1
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
2
|
Hangyasi DB, Körtvélyessy G, Blašković M, Rider P, Rogge S, Siber S, Kačarević ŽP, Čandrlić M. Regeneration of Intrabony Defects Using a Novel Magnesium Membrane. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2018. [PMID: 38004067 PMCID: PMC10672749 DOI: 10.3390/medicina59112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Due to their specific morphology, the regeneration of intrabony defects (IBDs) represents one of the greatest challenges for clinicians. Based on the specific properties of a magnesium membrane, a new approach for the surgical treatment of IBD was developed. The surgical procedure was described using a series of three cases. Materials and Methods: The patients were healthy individuals suffering from a severe form of periodontitis associated with IBD. Based on radiographic examination, the patients had interproximal bone loss of at least 4 mm. Due to its good mechanical properties, it was easy to cut and shape the magnesium membrane into three different shapes to treat the specific morphology of each IBD. In accordance with the principles of guided bone regeneration, a bovine xenograft was used to fill the IBD in all cases. Results: After a healing period of 4 to 6 months, successful bone regeneration was confirmed using radiological analysis. The periodontal probing depth (PPD) after healing showed a reduction of 1.66 ± 0.29 mm. Conclusions: Overall, the use of the different shapes of the magnesium membrane in the treatment of IBD resulted in a satisfactory functional and esthetic outcome.
Collapse
Affiliation(s)
- David Botond Hangyasi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66, H-6720 Szeged, Hungary;
| | - Győző Körtvélyessy
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66, H-6720 Szeged, Hungary;
| | - Marko Blašković
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, Krešimirova 40/42, 51 000 Rijeka, Croatia;
| | - Patrick Rider
- Botiss Biomaterials GmbH, 15806 Zossen, Germany; (P.R.); (S.R.)
| | - Svenja Rogge
- Botiss Biomaterials GmbH, 15806 Zossen, Germany; (P.R.); (S.R.)
| | - Stjepan Siber
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia;
| | - Željka Perić Kačarević
- Botiss Biomaterials GmbH, 15806 Zossen, Germany; (P.R.); (S.R.)
- Department of Anatomy, Histology, Embryology, Pathologic Anatomy and Pathologic Histology, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| | - Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia;
| |
Collapse
|
3
|
Lin W, Zhou Z, Chen Z, Xu K, Wu C, Duan X, Dong L, Chen Z, Weng W, Cheng K. Accelerated Bone Regeneration on the Metal Surface through Controllable Surface Potential. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46493-46503. [PMID: 37729066 DOI: 10.1021/acsami.3c08796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Surface potential is rarely investigated as an independent factor in influencing tissue regeneration on the metal surface. In this work, the surface potential on the titanium (Ti) surface was designed to be tailored and adjusted independently, which arises from the ferroelectricity and piezoelectricity of poled poly(vinylidene fluoride-trifluoroethylene) (PVTF). Notably, it is found that such controllable surface potential on the metal surface significantly promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro as well as bone regeneration in vivo. In addition, the intracellular calcium ion (Ca2+) concentration measurement further proves that such controllable surface potential on the metal surface could activate the transmembrane calcium channels and allow the influx of extracellular Ca2+ into the cytoplasm. That might be the reason for improved osteogenic differentiation of BMSCs and bone regeneration. These findings reveal the potential of the metal surface with improved bioactivity for stimulation of osteogenesis and show great prospects for fabricable implantable medical devices with adjustable surface potential.
Collapse
Affiliation(s)
- Weiming Lin
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Zhiyuan Zhou
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Zhuoneng Chen
- Department of Gastroenterology, Zhejiang University School of Medicine, Affiliated Hospital 1, Hangzhou 310003, Peoples R China
| | - Kaicheng Xu
- Department of Orthopedics, Zhejiang University School of Medicine, Affiliated Hospital 2, Hangzhou 310009, Peoples R China
| | - Chengwei Wu
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Xiyue Duan
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Lingqing Dong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Province Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, Peoples R China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, Zhejiang University School of Medicine, Affiliated Hospital 1, Hangzhou 310003, Peoples R China
| | - Wenjian Weng
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Kui Cheng
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
- Department of Rehabilitation Medicine, Zhejiang University School of Medicine, Affiliated Hospital 1, Hangzhou 310003, Peoples R China
| |
Collapse
|
4
|
Yang F, Xue Y, Wang F, Guo D, He Y, Zhao X, Yan F, Xu Y, Xia D, Liu Y. Sustained release of magnesium and zinc ions synergistically accelerates wound healing. Bioact Mater 2023; 26:88-101. [PMID: 36875054 PMCID: PMC9974450 DOI: 10.1016/j.bioactmat.2023.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Skin wounds are a major medical challenge that threaten human health. Functional hydrogel dressings demonstrate great potential to promote wound healing. In this study, magnesium (Mg) and zinc (Zn) are introduced into methacrylate gelatin (GelMA) hydrogel via low-temperature magnetic stirring and photocuring, and their effects on skin wounds and the underlying mechanisms are investigated. Degradation testing confirmed that the GelMA/Mg/Zn hydrogel released magnesium ions (Mg2+) and zinc ions (Zn2+) in a sustained manner. The Mg2+ and Zn2+ not only enhanced the migration of human skin fibroblasts (HSFs) and human immortalized keratinocytes (HaCats), but also promoted the transformation of HSFs into myofibroblasts and accelerated the production and remodeling of extracellular matrix. Moreover, the GelMA/Mg/Zn hydrogel enhanced the healing of full-thickness skin defects in rats via accelerated collagen deposition, angiogenesis and skin wound re-epithelialization. We also identified the mechanisms through which GelMA/Mg/Zn hydrogel promoted wound healing: the Mg2+ promoted Zn2+ entry into HSFs and increased the concentration of Zn2+ in HSFs, which effectively induced HSFs to differentiate into myofibroblasts by activating the STAT3 signaling pathway. The synergistic effect of Mg2+ and Zn2+ promoted wound healing. In conclusion, our study provides a promising strategy for skin wounds regeneration.
Collapse
Affiliation(s)
- Fan Yang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yijia Xue
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Feilong Wang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Danni Guo
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yunjiao He
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Xiao Zhao
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Fanyu Yan
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yuqian Xu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Dandan Xia
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Department of Dental Materials, Peking University Hospital of Stomatology, Beijing, 100081, China
- Corresponding author. Department of Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Corresponding author. Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
5
|
Blašković M, Butorac Prpić I, Blašković D, Rider P, Tomas M, Čandrlić S, Botond Hangyasi D, Čandrlić M, Perić Kačarević Ž. Guided Bone Regeneration Using a Novel Magnesium Membrane: A Literature Review and a Report of Two Cases in Humans. J Funct Biomater 2023; 14:307. [PMID: 37367271 DOI: 10.3390/jfb14060307] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Guided bone regeneration (GBR) is a common procedure used to rebuild dimensional changes in the alveolar ridge that occur after extraction. In GBR, membranes are used to separate the bone defect from the underlying soft tissue. To overcome the shortcomings of commonly used membranes in GBR, a new resorbable magnesium membrane has been developed. A literature search was performed via MEDLINE, Scopus, Web of Science and PubMed in February 2023 for research on magnesium barrier membranes. Of the 78 records reviewed, 16 studies met the inclusion criteria and were analyzed. In addition, this paper reports two cases where GBR was performed using a magnesium membrane and magnesium fixation system with immediate and delayed implant placement. No adverse reactions to the biomaterials were detected, and the membrane was completely resorbed after healing. The resorbable fixation screws used in both cases held the membranes in place during bone formation and were completely resorbed. Therefore, the pure magnesium membrane and magnesium fixation screws were found to be excellent biomaterials for GBR, which supports the findings of the literature review.
Collapse
Affiliation(s)
- Marko Blašković
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, Krešimirova 40/42, 51 000 Rijeka, Croatia
- Dental Clinic Blašković, Linićeva ulica 16, 51 000 Rijeka, Croatia
| | - Ivana Butorac Prpić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| | | | | | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| | - Slavko Čandrlić
- Department of Interdisciplinary Areas, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| | - David Botond Hangyasi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66, H-6720 Szeged, Hungary
| | - Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| | - Željka Perić Kačarević
- Botiss Biomaterials GmbH, 15806 Zossen, Germany
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| |
Collapse
|
6
|
Liu M, Wang X, Li H, Xia C, Liu Z, Liu J, Yin A, Lou X, Wang H, Mo X, Wu J. Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. J Mater Chem B 2021; 9:3727-3744. [PMID: 33904568 DOI: 10.1039/d1tb00217a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial infections cause severe secondary damage to wounds and hinder wound healing processes. We prepared magnesium oxide (MgO) nanoparticle-incorporated nanofibrous membranes by electrospinning and investigated their potential for wound dressing and fighting bacterial infection. MgO-Incorporated membranes possessed good elasticity and flexibility similar to native skin tissue and were hydrophilic, ensuring comfortable contact with wound beds. The cytocompatibility of membranes was dependent on the amounts of incorporated MgO nanoparticles: lower amounts promoted while higher amounts suppressed the proliferation of fibroblasts, endothelial cells, and macrophages. The antibacterial capacity of membranes was proportional to the amounts of incorporated MgO nanoparticles and they inhibited more than 98% E. coli, 90% S. aureus, and 94% S. epidermidis. MgO nanoparticle-incorporated membranes effectively suppressed bacterial infection and significantly promoted the healing processes of infected full-thickness wounds in a rat model. Subcutaneous implantation demonstrated that the incorporation of MgO nanoparticles into electrospun membranes elevated their bioactivity as evidenced by considerable cell infiltration into their dense nanofiber configuration and enhanced the remodeling of implanted membranes. This study highlights the potential of MgO-incorporated electrospun membranes in preventing bacterial infections of wounds.
Collapse
Affiliation(s)
- Mingyue Liu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Xiaoyu Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Haiyan Li
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, P. R. China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, P. R. China
| | - Anlin Yin
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Xiangxin Lou
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Hongsheng Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China. and Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
7
|
Witte F. Biodegradable Metals. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|