1
|
Zheng S, Chen H, Lin Q, Zhu S. Effect of dentin conditioners on dentin bond strength: A systematic review and meta-analysis. J Prosthet Dent 2024; 132:509.e1-509.e11. [PMID: 38981805 DOI: 10.1016/j.prosdent.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024]
Abstract
STATEMENT OF PROBLEM Although composite resin restorations have been widely used for dental restorations, the durability of the bond affects the rate of restoration failure. However, how multiple strategies for enhancing the resin-dentin bond affect durability is unclear. PURPOSE The purpose of this systematic review and meta-analysis was to evaluate the impact of dentin conditioners on resin-dentin bond strength with different pretreatments before the application of adhesives. MATERIAL AND METHODS The PubMed, Web of Science, EMBASE, and Cochrane Library databases were searched from 2013 to July 2023 for in vitro studies that evaluated the impact of dentin conditioners on resin-dentin bond strength. The meta-analysis was conducted using a random-effects model with pooled effect as standardized mean differences (α=.05). RESULTS A total of 23 studies met the inclusion criteria for qualitative analysis, of which 15 were used for quantitative analysis. The results demonstrated that, under dry bonding conditions, selective extrafibrillar demineralization dentin conditioners significantly enhanced the immediate bond strength (P<.001). The long-term bond strength was limited by the sample size of the subgroup, but a significant effect was found after using selective extrafibrillar demineralization dentin conditioners (P<.001). However, metal salt-based dentin conditioners improved the immediate bond strength only under wet bonding conditions (P=.010). Notably, acid-based dentin conditioners significantly improved the long-term bond strength under both dry and wet bonding conditions (P<.001 and P=.006). CONCLUSIONS The application of acid-based dentin conditioners significantly improved resin-dentin bond durability under both wet and dry bonding conditions. Furthermore, selective extrafibrillar demineralization dentin conditioners demonstrated remarkable effectiveness in improving resin-dentin bond durability under dry bonding conditions; however, more data are needed to support their use.
Collapse
Affiliation(s)
- Shuyao Zheng
- Postgraduate student, Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Huan Chen
- Postgraduate student, Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Qi Lin
- Postgraduate student, Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Song Zhu
- Professor, Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
2
|
Zhou Q, Li Y, Xiao T, Zhong Q, Wu L, Zhou Z, Wong H, Li QL. Extrafibrillar demineralization: Yes or no? Dent Mater 2024; 40:1113-1122. [PMID: 38821839 DOI: 10.1016/j.dental.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE Extrafibrillar demineralization is considered to be an ideal solution for addressing the durability of resin-dentin bonding interfaces. However, its theoretical basis is contradictory to ionization equilibrium of hydroxyapatite dissolution. In this study, various calcium chelators were selected as dentin conditioners to explore the essence of dentin demineralization with chelators and its effect on resin-dentin adhesion. METHODS Polyethyleneimine grafted with EDTA and polyacrylic acid sodium (PAAN450k) larger than 40 kDa, as well as PAAN (PAAN3k) and EDTA smaller than 6 kDa, were prepared as dentin conditioners. The dentin powder was designed to characterize whether it would demineralize without contact with PAAN450k. Dentin demineralization effect with four conditioners was evaluated with field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy and quantification of hydroxyproline concentration after enzymatic degradation. Micro-tensile bond strength (µTBS) test and failure mode analysis were employed to assess the bonding effect of the four chelators in both wet and dry bonding, with H3PO4 wet bonding serving as the control group. RESULTS Demineralization occurs when PAAN450k was not in direct contact with the dentin powder. The extrafibrillar demineralization cannot be induced by any chelator regardless of its molecular weight. Complete demineralization including extrafibrillar and intrafibrillar demineralization would occur with sufficient interaction time. Moreover, chelators could not provide a reliable dentin bonding effect under a short interaction time. SIGNIFICANCE From the perspective of theory and application, extrafibrillar demineralization is not a reliable strategy, which provides a reminder for exploring new strategies in the future.
Collapse
Affiliation(s)
- Qingli Zhou
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, 218 Jixilu Rd., Hefei 230032, China; Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yuzhu Li
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, 218 Jixilu Rd., Hefei 230032, China; Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Ting Xiao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qi Zhong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, MI 48208, USA
| | - Haiming Wong
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, 999077, Hong Kong, SAR China
| | - Quan-Li Li
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, 218 Jixilu Rd., Hefei 230032, China; Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Stomatology. Longgang Otorhinolaryngology Hospital of Shenzhen, No. 3004L Longgang Avenue, 518172, China.
| |
Collapse
|
3
|
Wang M, Xie H, Tang BZ, Wang WX. Novel Near-Infrared-II In Vivo Visualization Revealed Rapid Calcium Intestine Turnover in Daphnia magna with Delayed Impact by Cadmium and Acidification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4558-4570. [PMID: 38408313 DOI: 10.1021/acs.est.3c10468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Calcium is a highly demanded metal, and its transport across the intestine of Daphnia magna remains a significant unresolved question. Due to technical constraints, the visualization of the kinetic process of Ca passage through D. magna has been challenging. Here, we developed the second near-infrared Ca sensor (NIR-II Ca) and conducted real-time in vivo imaging of Ca in daphnids with a high signal-to-noise ratio, deep tissue penetration, and minimal damage. Through the utilization of the NIR-II Ca sensor, we for the first time visualized and quantified the kinetic process of Ca passage in the intestine in real time. The results revealed that trophically available Ca passed through the intestines in 24 h, whereas waterborne Ca required only 35 min. This rapid "flushing through" mechanism established waterborne Ca as the primary source of Ca absorption. However, environmental stressors such as water acidification and cadmium significantly delayed the Ca passage and absorption. The development of NIR imaging and sensors allows for real-time dynamic visualization of contaminants/nutrients in organisms and holds great potential as a powerful tool for future studies into material kinetic processes in living animals.
Collapse
Affiliation(s)
- Mengyu Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Shi Y, Zheng H, Wang W, Qian L, Zhao W, Xu J, Li M, Wu Z, Fu B. Dentin surface modification by MDP to improve dentin bonding stability: Topological enhancement and mineralization of collagen structure in hybrid layers. Colloids Surf B Biointerfaces 2024; 235:113776. [PMID: 38364520 DOI: 10.1016/j.colsurfb.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Decades of research have been conducted on 10-Methacryloyloxydecyl dihydrogen phosphate (MDP) through numerous studies. The mechanisms by which its residual calcium salts benefit dentin bonding remain undetermined. The objective of the research was to investigate the role and process of remaining calcium salts in the priming procedure and their capacity for remineralization. The investigation focused on the variations in topological structure, mechanical properties, and chemical interactions between the main agent and the dentin surface. Two adhesive modes including prime-and-rinse(P&R) and prime-and-nonrinse (P&NR) utilized to evaluate the bonding performance and remineralization ability. The findings indicated that both P&R and P&NR methods could eliminate the smear-layer, uncover dentinal-tubules, and generate a textured/rough surface on the dentin. Collagen fibrils exhibited a greater presence of inorganic minerals in the P&NR mode. Compared to control group, both P&R and P&NR groups improved immediate and aging bond strength significantly (P < 0.05). AFM and 3D-STORM revealed MDP and its residual calcium salts distributed in collagen fibrils and expanded collagen matrix. In the P&NR group, TEM revealed that the dentin collagen matrix experienced some remineralization, and there was also mineralization within the collagen fibrils embedded in the bonding interface. Thus, MDP priming improved dentin bonding stability. Residual calcium salts of P&NR process can enhance topological structure of the collagen matrix and induce intrafibrillar mineralization.
Collapse
Affiliation(s)
- Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Wenting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Linna Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jingqiu Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
5
|
Li M, Qiu Y, Wang Y, Zhang S, Duan L, Zhao W, Shi Y, Zhang Z, Tay FR, Fu B. A glycol chitosan derivative with extrafibrillar demineralization potential for self-etch dentin bonding. Dent Mater 2024; 40:327-339. [PMID: 38065798 DOI: 10.1016/j.dental.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVES Extrafibrillar demineralization is an etching technique that removes only minerals from around the collagen fibrils for resin infiltration. The intrafibrillar minerals are left intact to avoid their replacement by water that is hard for adhesive resin monomers to displace. The present work reported the synthesis of a water-soluble methacryloyloxy glycol chitosan-EDTA conjugate (GCE-MA) and evaluated its potential as an extrafibrillar demineralization agent for self-etch dentin bonding. METHODS Glycol chitosan-EDTA was functionalized with a methacryloyloxy functionality. Conjugation was confirmed using Fourier transform-infrared spectroscopy. The GCE-MA was used to prepare experimental self-etch primers. Extrafibrillar demineralization of the primers was evaluated with scaning electron microscopy and transmission electron microscopy. The feasibility of this new self-etch bonding approach was evaluated using microtensile bond strength testing and inhibition of dentin gelatinolytic activity. The antibacterial activity and cytotoxicity of GCE-MA were also analyzed. RESULTS Conjugation of EDTA and the methacryloyloxy functionality to glycol chitosan was successful. The functionalized conjugate was capable of extrafibrillar demineralization of mineralized collagen fibrils. Tensile bond strength of the experimental self-etch primer to dentin was comparable to that of phosphoric acid-etched dentin and the commercial self-etch primer Clearfil SE Bond 2. The GCE-MA also inhibited soluble rhMMP-9. In-situ zymography detected minimal fluorescence in hybrid layers conditioned with the experimental primer. The GCE-MA was noncytotoxic and possessed antibacterial activities against planktonic bacteria. SIGNIFICANCE Synthesis of GCE-MA brought into fruition a self-etch conditioner that selectively demineralizes the extrafibrillar mineral component of dentin. A self-etch primer prepared with GCE-MA achieved bond strengths comparable to commercial reference adhesive systems.
Collapse
Affiliation(s)
- Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yinlin Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Sisi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lian Duan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Gao X, Wang Z, Yang H, Huang C. Rapid Intrafibrillar Mineralization Strategy Enhances Adhesive-Dentin Interface. J Dent Res 2024; 103:42-50. [PMID: 37990799 DOI: 10.1177/00220345231205492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Biomimetic mineralization of dentin collagen appears to be a promising strategy to optimize dentin bonding durability. However, traditional postbonding mineralization strategies based on Ca/P ion release still have some drawbacks, such as being time-consuming, having a spatiotemporal mismatch, and having limited intrafibrillar minerals. To tackle these problems, a prebonding rapid intrafibrillar mineralization strategy was developed in the present study. Specifically, polyacrylic acid-stabilized amorphous calcium fluoride (PAA-ACF) was found to induce rapid intrafibrillar mineralization of the single-layer collagen model and dentin collagen at just 1 min and 10 min, as identified by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. This strategy has also been identified to strengthen the mechanical properties of demineralized dentin within a clinically acceptable timeframe. Significantly, the bonding strength of the PAA-ACF-treated groups outperformed the control group irrespective of aging modes. In addition, the endogenous matrix metalloproteinases as well as exogenous bacterial erosion were inhibited, thus reducing the degradation of dentin collagen. High-quality integration of the hybrid layer and the underlying dentin was also demonstrated. On the basis of the present results, the concept of "prebonding rapid intrafibrillar mineralization" was proposed. This user-friendly scheme introduced PAA-ACF-based intrafibrillar mineralization into dentin bonding for the first time. As multifunctional primers, PAA-ACF precursors have the potential to shed new light on prolonging the service life of adhesive restorations, with promising significance.
Collapse
Affiliation(s)
- X Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, China
| | - H Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhong Q, Zhou Q, Xiao T, Li X, Xu W, Li Y, Tao Y, Wu L, Zhou Z, Wong HM, Li QL. Er:YAG Laser Physical Etching and Ultra-High-Molecular-Weight Cross-Linked Sodium Polyacrylate Chemical Etching for a Reliable Dentin Dry Bonding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39127-39142. [PMID: 37565782 DOI: 10.1021/acsami.3c07091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dentin bond interface stability is the key issue of dental adhesion in present clinical dentistry. The concept of selective extrafibrillar demineralization has opened a new way to maintain intrafibrillar minerals to prevent interface degradation. Here, using ultra-high-molecular-weight sodium polyacrylate [Carbopol (Carbo) > 40 kDa] as a calcium chelator, we challenge this concept and propose a protocol for reliable dentin dry bonding. The results of high-resolution transmission electron microscopy revealed periodic bands of 67 nm dentin collagen fibrils after Carbo etching, and the hydroxyproline concentration increasing with prolonged chelating time denied the concept of extrafibrillar demineralization. The results that wet and dry bonding with Carbo-based demineralization produced a weaker bond strength than the traditional phosphoric acid wet adhesion suggested that the Carbo-based demineralization is an unreliable adhesion strategy. A novel protocol of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion revealed that a micro-/nano-level rough, rigid, and non-collagen exposed dentin surface was produced, the micro-tensile bond strength was maintained after aging under dry and wet bonding modes, and in situ zymography and nanoleakage within the hybrid layers presented lower signals after aging. Cell culture in vitro and a rabbit deep dentin adhesion model in vivo proved that this protocol is safe and biocompatible. Taken together, the concept of extrafibrillar demineralization is limited and insufficient to use in the clinic. The strategy of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion produces a bonding effect with reliability, durability, and safety.
Collapse
Affiliation(s)
- Qi Zhong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qingli Zhou
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Ting Xiao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaofeng Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Wu Xu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yuzhu Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yang Tao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Quan-Li Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
- Department of Stomatology, Longgang Otorhinolaryngology Hospital, Shenzhen 518172, China
| |
Collapse
|
8
|
Yu J, Li Y, Liu X, Huang H, Wang Y, Zhang Q, Li Q, Cao CY. EDTA-functionalized silica nanoparticles as a conditioning agent for dentin bonding using etch-and-rinse technique. J Dent 2023; 134:104528. [PMID: 37105434 DOI: 10.1016/j.jdent.2023.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE This study investigated the possibility of using ethylenediaminetetraacetic acid functionalized silica nanoparticles (EDTA-SiO2) as a dentin-conditioning agent using etch-and-rinse technique to promote the durability of dentin bonding. METHODS The SiO2-EDTA were synthesized by N- [(3- trimethoxysilyl) propyl] ethylenediamine triacetic acid (EDTA-TMS) and SiO2 (50 nm), then characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The capacity of SiO2-EDTA to chelate calcium ions from dentin was examined by inductively coupled plasma-optic emission spectrometry (ICP-OES). The dentin surfaces conditioned with SiO2-EDTA were detected by field emission scanning electron microscopy (SEM), TEM and microhardness testing. For dentin bonding, dentin surfaces were adopted wet- or dry-bonding technique and bonded with adhesive (AdperTM Single Bond2) and applied composite resin (Filtek Z350) on them. The durability of dentin bonding was evaluated by mircotensile bond strength test, in-situ zymography and nanoleakage testing. RESULTS FTIR, TGA and XPS results showed that SiO2-EDTA contained N element and carboxyl groups. SEM, TEM and microhardness results indicated that SiO2-EDTA group created extrafibrillar demineralization and retained more intrafibrillar minerals within dentin surface. In the dentin bonding experiment, SiO2-EDTA group achieved acceptable bond strength, and reduced the activity of matrix metalloproteinase and nanoleakage along bonding interface. CONCLUSION It was possible to generate a feasible dentin conditioning agent (SiO2-EDTA), which could create dentin extrafibrillar demineralization and improve dentin bond durability. CLINICAL SIGNIFICANCE This study introduces a new dentin conditioning scheme based on SiO2-EDTA to create extrafibrillar demineralization for dentin bonding. This strategy has the potential to be used in clinic to promote the life of restoration bonding.
Collapse
Affiliation(s)
- Jianan Yu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yuexiang Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xinyuan Liu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Haowen Huang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yu Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Qunlin Zhang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Quanli Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Chris Ying Cao
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
9
|
Wang CY, Qin ZX, Wei Y, Hao JX, Zhu YF, Zhao F, Jiao K, Ehrlich H, Tay FR, Niu LN. The immunomodulatory effects of RNA-based biomaterials on bone regeneration. Acta Biomater 2023; 162:32-43. [PMID: 36967055 DOI: 10.1016/j.actbio.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
The use of RNA as therapeutic agents is a visionary idea in contemporary medicine. Some forms of RNA can modulate the immune response of the host to enhance tissue regeneration events such as osteogenesis. Herein, RNA molecules commercially available for immunomodulatory applications (imRNA) were used to prepare biomaterials for bone regeneration. The polyanionic imRNA stabilized calcium phosphate ionic clusters to produce imRNA-ACP that had the capacity to mineralize the intrafibrillar compartments of collagen fibrils. For the first time, it was shown that incorporating imRNA-ACP into collagen scaffolds resulted in rapid new bone formation in cranial defects of mice. Both in vivo and in vitro results demonstrated that macrophage polarization was highly-sensitive to the imRNA-ACP containing collagen scaffolds. Macrophages were polarized into the anti-inflammatory M2 phenotype that produced anti-inflammation cytokines and growth factors. The favorable osteoimmunological microenvironment created by the scaffolds prevented their immunorejection and facilitated osteogenesis. The potential of RNA in creating immunomodulatory biomaterials has been underestimated in the past. The overall aim of this study was to explore the potential application of imRNA-based biomaterials in bone tissue engineering, with the competitive edge of facile synthesis and excellent biocompatibility. STATEMENT OF SIGNIFICANCE: In this work, commercially available RNA extracted from bovine spleens for immunomodulatory applications (imRNA) were used to stabilize amorphous calcium phosphate (ACP) and induce mineralization within collagen fibrils. Incorporation of imRNA-ACP into collagen scaffolds regenerated new bone in-situ. Because of its immunomodulatory effects, the imRNA-ACP that was incorporated into collagen scaffolds modulated the local immune environment of murine cranial defects by altering the macrophage phenotype through JAK2/STAT3 signaling pathway. The novelty of this work existed in the discovery of RNA's potential in creating immunomodulatory biomaterials. With the competitive edge of facile synthesis and excellent biocompatibility, the imRNA-based biomaterials are potentially useful for future bone tissue engineering applications.
Collapse
|
10
|
Toledano M, Osorio E, Osorio MT, Aguilera FS, Toledano R, Romero EF, Osorio R. Dexamethasone-doped nanoparticles improve mineralization, crystallinity and collagen structure of human dentin. J Dent 2023; 130:104447. [PMID: 36754111 DOI: 10.1016/j.jdent.2023.104447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Bioactive materials have been used for functionalization of adhesives to promote dentin remineralization. This study aims to evaluate bonding ability and both mechanical and chemical behavior of demineralized dentin infiltrated with polymeric nanoparticles doped with dexamethasone (Dex-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs, Dex-NPs or Dex-Zn-NPs. Bonded interfaces were also created and stored for 24 h or 21d, and then submitted to microtensile bond strength testing. Dentin remineralization was analyzed by Nanohardness, Young's modulus and Raman analysis. RESULTS At 21d of storage, dentin treated with undoped-NPs attained the lowest nanohardness and Young's modulus. Dex-NPs and Zn-Dex-NPs increased dentin nanohardness and Young's modulus after 21d Raman analysis showed high remineralization, crystallinity, crosslinking and better structure of collagen when functionalized Dex-NPs were present at the dentin interface. CONCLUSIONS Infiltration of dentin with Dex-NPs promoted functional remineralization as proved by nanomechanical and morpho-chemical evaluation tests. Dexamethasone in dentin facilitated crystallographic maturity, crystallinity and improved maturity and secondary structure of dentin collagen. CLINICAL SIGNIFICANCE Using dexamethasone-functionalized NPs before resin infiltration is a clear option to obtain dentin remineralization, as these NPs produce the reinforcement of the dentin structure, which will lead to the improvement of the longevity of resin restorations.
Collapse
Affiliation(s)
- Manuel Toledano
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Estrella Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - María T Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Fátima S Aguilera
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain.
| | - Raquel Toledano
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Enrique Fernández- Romero
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Raquel Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| |
Collapse
|
11
|
In Search of Novel Degradation-Resistant Monomers for Adhesive Dentistry: A Systematic Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10123104. [PMID: 36551861 PMCID: PMC9775292 DOI: 10.3390/biomedicines10123104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
This study aimed to assess whether degradation-resistant monomers included in experimental dental adhesives can improve long-term bond strength compared to conventional monomers. This study followed the latest PRISMA guidance (2020). The search for the systematic review was carried out in four electronic databases: PubMed/Medline, Scopus, SciELO and EMBASE, without restrictions on the year of publication and language. The last screening was conducted in July 2022. Interventions included were in vitro studies on experimental dental adhesives that tested short-term and long-term bond strength, but also water sorption and solubility data when available, in extracted human molars. Meta-analyses were performed using Rstudio v1.4.1106. A summary table analyzing the individual risk of bias was generated using the recent RoBDEMAT tool. Of the 177 potentially eligible studies, a total of 7 studies were included. Experimental monomers with acrylamides or methacrylamide−acrylamide hybrids in their composition showed better results of aged bond strength when compared to methacrylate controls (p < 0.05). The experimental monomers found better sorption and solubility compared to controls and were significantly different (p < 0.001). It is possible to achieve hydrolytically resistant formulations by adding novel experimental monomers, with chemical structures that bring benefit to degradation mechanisms.
Collapse
|
12
|
Sodium carboxymethyl cellulose-based extrafibrillar demineralization to optimize dentin bonding durability. Dent Mater 2022; 38:2096-2114. [DOI: 10.1016/j.dental.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/02/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
|
13
|
Yu J, Zhao Y, Shen Y, Yao C, Guo J, Yang H, Huang C. Enhancing adhesive-dentin interface stability of primary teeth: From ethanol wet-bonding to plant-derived polyphenol application. J Dent 2022; 126:104285. [PMID: 36089222 DOI: 10.1016/j.jdent.2022.104285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To investigate whether the adhesive-dentin interface stability of primary teeth would be enhanced by epigallocatechin-3-gallate (EGCG) with ethanol wet-bonding. METHODS Non-caries primary molars were sliced to achieve a flat dentin surface and etched then randomly distributed into five groups in accordance with different treatments: group 1, no treatment; group 2, applying absolute ethanol wet-bonding for 60 s; groups 3-5, applying 0.1%, 0.5%, and 1% (w/v) EGCG-incorporating ethanol wet-bonding (0.1%, 0.5%, and 1% EGCG) for 60 s. Singlebond universal adhesive was then applied followed by resin composite construction. Microtensile bond strength, fracture mode, and nanoleakage at adhesive-dentin interface were evaluated after 24 h of water storage or 10,000 times of thermocycling. Zymography of hybrid layer, biofilm formation of Streptococcus mutans by CLSM, FESEM, and MTT test, and cytotoxicity by CCK-8 assay were respectively assessed. RESULTS Irrespective of thermocycling, the dentin bond strength was preserved with reduced nanoleakage in the 0.5% and 1% EGCG groups. Furthermore, the activity of endogenous proteases and the growth of Streptococcus mutans biofilm were inhibited after treatment with 0.5% and 1% EGCG/ethanol solutions (groups 4 and 5). CCK-8 results of the 0.1% and 0.5% EGCG groups showed acceptable biocompatibility. CONCLUSIONS Treatment by EGCG/ethanol solutions effectively enhanced the bond stability of primary teeth at the adhesive-dentin interface. CLINICAL SIGNIFICANCE Synergistic application of EGCG and ethanol wet-bonding suggesting a promising strategy to improve dentin bonding durability with bacterial biofilm inhibition, thus increasing resin-based restorations' service life in primary dentition.
Collapse
Affiliation(s)
- Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Yaning Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
14
|
Shan T, Huang L, Tay FR, Gu L. Retention of Intrafibrillar Minerals Improves Resin-Dentin Bond Durability. J Dent Res 2022; 101:1490-1498. [PMID: 35708474 DOI: 10.1177/00220345221103137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The concept of extrafibrillar demineralization involves selective removal of apatite crystallites from the extrafibrillar spaces of mineralized dentin without disturbing the intrafibrillar minerals within collagen. This helps avoiding activation of endogenous proteases and enables air-drying of partially demineralized dentin without causing collapse of completely demineralized collagen matrix that adversely affects resin infiltration. The objective of the present study was to evaluate the potential of quaternized carboxymethyl chitosan (QCMC)-based extrafibrillar demineralization in improving resin-dentin bond durability. Isothermal titration calorimetry indicated that QCMC synthesized by quaternization of O-carboxymethyl chitosan had moderate affinity for Ca2+ (binding constant: 8.9 × 104 M-1). Wet and dry bonding with the QCMC-based demineralization produced tensile bond strengths equivalent to the phosphoric acid (H3PO4)-based etch-and-rinse technique. Those bond strengths were maintained after thermocycling. Amide I and PO43- mappings of QCMC-conditioned dentin were performed with atomic force microscope-infrared spectroscopy (AFM-IR). Whereas H3PO4-etched dentin exhibited an extensive reduction in PO43- signals corresponding to apatite depletion, QCMC-conditioned dentin showed scattered dark areas and bright PO43- streak signals. The latter were consistent with areas identified as collagen fibrils in the amide I mapping and were suggestive of the presence of intrafibrillar minerals in QCMC-conditioned dentin. Young's modulus mapping of QCMC-demineralized dentin obtained by AFM-based amplitude modulation-frequency modulation recorded moduli that were the same order of magnitude as those in mineralized dentin and at least 1 order higher than H3PO4-etched dentin. In situ zymography of the gelatinolytic activity within hybrid layers created with QCMC conditioning revealed extremely low signals before and after thermocycling, compared with H3PO4-etched dentin for both wet and dry bonding. Confocal laser scanning microscopy identified the antibacterial potential of QCMC against Streptococcus mutans and Enterococcus faecalis biofilms. Taken together, the QCMC-based demineralization retains intrafibrillar minerals, preserves the elastic modulus of collagen fibrils, reduces endogenous proteolytic activity, and inhibits bacteria biofilms to extend dentin bond durability.
Collapse
Affiliation(s)
- T Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - L Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - F R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - L Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| |
Collapse
|
15
|
Interactions of two phosphate ester monomers with hydroxyapatite and collagen fibers and their contributions to dentine bond performance. J Dent 2022; 122:104159. [PMID: 35550398 DOI: 10.1016/j.jdent.2022.104159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/24/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To evaluate the interactions of two phosphate ester monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) and dipentaerythritol penta-acrylate phosphate (PENTA)] with hydroxyapatite and collagen and understand their influence on dentine bonding. METHODS Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, nuclear magnetic resonance, ultraviolet-visible, and molecular docking were applied for separately evaluating the interactions of two monomers with hydroxyapatite and collagen. Hydrophilicity tests and morphological observation were employed to characterize pretreated dentine. Microtensile bond strength (μTBS) and nanoleakage were investigated to evaluate the bonding performance. Hydroxyproline assay, in situ zymography, and matrix metalloproteinase-9 (MMP-9) activity assay were used to confirm the MMP inhibition. RESULTS Chemoanalytic characterization confirmed the interactions of 10-MDP and PENTA with hydroxyapatite and collagen. The interactions of PENTA were weaker than 10-MDP. PENTA possessed better dentine tubule sealing after etching than 10-MDP. Dentine treated with PENTA was more hydrophilic than 10-MDP. 10-MDP and PENTA treating significantly increased the initial μTBS than the control group without primer conditioning. μTBS decreased significantly during aging, and the decrease was more severe in the PENTA group than 10-MDP. The 10-MDP and PENTA groups exhibited relatively less fluorescence than the control. The relative inhibition percentages of MMP-9 decreased in the order of 10-MDP-Ca salt, 10-MDP and PENTA. The 10-MDP, PENTA, and 10-MDP-Ca salt groups showed significantly lower hydroxyproline contents than the control. CONCLUSIONS Although PENTA adsorbed on hydroxyapatite, it did not form a stable calcium salt. The interactions of 10-MDP with hydroxyapatite and collagen are different than those of PENTA. CLINICAL SIGNIFICANCE The sealing of dentinal tubules by PENTA and the inhibition of MMP by 10-MDP and its calcium salts contribute to improving the dentine bonding durability.
Collapse
|
16
|
Li MX, Duan L, Chen ML, Tian FC, Fu BP. Effect of an extrafibrillar dentin demineralization strategy on the durability of the resin-dentin bond. J Mech Behav Biomed Mater 2021; 126:105038. [PMID: 34923366 DOI: 10.1016/j.jmbbm.2021.105038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to evaluate the potential of the extrafibrillar dentin demineralization strategy on the long-term dentin bond strength of an etch-and-rinse adhesive. METHODS A water-soluble glycol chitosan-EDTA (GCE), a chelating conditioner, was synthesized and subjected to size-exclusion dialysis to obtain molecules >40 kDa. The conjugation of EDTA to glycol chitosan was analyzed by Fourier transform infrared (FTIR) spectroscopy. Mid-coronal dentin surfaces of 80 teeth were either acid-etched with 35% phosphoric acid or conditioned with 25 mg/mL GCE (n = 40) and thoroughly water-sprayed before applying the etch-and-rinse adhesive Adper Single Bond Plus and placing Z250 composite resin (3 M Oral Care; St Paul, MN, USA). Resin-bonded specimens were prepared into beams with a cross-sectional area of about 0.9 mm2 vertically through the resin-dentin interfaces before the microtensile bond strengths (MTBS) were determined immediately or after 3, 6, or 12 months of water storage. The resin-dentin interfaces were analyzed using transmission electron microscopy (TEM). The MTBS data were analyzed using two-way ANOVA followed by the LSD post-hoc multiple comparisons (P < 0.05). RESULTS FTIR spectra showed that EDTA was successfully conjugated to glycol chitosan. The phosphoric acid-etching group and GCE-conditioning group showed similar bond strength values after 24 h of water storage. The bond strength of the phosphoric acid-etching group after 12-month water aging was significantly reduced from 51.61 ± 3.30 MPa to 38.57 ± 4.81 MPa, while the bond strength of the GCE-conditioning group was not significantly reduced from 50.28 ± 3.62 MPa to 46.40 ± 4.71 MPa.The degradation of the hybrid layer could be detected in the phosphoric acid-etching group after 12 months of water aging, but not in the GCE-conditioning group. CONCLUSION The extrafibrillar dentin demineralization strategy using GCE conditioner could defy the hybrid layer degradation of the dentin bond after 12 months of water aging and enhance the dentin bond durability of the etch-and-rinse adhesive Adper Single Bond Plus.
Collapse
Affiliation(s)
- Ming Xing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lian Duan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Mei Ling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fu Cong Tian
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Bai Ping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Gou Y, Jin W, He Y, Luo Y, Si R, He Y, Wang Z, Li J, Liu B. Effect of Cavity Cleanser With Long-Term Antibacterial and Anti-Proteolytic Activities on Resin-Dentin Bond Stability. Front Cell Infect Microbiol 2021; 11:784153. [PMID: 34869081 PMCID: PMC8641795 DOI: 10.3389/fcimb.2021.784153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Secondary caries caused by oral microbiome dysbiosis and hybrid layer degradation are two important contributors to the poor resin-dentin bond durability. Cavity cleansers with long-term antimicrobial and anti-proteolytic activities are in demand for eliminating bacteria-induced secondary caries and preventing hybrid layers from degradation. The objectives of the present study were to examine the long-term antimicrobial effect and anti-proteolytic potential of poly(amidoamine) dendrimers with amino terminal groups (PAMAM-NH2) cavity cleanser. Methods Adsorption tests by attenuated total reflectance-infrared (ATR-IR) spectroscopy and confocal laser scanning microscopy (CLSM) were first performed to evaluate whether the PAMAM-NH2 cavity cleanser had binding capacity to dentin surface to fulfill its relatively long-term antimicrobial and anti-proteolytic effects. For antibacterial testing, Streptococcus mutans, Actinomyces naeslundii, and Enterococcus faecalis were grown on dentin surfaces, prior to the application of cavity cleanser. Colony-forming unit (CFU) counts and live/dead bacterial staining were performed to assess antibacterial effects. Gelatinolytic activity within the hybrid layers was directly detected by in situ zymography. Adhesive permeability of bonded interface and microtensile bond strength were employed to assess whether the PAMAM-NH2 cavity cleanser adversely affected resin-dentin bonding. Finally, the cytotoxicity of PAMAM-NH2 was evaluated by the Cell Counting Kit-8 (CCK-8) assay. Results Adsorption tests demonstrated that the binding capacity of PAMAM-NH2 on dentin surface was much stronger than that of 2% chlorhexidine (CHX) because its binding was strong enough to resist phosphate-buffered saline (PBS) washing. Antibacterial testing indicated that PAMAM-NH2 significantly inhibited bacteria grown on the dentin discs as compared with the control group (p < 0.05), which was comparable with the antibacterial activity of 2% CHX (p > 0.05). Hybrid layers conditioned with PAMAM-NH2 showed significant decrease in gelatin activity as compared with the control group. Furthermore, PAMAM-NH2 pretreatment did not adversely affect resin-dentin bonding because it did not decrease adhesive permeability and microtensile strength. CCK-8 assay showed that PAMAM-NH2 had low cytotoxicity on human dental pulp cells (HDPCs) and L929. Conclusions PAMAM-NH2 cavity cleanser developed in this study could provide simultaneous long-term antimicrobial and anti-proteolytic activities for eliminating secondary caries that result from a dysbiosis in the oral microbiome and for preventing hybrid layers from degradation due to its good binding capacity to dentin collagen matrix, which are crucial for the maintenance of resin-dentin bond durability.
Collapse
Affiliation(s)
- Yaping Gou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Wei Jin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yanning He
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yu Luo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Ruirui Si
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yuan He
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhongchi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Guo R, Peng W, Yang H, Yao C, Yu J, Huang C. Evaluation of resveratrol-doped adhesive with advanced dentin bond durability. J Dent 2021; 114:103817. [PMID: 34560226 DOI: 10.1016/j.jdent.2021.103817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES This paper aimed to evaluate the influence of resveratrol-doped adhesive on the durability and antibiofilm capability of dentin bonding. METHODS Experimental adhesives were prepared by incorporating resveratrol into a universal adhesive at concentrations of 0 (control), 0.1, 1, and 10 mg/mL. The microtensile bond strength, fracture modes, and adhesive-dentin interface nanoleakage were assessed after 24 h of water storage, 10,000 times of thermocycling or 1-month of collagenase ageing. Relevant antibiofilm capability on Streptococcus mutans (S. mutans), in situ zymography, degree of conversion, and cytotoxicity of resveratrol-doped adhesives were also determined. RESULTS Irrespective of thermocycled or collagenase ageing, the resveratrol-doped adhesive (1 mg/mL) maintained the bond strength and reduced the nanoleakage expression. Meanwhile, the inhibitory ability on endogenous protease activity and S. mutans biofilm formation with acceptable biocompatibility were obtained. CONCLUSIONS This study suggested that the resveratrol-doped adhesive achieved effective improvement on dentin bond durability and secondary caries management. CLINICAL SIGNIFICANCE The application of the resveratrol-doped adhesive indicates promising benefits to increase the lifetime of composite restorations.
Collapse
Affiliation(s)
- Rui Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wenan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
19
|
Oosterlaken BM, Vena MP, de With G. In Vitro Mineralization of Collagen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004418. [PMID: 33711177 PMCID: PMC11469168 DOI: 10.1002/adma.202004418] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Collagen mineralization is a biological process in many skeletal elements in the animal kingdom. Examples of these collagen-based skeletons are the siliceous spicules of glass sponges or the intrafibrillar hydroxyapatite platelets in vertebrates. The mineralization of collagen in vitro has gained interest for two reasons: understanding the processes behind bone formation and the synthesis of scaffolds for tissue engineering. In this paper, the efforts toward collagen mineralization in vitro are reviewed. First, general introduction toward collagen type I, the main component of the extracellular matrix in animals, is provided, followed by a brief overview of collagenous skeletons. Then, the in vitro mineralization of collagen is critically reviewed. Due to their biological abundance, hydroxyapatite and silica are the focus of this review. To a much lesser extent, also some efforts with other minerals are outlined. Combining all minerals and the suggested mechanisms for each mineral, a general mechanism for the intrafibrillar mineralization of collagen is proposed. This review concludes with an outlook for further improvement of collagen-based tissue engineering scaffolds.
Collapse
Affiliation(s)
- Bernette Maria Oosterlaken
- Laboratory of Physical ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 513EindhovenMB5600The Netherlands
| | - Maria Paula Vena
- Laboratory of Physical ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 513EindhovenMB5600The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 513EindhovenMB5600The Netherlands
| |
Collapse
|
20
|
Yu F, Luo ML, Xu RC, Huang L, Yu HH, Meng M, Jia JQ, Hu ZH, Wu WZ, Tay FR, Xiao YH, Niu LN, Chen JH. A novel dentin bonding scheme based on extrafibrillar demineralization combined with covalent adhesion using a dry-bonding technique. Bioact Mater 2021; 6:3557-3567. [PMID: 33842741 PMCID: PMC8022110 DOI: 10.1016/j.bioactmat.2021.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023] Open
Abstract
Dentin bonding is a dynamic process that involves the penetration of adhesive resin monomers into the extrafibrillar and intrafibrillar demineralized collagen matrix using a wet-bonding technique. However, adhesive resin monomers lack the capacity to infiltrate the intrafibrillar space, and the excess water that is introduced by the wet-bonding technique remains at the bonding interface. This imperfectly bonded interface is inclined to hydrolytic degradation, severely jeopardizing the longevity of bonded clinical restorations. The present study introduces a dentin bonding scheme based on a dry-bonding technique, combined with the use of extrafibrillar demineralization and a collagen-reactive monomer (CRM)-based adhesive (CBA). Selective extrafibrillar demineralization was achieved using 1-wt% high-molecular weight (MW) carboxymethyl chitosan (CMCS) within a clinically acceptable timeframe to create a less aggressive bonding substance for dentin bonding due to its selectively extrafibrillar demineralization capacity. CMCS demineralization decreased the activation of in situ collagenase, improved the shrinking resistance of demineralized collagen, and thus provided stronger and more durable bonding than traditional phosphoric acid etching. The new dentin bonding scheme that contained CMCS and CBA and used a dry-bonding technique achieved an encouraging dentin bonding strength and durability with low technical sensitivity. This bonding scheme can be used to improve the stability of the resin-dentin interface and foster the longevity of bonded clinical restorations.
Collapse
Affiliation(s)
- F Yu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - M L Luo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - R C Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - L Huang
- Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - H H Yu
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - M Meng
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Q Jia
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Z H Hu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - W Z Wu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - F R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Y H Xiao
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - L N Niu
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J H Chen
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
The effect of prime-and-rinse approach using MDP micellar solutions on extrafibrillar demineralization and dentin bond performance. Dent Mater 2021; 37:e300-e313. [PMID: 33581909 DOI: 10.1016/j.dental.2021.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/06/2020] [Accepted: 01/20/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE This study investigated the effects of prime-and-rinse approach using 10-methacryloyloxydecyl dihydrogen phosphate (MDP) micellar solutions on extrafibrillar demineralization and dentin bond performance of etch-and-rinse adhesive. METHODS The micellar solutions were prepared by adding 15% MDP in two ethanol-aqueous (75:25, 55:45 V/V%) solutions, referring to MDP/EtOH75 and MDP/EtOH55. After mid-coronal dentin surfaces were either etched (control) or conditioned with MDP/EtOH75 and MDP/EtOH55 and rinsed, they were applied with adhesive (Adpter Single Bond 2) in dry- or wet-bonding mode and placed with composite resin (Filtek Z350 XT). They were prepared into multiple micro-beams for micro-tensile bond strengths (MTBS) testing after storage in water for 24 h or subjecting to thermocycling. The other pretreated dentin surfaces were analyzed by TF-XRD, ATR-FTIR, HRTEM, FE-SEM, contact angle measurement and nanoindentation testing. The MTBS data was analyzed with two-way ANOVA followed by LSD post-hoc test. RESULTS MDP/EtOH75 produced significantly greater MTBS values than MDP/EtOH55 and control after thermocycling aging in dry- or wet-bonding mode (P < 0.05). The ATR-FTIR spectrums shows that ratios of phosphate/monomer (1,034 cm-1/1,716 cm-1) on MDP/EtOH75-, MDP/EtOH55-treated dentin surfaces are 0.51 and 0.23, respectively. This is confirmed by HRTEM images and SAED pattern that intrafibrillar minerals were mostly preserved after treatment with MDP/EtOH75. MDP/EtOH75 produced significantly higher elastic modulus and nanohardness on pretreated dentin surface than MDP/EtOH55 (P < 0.05). TF-XRD pattern shows some MDP-Ca salts remained on the primed dentin surface. SIGNIFICANCE Prime-and-rinse approach using MDP/EtOH75 micellar solution could produce mostly extrafibrillar demineralization, and greatly increase dentin bond durability in dry- or wet-bonding mode.
Collapse
|
22
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Zarrin V, Moghadam ER, Hashemi F, Makvandi P, Samarghandian S, Khan H, Hashemi F, Najafi M, Mirzaei H. Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review. Front Pharmacol 2020; 11:585413. [PMID: 33381035 PMCID: PMC7767860 DOI: 10.3389/fphar.2020.585413] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Immune response, proliferation, migration and angiogenesis are juts a few of cellular events that are regulated by transforming growth factor-β (TGF-β) in cells. A number of studies have documented that TGF-β undergoes abnormal expression in different diseases, e.g., diabetes, cancer, fibrosis, asthma, arthritis, among others. This has led to great fascination into this signaling pathway and developing agents with modulatory impact on TGF-β. Curcumin, a natural-based compound, is obtained from rhizome and roots of turmeric plant. It has a number of pharmacological activities including antioxidant, anti-inflammatory, anti-tumor, anti-diabetes and so on. Noteworthy, it has been demonstrated that curcumin affects different molecular signaling pathways such as Wnt/β-catenin, Nrf2, AMPK, mitogen-activated protein kinase and so on. In the present review, we evaluate the potential of curcumin in regulation of TGF-β signaling pathway to corelate it with therapeutic impacts of curcumin. By modulation of TGF-β (both upregulation and down-regulation), curcumin ameliorates fibrosis, neurological disorders, liver disease, diabetes and asthma. Besides, curcumin targets TGF-β signaling pathway which is capable of suppressing proliferation of tumor cells and invading cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Haroon Khan
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fardin Hashemi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|