, resources are a hindrance to its application. In this regard, the present study investigated the feasibility of using intact decellularized human umbilical cord Wharton's jelly (hUC-WJ) as a new material for chondrocyte carrier in cartilage tissue engineering. The developed hUC-WJ scaffold provides a good microenvironment for the attachment, viability, and delivery of seeded human autologous chondrocytes. It has an advantage over other biomaterials in terms of abundant availability and similar biochemistry to cartilage ECM. MATERIALS AND METHODS hUC-WJ obtained from fresh human placenta were decellularized and gamma sterilized. Human cartilage tissue was obtained from the patients with a total knee replacement. The chondrocytes were isolated and expanded in-vitro and seeded onto the hUC-WJ scaffold. The efficiency of the decellularized tissue as a delivery system for human cartilage cells was investigated by histology, immunohistochemistry, cell count, flow cytometry, and scanning electron microscopy (SEM). RESULTS The results showed that the decellularized hUC-WJ scaffold has supported the microenvironment for chondrocyte attachment and viability without losing its phenotype. In addition, the cells were spread through the hUC-WJ scaffold as confirmed by histology and SEM. CONCLUSION Based on obtained results, the hUC-WJ scaffold has great potential as a 3D scaffold for human autologous chondrocyte carriers in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Muthuraman Muthuchamy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.,LifeCell International Private Limited, Chennai, Tamil Nadu, India
| | - Kumaran Subramanian
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.,Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Chirayu Padhiar
- LifeCell International Private Limited, Chennai, Tamil Nadu, India
| | | | - Swathi Desireddy
- LifeCell International Private Limited, Chennai, Tamil Nadu, India
| |
Collapse
|
39
|
Li T, Peng J, Li Q, Shu Y, Zhu P, Hao L. The Mechanism and Role of ADAMTS Protein Family in Osteoarthritis. Biomolecules 2022; 12:biom12070959. [PMID: 35883515 PMCID: PMC9313267 DOI: 10.3390/biom12070959] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Osteoarthritis (OA) is a principal cause of aches and disability worldwide. It is characterized by the inflammation of the bone leading to degeneration and loss of cartilage function. Factors, including diet, age, and obesity, impact and/or lead to osteoarthritis. In the past few years, OA has received considerable scholarly attention owing to its increasing prevalence, resulting in a cumbersome burden. At present, most of the interventions only relieve short-term symptoms, and some treatments and drugs can aggravate the disease in the long run. There is a pressing need to address the safety problems due to osteoarthritis. A disintegrin-like and metalloprotease domain with thrombospondin type 1 repeats (ADAMTS) metalloproteinase is a kind of secretory zinc endopeptidase, comprising 19 kinds of zinc endopeptidases. ADAMTS has been implicated in several human diseases, including OA. For example, aggrecanases, ADAMTS-4 and ADAMTS-5, participate in the cleavage of aggrecan in the extracellular matrix (ECM); ADAMTS-7 and ADAMTS-12 participate in the fission of Cartilage Oligomeric Matrix Protein (COMP) into COMP lyase, and ADAMTS-2, ADAMTS-3, and ADAMTS-14 promote the formation of collagen fibers. In this article, we principally review the role of ADAMTS metalloproteinases in osteoarthritis. From three different dimensions, we explain how ADAMTS participates in all the following aspects of osteoarthritis: ECM, cartilage degeneration, and synovial inflammation. Thus, ADAMTS may be a potential therapeutic target in osteoarthritis, and this article may render a theoretical basis for the study of new therapeutic methods for osteoarthritis.
Collapse
Affiliation(s)
- Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Correspondence: ; Tel.: +86-13607008562; Fax: +86-86415785
| |
Collapse
|
40
|
Das P, Jana S, Kumar Nandi S. Biomaterial-Based Therapeutic Approaches to Osteoarthritis and Cartilage Repair Through Macrophage Polarization. CHEM REC 2022; 22:e202200077. [PMID: 35792527 DOI: 10.1002/tcr.202200077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Indexed: 11/06/2022]
Abstract
There is an ever-increasing clinical and socioeconomic burden associated with cartilage lesions & osteoarthritis (OA). Its progression, chondrocyte death & hypertrophy are all facilitated by inflamed synovium & joint environment. Due to their capacity to switch between pro- & anti-inflammatory phenotypes, macrophages are increasingly being recognized as a key player in the healing process, which has been largely overlooked in the past. A biomaterial's inertness has traditionally been a goal while developing them in order to reduce the likelihood of adverse reactions from the host organism. A better knowledge of how macrophages respond to implanted materials has made it feasible to determine the biomaterial architectural parameters that control the host response & aid in effective tissue integration. Thus, this review summarizes novel therapeutic techniques for avoiding OA or increasing cartilage repair & regeneration that might be developed using new technologies tuning macrophages into desirable functional phenotypes.
Collapse
Affiliation(s)
- Piyali Das
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| |
Collapse
|
41
|
Bai B, Hou M, Hao J, Liu Y, Ji G, Zhou G. Research progress in seed cells for cartilage tissue engineering. Regen Med 2022; 17:659-675. [PMID: 35703020 DOI: 10.2217/rme-2022-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage defects trouble millions of patients worldwide and their repair via conventional treatment is difficult. Excitingly, tissue engineering technology provides a promising strategy for efficient cartilage regeneration with structural regeneration and functional reconstruction. Seed cells, as biological prerequisites for cartilage regeneration, determine the quality of regenerated cartilage. The proliferation, differentiation and chondrogenesis of seed cells are greatly affected by their type, origin and generation. Thus, a systematic description of the characteristics of seed cells is necessary. This article reviews in detail the cellular characteristics, research progress, clinical translation challenges and future research directions of seed cells while providing guidelines for selecting appropriate seed cells for cartilage regeneration.
Collapse
Affiliation(s)
- Baoshuai Bai
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Mengjie Hou
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Yanhan Liu
- Shanghai JiaoTong University School of Medicine, Shanghai, 200240, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200240, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| |
Collapse
|
42
|
Shakoor S, Kibble E, El-Jawhari JJ. Bioengineering Approaches for Delivering Growth Factors: A Focus on Bone and Cartilage Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050223. [PMID: 35621501 PMCID: PMC9137461 DOI: 10.3390/bioengineering9050223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Growth factors are bio-factors that target reparatory cells during bone regeneration. These growth factors are needed in complicated conditions of bone and joint damage to enhance tissue repair. The delivery of these growth factors is key to ensuring the effectiveness of regenerative therapy. This review discusses the roles of various growth factors in bone and cartilage regeneration. The methods of delivery of natural or recombinant growth factors are reviewed. Different types of scaffolds, encapsulation, Layer-by-layer assembly, and hydrogels are tools for growth factor delivery. Considering the advantages and limitations of these methods is essential to developing regenerative therapies. Further research can accordingly be planned to have new or combined technologies serving this purpose.
Collapse
|
43
|
Guo L, Duan Q, Wu G, Zhang B, Huang L, Xue J, Li P, Sang S, Wei X. Novel multifunctional delivery system for chondrocytes and articular cartilage based on carbon quantum dots. SENSORS AND ACTUATORS B: CHEMICAL 2022; 356:131348. [DOI: 10.1016/j.snb.2021.131348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Patel JM. Impediments to Meniscal Repair: Factors at Play Beyond Vascularity. Front Bioeng Biotechnol 2022; 10:843166. [PMID: 35299635 PMCID: PMC8921501 DOI: 10.3389/fbioe.2022.843166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jay M. Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, United States
- *Correspondence: Jay M. Patel,
| |
Collapse
|
45
|
Querido W, Zouaghi S, Padalkar M, Morman J, Falcon J, Kandel S, Pleshko N. Nondestructive assessment of tissue engineered cartilage based on biochemical markers in cell culture media: application of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Analyst 2022; 147:1730-1741. [PMID: 35343541 PMCID: PMC9047556 DOI: 10.1039/d1an02351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATR spectral data obtained from cell culture medium discards can be used to assess glucose and lactate content, which are shown here to be a surrogate for matrix development in tissue engineered cartilage.
Collapse
Affiliation(s)
- William Querido
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Sabrina Zouaghi
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Mugdha Padalkar
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Justin Morman
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jessica Falcon
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Shital Kandel
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
46
|
Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects. Int J Mol Sci 2021; 22:ijms222413329. [PMID: 34948124 PMCID: PMC8706311 DOI: 10.3390/ijms222413329] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Several collagen subtypes have been identified in hyaline articular cartilage. The main and most abundant collagens are type II, IX and XI collagens. The minor and less abundant collagens are type III, IV, V, VI, X, XII, XIV, XVI, XXII, and XXVII collagens. All these collagens have been found to play a key role in healthy cartilage, regardless of whether they are more or less abundant. Additionally, an exhaustive evaluation of collagen fibrils in a repaired cartilage tissue after a chondral lesion is necessary to determine the quality of the repaired tissue and even whether or not this repaired tissue is considered hyaline cartilage. Therefore, this review aims to describe in depth all the collagen types found in the normal articular cartilage structure, and based on this, establish the parameters that allow one to consider a repaired cartilage tissue as a hyaline cartilage.
Collapse
|
47
|
Patel JM, Sennett ML, Martin AR, Saleh KS, Eby MR, Ashley BS, Miller LM, Dodge GR, Burdick JA, Carey JL, Mauck RL. Resorbable Pins to Enhance Scaffold Retention in a Porcine Chondral Defect Model. Cartilage 2021; 13:1676S-1687S. [PMID: 33034511 PMCID: PMC8804863 DOI: 10.1177/1947603520962568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Cartilage repair strategies have seen improvement in recent years, especially with the use of scaffolds that serve as a template for cartilage formation. However, current fixation strategies are inconsistent with regards to retention, may be technically challenging, or may damage adjacent tissues or the implant itself. Therefore, the goal of this study was to evaluate the retention and repair potential of cartilage scaffolds fixed with an easy-to-implement bioresorbable pin. DESIGN Electrospun hyaluronic acid scaffolds were implanted into trochlear groove defects in 3 juvenile and 3 adult pigs to evaluate short-term retention (2 weeks; pin fixation vs. press-fit and fibrin fixation) and long-term repair (8 months; scaffold vs. microfracture), respectively. RESULTS For the retention study, press-fit and fibrin fixation resulted in short-term scaffold dislodgment (n = 2 each), whereas pin fixation retained all scaffolds that were implanted (n = 6). Pin fixation did not cause any damage to the opposing patellar surface, and only minor changes in the subchondral bone were observed. For long-term repair, no differences were observed between microfracture and scaffold groups, in terms of second-look arthroscopy and indentation testing. On closer visualization with micro computed tomography and histology, a high degree of variability was observed between animals with regard to subchondral bone changes and cartilage repair quality, yet each Scaffold repair displayed similar properties to its matched microfracture control. CONCLUSIONS In this study, pin fixation did not cause adverse events in either the short- or the long-term relative to controls, indicating that pin fixation successfully retained scaffolds within defects without inhibiting repair.
Collapse
Affiliation(s)
- Jay M. Patel
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA,Translational Musculoskeletal Research
Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Mackenzie L. Sennett
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA,Translational Musculoskeletal Research
Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA,Penn State College of Medicine,
Pennsylvania State University, Hershey, PA, USA
| | - Anthony R. Martin
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA,Translational Musculoskeletal Research
Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA,Miller School of Medicine, University of
Miami, Miami, FL, USA
| | - Kamiel S. Saleh
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA,Translational Musculoskeletal Research
Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Michael R. Eby
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA
| | - Blair S. Ashley
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA
| | - Liane M. Miller
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA,Translational Musculoskeletal Research
Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA,Translational Musculoskeletal Research
Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Jason A. Burdick
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA,Translational Musculoskeletal Research
Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA,Department of Bioengineering, University
of Pennsylvania, Philadelphia PA
| | - James L. Carey
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory,
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA,
USA,Translational Musculoskeletal Research
Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA,Department of Bioengineering, University
of Pennsylvania, Philadelphia PA,Robert L. Mauck, 308A Stemmler Hall, 3450
Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Biomaterials and Meniscal Lesions: Current Concepts and Future Perspective. Pharmaceutics 2021; 13:pharmaceutics13111886. [PMID: 34834301 PMCID: PMC8617690 DOI: 10.3390/pharmaceutics13111886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Menisci are crucial structures for knee homeostasis. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible; only the meniscus tissue that is identified as unrepairable should be excised, and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The aim of this literature review is to analyze possible therapeutic and surgical options that go beyond traditional meniscal surgery: from scaffolds, which are made of different kind of polymers, such as natural, synthetic or hydrogel components, to new technologies, such as 3-D printing construct or hybrid biomaterials made of scaffolds and specific cells. These recent advances show that there is great interest in the development of new materials for meniscal reconstruction and that, with the development of new biomaterials, there will be the possibility of better management of meniscal injuries
Collapse
|
49
|
Main BJ, Maffulli N, Valk JA, Rodriguez HC, Gupta M, El-Amin SF, Gupta A. Umbilical Cord-Derived Wharton's Jelly for Regenerative Medicine Applications: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:ph14111090. [PMID: 34832872 PMCID: PMC8618385 DOI: 10.3390/ph14111090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
Musculoskeletal ailments affect millions of people around the world and place a high burden on healthcare. Traditional treatment modalities are limited and do not address underlying pathologies. Mesenchymal stem cells (MSCs) have emerged as an exciting therapeutic alternative and Wharton’s jelly-derived mesenchymal stem cells (WJSCs) are some of these. This review reports the clinical and functional outcomes of the applications of WJSCs in orthopedic surgery. A systematic review was conducted utilizing the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The studies that used culture-expanded, mesenchymal stem or stromal cells, MSCs and/or connective tissues procured from Wharton’s jelly (WJ), from January 2010 to October 2021, were included. Conventional non-operative therapies and placebos were used as comparisons. Six studies that directly discussed WJSCs use in an animal model or the basic scientific testing using an injury model were identified. Five publications studied cartilage injury, three studied degenerative disc disease, one was related to osteoarthritis, and one was related to osteochondral defects. The results of these studies suggested the benefits of WJSCs in the management of these orthopedic pathologies. To adequately assess the safety and efficacy of WJSCs in orthopedic surgery, further randomized controlled clinical studies are necessary.
Collapse
Affiliation(s)
- Benjamin J. Main
- Department of Orthopaedic Surgery, Beaumont Hospital Farmington Hills, Farmington Hills, MI 48336, USA; (B.J.M.); (J.A.V.)
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy;
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Hospital, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Faculty of Medicine, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, UK
| | - Josiah A. Valk
- Department of Orthopaedic Surgery, Beaumont Hospital Farmington Hills, Farmington Hills, MI 48336, USA; (B.J.M.); (J.A.V.)
| | | | - Manu Gupta
- Polar Aesthetics Dental & Cosmetic Centre, Noida 201301, Uttar Pradesh, India;
| | - Saadiq F. El-Amin
- El-Amin Orthopaedic and Sports Medicine Institute, Lawrenceville, GA 30043, USA;
- BioIntegrate, Lawrenceville, GA 30043, USA
| | - Ashim Gupta
- BioIntegrate, Lawrenceville, GA 30043, USA
- Future Biologics, Lawrenceville, GA 30043, USA
- Correspondence:
| |
Collapse
|
50
|
Lin S, He Y, Tao M, Wang A, Ao Q. Fabrication and evaluation of an optimized xenogenic decellularized costal cartilage graft: preclinical studies of a novel biocompatible prosthesis for rhinoplasty. Regen Biomater 2021; 8:rbab052. [PMID: 34584748 PMCID: PMC8473975 DOI: 10.1093/rb/rbab052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022] Open
Abstract
On account of the poor biocompatibility of synthetic prosthesis, millions of rhinoplasty recipients have been forced to choose autologous costal cartilage as grafts, which suffer from limited availability, morbidity at the donor site and prolonged operation time. Here, as a promising alternative to autologous costal cartilage, we developed a novel xenogeneic costal cartilage and explored its feasibility as a rhinoplasty graft for the first time. Adopting an improved decellularization protocol, in which the ionic detergent was substituted by trypsin, the resulting decellularized graft was confirmed to preserve more structural components and better mechanics, and eliminate cellular components effectively. The in vitro and in vivo compatibility experiments demonstrated that the decellularized graft showed excellent biocompatibility and biosecurity. Additionally, the functionality assessment of rhinoplasty was performed in a rabbit model, and the condition of grafts after implantation was comprehensively evaluated. The optimized graft exhibited better capacity to reduce the degradation rate and maintain the morphology, in comparison to the decellularized costal cartilage prepared by conventional protocol. These findings indicate that this optimized graft derived from decellularized xenogeneic costal cartilage provides a new prospective for future investigations of rhinoplasty prosthesis and has great potential for clinical application.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Plastic Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 11004, China
- Department of Tissue Engineering, China Medical University, 77 Puhe Road, Shenyang 110112, China
| | - Yuanjia He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang 110033, China
| | - Meihan Tao
- Department of Tissue Engineering, China Medical University, 77 Puhe Road, Shenyang 110112, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, 77 Puhe Road, Shenyang 110112, China
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, 24 Yihuan Street, Chengdu 610065, China
| |
Collapse
|