1
|
Chen Y, Ullah A, Chen W, Xuan J, Huang X, Liang S, Shen B, Wu T. Cytokine modulation in pelvic organ prolapse and urinary incontinence: from molecular insights to therapeutic targets. Mol Med 2024; 30:214. [PMID: 39538179 PMCID: PMC11562709 DOI: 10.1186/s10020-024-00989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pelvic organ prolapse (POP) and urinary incontinence (UI) are common disorders that significantly impact women's quality of life. Studies have demonstrated that cytokines, including pro- and anti-inflammatory immune mediators, play a role in illness genesis and progression. Research on the inflammatory milieu of the pelvic floor has shown that POP patients have increased inflammation in vaginal tissues. This evidence revealed that significant changes in the inflammatory milieu of the pelvic floor are an aspect of the pathogenesis of POP. POP patients exhibit increased levels of inflammatory cytokines (IL-1, TNF, IFN, and others) in the front vaginal wall, which may alter collagen metabolism and contribute to POP. Studies indicate that cytokines such as IL-6, IL-10, and TGF, which are involved in inflammation, remodelling, and repair, have dual effects on POP and UI. They can promote tissue healing and regeneration but also exacerbate inflammation and fibrosis, contributing to the progression of these conditions. Understanding the dual roles of these cytokines could help us improve the vaginal microenvironment of women and treat POP and UI. Given the considerable changes in these cytokines, this review addresses studies published between 2000 and 2024 on the molecular mechanisms by which pro- and anti-inflammatory cytokines affect women with POP and UI. Furthermore, we explain novel therapeutic strategies for cytokine regulation, emphasizing the possibility of personalized treatments that address the underlying inflammatory milieu of the vagina in POP and UI patients. This thorough analysis aims to establish a foundation for future research and clinical applications, ultimately improving patient outcomes via designed cytokine-based therapies.
Collapse
Affiliation(s)
- Yongxiu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Weifang Chen
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianyan Xuan
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiaowen Huang
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shiqi Liang
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Tingfeng Wu
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Knight K, Breedlove S, Obisesan T, Egnot M, Daneshdoost N, King G, Meyn L, Gall K, Moalli P. Vaginal host response to polycarbonate urethane, an alternative material for the repair of pelvic organ prolapse. Acta Biomater 2024; 189:298-310. [PMID: 39362452 PMCID: PMC11719981 DOI: 10.1016/j.actbio.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Complications following surgical repair of pelvic organ prolapse (POP) with polypropylene mesh (PPM) are common. Recent data attributes complications, in part, to stiffness mismatches between the vagina and PPM. We developed a 3D printed elastomeric membrane (EM) from a softer polymer, polycarbonate urethane (PCU). EMs were manufactured with more material given the low inherent material strength of PCU. We hypothesized that the EMs would be associated with an improved host response as compared to PPM. A secondary goal was to optimize the material distribution (fiber width and device thickness) within EMs, in regards to the host response. EM constructs (2 × 1 cm2) with varied polymer stiffness, fiber width, and device thickness were implanted onto the vagina of New Zealand white rabbits for 12 weeks and compared to similarly sized PPMs. Sham implanted animals served as controls. Mixed effects generalized linear models were used to compare the effect of construct type accounting for differences in independent variables. EMs had an overall superior host response compared to PPM as evidenced by preservation of vaginal smooth muscle morphology (p-values<0.01), decreased total cellular response to construct fibers (p-values<0.001), and a reduced percent of macrophages (p-values<0.02) independent of how the material was distributed. Both PPM and EMs negatively impacted vaginal contractility and glycosaminoglycan (GAG) content relative to Sham (all p-values<0.001) with EMs having less of an impact on GAGs (p-values<0.003). The results suggest that softer PCU EMs made with more material are well tolerated by the vagina and comprises a future material for POP repair devices. STATEMENT OF SIGNIFICANCE: Prolapse is a debilitating condition in which loss of support to the vagina causes it and the organs supported by it to descend from their normal position in the pelvis. Surgical solutions to rebuild support involves the use of polypropylene mesh which is orders of magnitude stiffer than the vagina. This mismatch results in complications including exposure of the mesh into the vagina and pain. To provide an innovative solution for women, we have developed an elastomeric membrane from a soft polymer that matches the stiffness of the vagina. Here, we show in a rabbit animal model that this device incorporates better into the vagina and is associated with an overall improved host response as compared to polypropylene mesh.
Collapse
Affiliation(s)
- Katrina Knight
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States.
| | - Sophya Breedlove
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Temitope Obisesan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Morgan Egnot
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Niusha Daneshdoost
- Departments of Mechanical Engineering and Material Science, Duke University, Durham, NC, United States
| | - Gabrielle King
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Leslie Meyn
- Magee-Womens Research Institute, Pittsburgh, PA, United States; Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ken Gall
- Departments of Mechanical Engineering and Material Science, Duke University, Durham, NC, United States
| | - Pamela Moalli
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States; Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Maliha PG, Hotta M, Farolfi A, Grogan T, Alano R, Limon A, Lam E, Carlucci G, Bahri S, Salavati A, Benz M, Silverman D, Gupta P, Quon A, Allen-Auerbach M, Czernin J, Calais J. FAPI PET uptake patterns after invasive medical interventions: a single center retrospective analysis. Eur J Nucl Med Mol Imaging 2024; 51:3373-3385. [PMID: 38750372 DOI: 10.1007/s00259-024-06733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 09/03/2024]
Abstract
PURPOSE Fibroblast activation protein (FAP)-inhibitor (FAPI)-PET tracers allow imaging of the FAP-expressing cancer associated fibroblasts (CAF) and also the normal activated fibroblasts (NAF) involved in inflammation/fibrosis that may be present after invasive medical interventions. We evaluated [68Ga]Ga-FAPI-46 uptake patterns post-medical/invasive non-systemic interventions. METHODS This single-center retrospective analysis was conducted in 79 consecutive patients who underwent [68Ga]Ga-FAPI-46 PET/CT. Investigators reviewed prior patient medical/invasive interventions (surgery, endoscopy, biopsy, radiotherapy, foreign body placement (FBP) defined as implanted medical/surgical material present at time of scan) and characterized the anatomically corresponding FAPI uptake intensity both visually (positive if above surrounding background) and quantitatively (SUVmax). Interventions with missing data/images or confounders of [68Ga]Ga-FAPI-46 uptake (partial volume effect, other cause of increased uptake) were excluded. Available correlative FDG, DOTATATE and PSMA PET/CTs were analyzed when available. RESULTS 163 medical/invasive interventions (mostly surgeries (49%), endoscopies (18%) and non-surgical biopsies (10%)) in 60 subjects were included for analysis. 43/163 (26%) involved FBP. FAPI uptake occurred in 24/163 (15%) of interventions (average SUVmax 3.2 (mild), range 1.5-5.1). The median time-interval post-intervention to FAPI-PET was 47.5 months and was shorter when FAPI uptake was present (median 9.5 months) than when absent (median 60.1 months; p = 0.001). Cut-off time beyond which no FAPI uptake would be present post-intervention without FBP was 8.2 months, with a sensitivity, specificity, positive predictive value and negative predictive value of 82, 90, 99 and 31% respectively. No optimal cutoff point could be determined when considering interventions with FBP. No significant difference was detected between frequency of [68Ga]Ga-FAPI-46 and [18F]FDG uptake in intervention sites. Compared to [68Ga]Ga-PSMA-11, [68Ga]Ga-FAPI-46 revealed more frequent and intense post-interventional tracer uptake. CONCLUSION [68Ga]Ga-FAPI-46 uptake from medical/invasive interventions without FBP appears to be time dependent, nearly always absent beyond 8 months post-intervention, but frequently present for years with FBP.
Collapse
Affiliation(s)
- Peter George Maliha
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA.
- Nuclear Medicine, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada.
- Nuclear Medicine Department, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.
| | - Masatoshi Hotta
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
- Department of Nuclear Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo, 162-8655, Japan
| | - Andrea Farolfi
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Rejah Alano
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Andrea Limon
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Ethan Lam
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Giuseppe Carlucci
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Shadfar Bahri
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Ali Salavati
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Matthias Benz
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Daniel Silverman
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Pawan Gupta
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Andrew Quon
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Martin Allen-Auerbach
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Rudroff C, Madukkakuzhy J, Hernandez AV, Otten J, Ulrici C, Karapanos L, Ludwig S. Early safety and efficiency outcomes of a novel interdisciplinary laparoscopic resection rectopexy combined with sacrocolpopexy for women with obstructive defecation syndrome and pelvic organ prolapse: a single center study. BMC Surg 2024; 24:185. [PMID: 38877450 PMCID: PMC11177501 DOI: 10.1186/s12893-024-02474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Obstructive defecation syndrome (ODS) defines a disturbed defecation process frequently associated with pelvic organ prolapse (POP) in women that substantially compromises quality of life. Conservative management offers limited relief and a surgical intervention may be required. This is characterized by individual approaches. AIM OF THE STUDY: This retrospective single center study evaluated the surgical and clinical short-term outcome of a novel interdisciplinary laparoscopic resection rectopexy (L-RRP) with mesh- sacrocolpopexy (L-SCP) for women suffering from ODS and POP. METHODS The study participants underwent surgery in an interdisciplinary laparoscopic approach. Safety was the primary endpoint, assessed via postoperative morbidity classified by Clavien-Dindo scale. Secondary outcomes included evaluation of bowel function, fecal and urinary incontinence and pelvic organ prolapse status at 12 months follow-up. Additionally, a biological mesh (BM) was offered to women, who asked for an alternative to synthetic mesh material (SM). RESULTS Of the 44 consecutive patients requiring surgery for ODS and POP, 36 patients underwent the interdisciplinary surgical approach; 28 patients with SM and 8 patients with BM. In total 5 complications occurred, four of them were classified as minor. One minor complication was observed in the BM group. One anastomotic leakage occurred in the SM group. The two ODS scores, the bowel dysfunction score, and the incontinence score improved significantly (p = 0.006, p = 0.003, p < 0.001, and p = 0.0035, respectively). Pelvic floor anatomy was fully restored (POP-Q 0) for 29 (80%) patients after surgery. 17 patients (47%) suffered from urinary incontinence before surgery, which was restored in 13 patients (76.5%). CONCLUSIONS The interdisciplinary approach with L-RRP and L-SCP and the use of a BM in a small subgroup were technically feasible, safe, and effective in this single center setting. The study's retrospective design, the small sample size and the lack of comparators limit the generalizability of the findings requiring future randomized trials. TRIAL REGISTRATION Retrospectively registered at clinicaltrials.gov, trial number NCT05910021, date of registration 06/10/2023.
Collapse
Affiliation(s)
- Claudia Rudroff
- Department of Visceral Surgery and Functional Surgery of the Lower Gastrointestinal Tract (UGI), Clinic for General and Visceral Surgery, Evangelisches Klinikum Köln Weyertal GmbH, Academic Hospital of the University of Cologne, Weyertal 76, Cologne, 50931, Germany.
| | - Joshy Madukkakuzhy
- Department of Visceral Surgery and Functional Surgery of the Lower Gastrointestinal Tract (UGI), Clinic for General and Visceral Surgery, Evangelisches Klinikum Köln Weyertal GmbH, Academic Hospital of the University of Cologne, Weyertal 76, Cologne, 50931, Germany
| | - Alberto Vega Hernandez
- Department of Visceral Surgery and Functional Surgery of the Lower Gastrointestinal Tract (UGI), Clinic for General and Visceral Surgery, Evangelisches Klinikum Köln Weyertal GmbH, Academic Hospital of the University of Cologne, Weyertal 76, Cologne, 50931, Germany
- Department of General, Visceral and Minimally Invasive Surgery, Park-Klinik Weissensee Berlin, Berlin, Germany
| | - Jakob Otten
- Department of Visceral Surgery and Functional Surgery of the Lower Gastrointestinal Tract (UGI), Clinic for General and Visceral Surgery, Evangelisches Klinikum Köln Weyertal GmbH, Academic Hospital of the University of Cologne, Weyertal 76, Cologne, 50931, Germany
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
| | - Christoph Ulrici
- Department of Visceral Surgery and Functional Surgery of the Lower Gastrointestinal Tract (UGI), Clinic for General and Visceral Surgery, Evangelisches Klinikum Köln Weyertal GmbH, Academic Hospital of the University of Cologne, Weyertal 76, Cologne, 50931, Germany
- Department of General and Visceral Surgery, St.Josef Hospital Bonn-Beuel, GFO Kliniken Bonn, Bonn, Germany
| | - Leonidas Karapanos
- Department of Urology, Division of Neurourology, University Hospital of Cologne and Medical Faculty Cologne, 50931, Cologne, Germany
- Department of Urology, Municipal Hospital of Leverkusen, Leverkusen, Germany
| | - Sebastian Ludwig
- Department of Obstetrics and Gynecology, Division of Urogynecology and Pelvic Reconstructive Surgery, University Hospital of Cologne and Medical Faculty Cologne, 50931, Cologne, Germany
| |
Collapse
|
5
|
Yang B, Rutkowski N, Elisseeff J. The foreign body response: emerging cell types and considerations for targeted therapeutics. Biomater Sci 2023; 11:7730-7747. [PMID: 37904536 DOI: 10.1039/d3bm00629h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The foreign body response (FBR) remains a clinical challenge in the field of biomaterials due to its ability to elicit a chronic and sustained immune response. Modulating the immune response to materials is a modern paradigm in tissue engineering to enhance repair while limiting fibrous encapsulation and implant isolation. Though the classical mediators of the FBR are well-characterized, recent studies highlight that our understanding of the cell types that shape the FBR may be incomplete. In this review, we discuss the emerging role of T cells, stromal-immune cell interactions, and senescent cells in the biomaterial response, particularly to synthetic materials. We emphasize future studies that will deepen the field's understanding of these cell types in the FBR, with the goal of identifying therapeutic targets that will improve implant integration. Finally, we briefly review several considerations that may influence our understanding of the FBR in humans, including rodent models, aging, gut microbiota, and sex differences. A better understanding of the heterogeneous host cell response during the FBR can enable the design and development of immunomodulatory materials that favor healing.
Collapse
Affiliation(s)
- Brenda Yang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalie Rutkowski
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Darzi S, Alappadan J, Paul K, Mazdumder P, Rosamilia A, Truong YB, Gargett C, Werkmeister J, Mukherjee S. Immunobiology of foreign body response to composite PLACL/gelatin electrospun nanofiber meshes with mesenchymal stem/stromal cells in a mouse model: Implications in pelvic floor tissue engineering and regeneration. BIOMATERIALS ADVANCES 2023; 155:213669. [PMID: 37980818 DOI: 10.1016/j.bioadv.2023.213669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023]
Abstract
Pelvic Organ Prolapse (POP) is a common gynaecological disorder where pelvic organs protrude into the vagina. While transvaginal mesh surgery using non-degradable polymers was a commonly accepted treatment for POP, it has been associated with high rates of adverse events such as mesh erosion, exposure and inflammation due to serious foreign body response and therefore banned from clinical use after regulatory mandates. This study proposes a tissue engineering strategy using uterine endometrium-derived mesenchymal stem/stromal cells (eMSC) delivered with degradable poly L-lactic acid-co-poly ε-caprolactone (PLACL) and gelatin (G) in form of a composite electrospun nanofibrous mesh (P + G nanomesh) and evaluates the immunomodulatory mechanism at the material interfaces. The study highlights the critical acute and chronic inflammatory markers along with remodelling factors that determine the mesh surgery outcome. We hypothesise that such a bioengineered construct enhances mesh integration and mitigates the Foreign Body Response (FBR) at the host interface associated with mesh complications. Our results show that eMSC-based nanomesh significantly increased 7 genes associated with ECM synthesis and cell adhesion including, Itgb1, Itgb2, Vcam1, Cd44, Cdh2, Tgfb1, Tgfbr1, 6 genes related to angiogenesis including Ang1, Ang2, Vegfa, Pdgfa, Serpin1, Cxcl12, and 5 genes associated with collagen remodelling Col1a1, Col3a1, Col6a1, Col6a2, Col4a5 at six weeks post-implantation. Our findings suggest that cell-based tissue-engineered constructs potentially mitigate the FBR response elicited by biomaterial implants. From a clinical perspective, this construct provides an alternative to current inadequacies in surgical outcomes by modulating the immune response, inducing angiogenesis and ECM synthesis during the acute and chronic phases of the FBR.
Collapse
Affiliation(s)
- Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Janet Alappadan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Permita Mazdumder
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Anna Rosamilia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
| | | | - Caroline Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Jerome Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
7
|
Chen J, Tang X, Wang Z, Perez A, Yao B, Huang K, Zhang Y, King MW. Techniques for navigating postsurgical adhesions: Insights into mechanisms and future directions. Bioeng Transl Med 2023; 8:e10565. [PMID: 38023705 PMCID: PMC10658569 DOI: 10.1002/btm2.10565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 12/01/2023] Open
Abstract
Postsurgical adhesions are a common complication of surgical procedures that can lead to postoperative pain, bowel obstruction, infertility, as well as complications with future procedures. Several agents have been developed to prevent adhesion formation, such as barriers, anti-inflammatory and fibrinolytic agents. The Food and Drug Administration (FDA) has approved the use of physical barrier agents, but they have been associated with conflicting clinical studies and controversy in the clinical utilization of anti-adhesion barriers. In this review, we summarize the human anatomy of the peritoneum, the pathophysiology of adhesion formation, the current prevention agents, as well as the current research progress on adhesion prevention. The early cellular events starting with injured mesothelial cells and incorporating macrophage response have recently been found to be associated with adhesion formation. This may provide the key component for developing future adhesion prevention methods. The current use of physical barriers to separate tissues, such as Seprafilm®, composed of hyaluronic acid and carboxymethylcellulose, can only reduce the risk of adhesion formation at the end stage. Other anti-inflammatory or fibrinolytic agents for preventing adhesions have only been studied within the context of current research models, which is limited by the lack of in-vitro model systems as well as in-depth study of in-vivo models to evaluate the efficiency of anti-adhesion agents. In addition, we explore emerging therapies, such as gene therapy and stem cell-based approaches, that may offer new strategies for preventing adhesion formation. In conclusion, anti-adhesion agents represent a promising approach for reducing the burden of adhesion-related complications in surgical patients. Further research is needed to optimize their use and develop new therapies for this challenging clinical problem.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Xiaoqi Tang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ziyu Wang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Arielle Perez
- UNC School of Medicine Department of SurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Benjamin Yao
- Montefiore Medical Center Department of Obstetrics & Gynecology & Women's Health ServicesMontefiore Medical CenterBronxNew YorkUSA
| | - Ke Huang
- Joint Department of Biomedical EngineeringNorth Carolina State University & University of North Carolina at Chapel HillRaleighNorth CarolinaUSA
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUnited States
| | - Yang Zhang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Martin W. King
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
- College of Textiles, Donghua UniversityShanghaiSongjiangChina
| |
Collapse
|
8
|
Protsepko O, Voisard P, Kuhn C, Maccagno A, Dannecker C, Jeschke U, Pauli F, Garrido F. Induction of a different immune response in non-titanized compared to titanized polypropylene meshes. Acta Biomater 2023; 169:363-371. [PMID: 37579913 DOI: 10.1016/j.actbio.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
It is well known that pelvic organ prolapse (POP) significantly reduces the quality of life of affected women and in many cases requires corrective surgery. Aim of the study was to compare the immune response against titanized versus non-titanized meshes, especially macrophage polarization and immune checkpoint association. For this, we analyzed 644 POP surgeries, which were performed between 2017 and 2022, in our department. Four of them needed revision surgery caused by erosion. We analyzed the influx of CD68 & CD163 positive macrophages and the expression of immune checkpoint molecules PD-L1 and PD1 in these 4 patients. We identified a large number of CD68 and CD163 positive macrophages and additionally a PD-L1 expression of these cells. Based on the in-vivo results, we isolated monocytes and co-cultivated monocytes with different mesh material covered with or without fibroblasts. We identified a significantly enhanced macrophage activation and PD-L1 expression in macrophages surrounding non-titanized polypropylene mesh material. Encapsulation of the material by fibroblasts was crucial for that. Specifically, CD68-positive macrophages are upregulated (p < 0.001), co-expressing PD-L1 (p < 0.001) in monocytes co-cultivated with non-titanized polypropylene meshes. Monocytes co-cultivated with titanized polypropylene meshes showed significantly lower expression of CD163 (p = 0.027) and PD-L1 (p = 0.022). In conclusion, our in vitro data suggest that the titanium coating leads to a decreased polarization of macrophages and to a decreased immune response compared to non-titanized meshes. This could be an indication for the increased incidence of erosion of the non-titanized meshes, which is a severe complication of this procedure and requires revision surgery. STATEMENT OF SIGNIFICANCE: Pelvic organ prolapse is a well-known problem for women and often requires corrective surgery. Polypropylene meshes are often used, which differ in their coating (titanized vs. non-titanized). A severe side effect of these surgeries is mesh erosion, due to onset of inflammation, which requires revision surgery. We examined all erosion cases (4 of 644 patients) with implanted nontitanium-coated meshes by immunohistochemistry and found upregulation of macrophage polarization (as markers CD68 and CD163) and increased expression of the immune checkpoint molecules PD-L1 and PD1. This suggests inflammatory processes and an enhanced immune response. In addition, we set up an in vitro experiment to investigate whether coating plays a role. Here, we demonstrated that the non-titanized meshes elicited a significantly higher immune response in comparison to titanized meshes, which could lead to the higher erosion rate of the non-titanized meshes. Our results highlight the benefit of titanized meshes, which should lead to a lower revision surgery rate and thus improved patient outcome.
Collapse
Affiliation(s)
- Oleksii Protsepko
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Philipp Voisard
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Andrea Maccagno
- Department of Pathology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Christian Dannecker
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany.
| | - Friedrich Pauli
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Fabian Garrido
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| |
Collapse
|
9
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
10
|
Morrison RA, Brookes S, Puls TJ, Cox A, Gao H, Liu Y, Voytik-Harbin SL. Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses. Biomater Sci 2023; 11:3278-3296. [PMID: 36942875 PMCID: PMC10152923 DOI: 10.1039/d3bm00091e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days. Oligomer scaffolds were noninflammatory, eliciting minimal innate inflammation and immune cell accumulation similar to sham surgical controls. Genes associated with Th2 and regulatory T cells were instead upregulated, implying a novel pathway to immune tolerance and regenerative remodeling for biomaterials.
Collapse
Affiliation(s)
- Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Sarah Brookes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Tomalty D, Giovannetti O, Gaudet D, Clohosey D, Harvey MA, Johnston S, Komisaruk B, Hannan J, Goldstein S, Goldstein I, Adams MA. The prostate in women: an updated histological and immunohistochemical profile of the female periurethral glands and their relationship to an implanted midurethral sling. J Sex Med 2023; 20:612-625. [PMID: 36763941 DOI: 10.1093/jsxmed/qdac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND There is evidence of glandular tissue in the region of the anterior vaginal wall-female periurethral tissue (AVW-FPT) that has similar morphology and immunohistochemistry to the prostate in men. Surgical injury to this tissue has been suggested as a potential cause of sexual dysfunction following midurethral sling (MUS) procedures. However, the anatomy and embryology of these glands have not been fully resolved. This has led to difficulties in classifying this tissue as a prostate and defining its clinical significance related to MUS procedures. AIM To describe the histological and immunohistochemical characteristics of the female periurethral glands using markers of prostate tissue and innervation and to examine their anatomical relationships to an implanted MUS. METHODS Using gross and fine dissection, the AVW-FPT was dissected from 9 cadavers. Prior to dissection, 2 cadavers underwent simulation of the MUS procedure by a urogynecologist. Samples were paraffin embedded and serially sectioned. Immunohistochemistry was performed using markers of prostate tissue and innervation. OUTCOMES Redundant immunohistochemical localization of markers for prostatic tissue and innervation of the glandular tissue of the AVW-FPT, including the region of MUS implantation. RESULTS Female periurethral glands were immunoreactive for markers of male prostatic tissue, including prostate-specific antigen, androgen receptor, HOXB13, and NKX3.1. Markers of innervation (protein gene product 9.5, choline acetyl transferase, and vasoactive intestinal polypeptide) also localized to certain regions of the glandular tissue and associated blood supply. Surgical simulation of the MUS procedure demonstrated that some periurethral glands are located in close proximity to an implanted sling. CLINICAL TRANSLATION The AVW-FPT contains glandular tissue in the surgical field of MUS implantation. Iatrogenic damage to the female periurethral glands and the associated innervation during surgery could explain the negative impacts on sexual dysfunction reported following MUS procedures. STRENGTHS AND LIMITATIONS This is the first study to characterize the female periurethral glands using markers of prostatic tissue in concert with markers of general and autonomic innervation and characterize their anatomical relationships within the surgical field of MUS implantation. The small sample size is a limitation of this study. CONCLUSION We provide further evidence that the AVW-FPT contains innervated glands that are phenotypically similar to the male prostate and may share a common embryonic origin. The microscopic and immunohistochemical features of the periurethral glands may be indicative of their functional capacity in sexual responses. The location of these glands in the surgical field of MUS procedures underscores the clinical significance of this tissue.
Collapse
Affiliation(s)
- Diane Tomalty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Olivia Giovannetti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Dionne Gaudet
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Diandra Clohosey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Marie-Andrée Harvey
- Obstetrics and Gynaecology, Kingston General Hospital, Kingston, ON, K7L 2V7, Canada
| | - Shawna Johnston
- Obstetrics and Gynaecology, Kingston General Hospital, Kingston, ON, K7L 2V7, Canada
| | - Barry Komisaruk
- Department of Psychology, Rutgers University, Newark, NJ 07102, United States
| | - Johanna Hannan
- Department of Physiology, East Carolina University, Greenville, NC 27834, United States
| | - Sue Goldstein
- San Diego Sexual Medicine, San Diego, CA 92120, United States
| | - Irwin Goldstein
- San Diego Sexual Medicine, San Diego, CA 92120, United States
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
12
|
Shafaat S, Roman Regueros S, Chapple C, MacNeil S, Hearnden V. Estradiol-17β [E 2] stimulates wound healing in a 3D in vitro tissue-engineered vaginal wound model. J Tissue Eng 2023; 14:20417314221149207. [PMID: 36726532 PMCID: PMC9885031 DOI: 10.1177/20417314221149207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/15/2022] [Indexed: 02/03/2023] Open
Abstract
Childbirth contributes to common pelvic floor problems requiring reconstructive surgery in postmenopausal women. Our aim was to develop a tissue-engineered vaginal wound model to investigate wound healing and the contribution of estradiol to pelvic tissue repair. Partial thickness scalpel wounds were made in tissue models based on decellularized sheep vaginal matrices cultured with primary sheep vaginal epithelial cells and fibroblasts. Models were cultured at an airliquid interface (ALI) for 3 weeks with and without estradiol-17β [E2]. Results showed that E2 significantly increased wound healing and epithelial maturation. Also, E2 led to collagen reorganization after only 14 days with collagen fibers more regularly aligned and compactly arranged Additionally, E2 significantly downregulated α-SMA expression which is involved in fibrotic tissue formation. This model allows one to investigate multiple steps in vaginal wound healing and could be a useful tool in developing therapies for improved tissue healing after reconstructive pelvic floor surgery.
Collapse
Affiliation(s)
- Sarah Shafaat
- Department of Materials Science and
Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Sabiniano Roman Regueros
- Department of Materials Science and
Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Christopher Chapple
- Department of Urology, Royal
Hallamshire Hospital, Urology Clinic, Sheffield, UK
| | - Sheila MacNeil
- Department of Materials Science and
Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK,Sheila MacNeil, Department of Materials
Science and Engineering, Kroto Research Institute, University of Sheffield,
Broad Lane, Sheffield S5 &AU, UK.
| | - Vanessa Hearnden
- Department of Materials Science and
Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Knight KM, King GE, Palcsey SL, Suda A, Liang R, Moalli PA. Mesh Deformation: a mechanism underlying polypropylene prolapse mesh complications in vivo. Acta Biomater 2022; 148:323-335. [PMID: 35671876 DOI: 10.1016/j.actbio.2022.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Polypropylene meshes used in pelvic organ prolapse (POP) repair are hampered by complications. Most POP meshes are highly unstable after tensioning ex vivo, as evidenced by marked deformations (pore collapse and wrinkling) that result in altered structural properties and material burden. By intentionally introducing collapsed pores and wrinkles into a mesh that normally has open pores and remains relatively flat after implantation, we reproduce mesh complications in vivo. To do this, meshes were implanted onto the vagina of rhesus macaques in nondeformed (flat) vs deformed (pore collapse +/- wrinkles) configurations and placed on tension. Twelve weeks later, animals with deformed meshes had two complications, 1) mesh exposure through the vaginal epithelium, and 2) myofibroblast proliferation with fibrosis - a mechanism of pain. The overarching response to deformed mesh was vaginal thinning associated with accelerated apoptosis, reduced collagen content, increased proteolysis, deterioration of mechanical integrity, and loss of contractile function consistent with stress shielding - a precursor to mesh exposure. Regional differences were observed, however, with some areas demonstrating myofibroblast proliferation and matrix deposition. Variable mechanical cues imposed by deformed meshes likely induce these two disparate responses. Utilizing meshes associated with uniform stresses on the vagina by remaining flat with open pores after tensioning is critical to improving outcomes. STATEMENT OF SIGNIFICANCE: Pain and exposure are the two most reported complications associated with the use of polypropylene mesh in urogynecologic procedures. Most meshes have unstable geometries as evidenced by pore collapse and wrinkling after tensioning ex vivo, recapitulating what is observed in meshes excised from women with complications in vivo. We demonstrate that collapsed pores and wrinkling results in two distinct responses 1) mesh exposure associated with tissue degradation and atrophy and 2) myofibroblast proliferation and matrix deposition consistent with fibrosis, a tissue response associated with pain. In conclusion, mesh deformation leads to areas of tissue degradation and myofibroblast proliferation, the likely mechanisms of mesh exposure and pain, respectively. These data corroborate that mesh implantation in a flat configuration with open pores is a critical factor for reducing complications in mesh-augmented surgeries.
Collapse
Affiliation(s)
- Katrina M Knight
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Magee-Womens Research Institute, Pittsburgh, PA.
| | | | | | - Amanda Suda
- School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rui Liang
- Magee-Womens Research Institute, Pittsburgh, PA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Pamela A Moalli
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA; Division of Urogynecology and Reconstructive Pelvic Surgery, Magee-Womens Hospital of the University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
14
|
Peña ME, Angeramo CA, Schlottmann F, Sadava EE. Losartan modifies mesh integration after abdominal wall repair: an experimental study. Hernia 2022; 26:937-944. [PMID: 34138370 DOI: 10.1007/s10029-021-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Angiotensin II (AT II) receptor blockers have previously shown to reduce inflammatory response in many settings. We aimed to assess the effects of ATII receptor blocker (Losartan) on mesh integration after abdominal wall repair in a rat model. METHODS A total of 16 Wistar-Kyoto (WKY) and 16 previously hypertensive (SHRSP) rats were isolated. An acute ventral hernia followed by a bridged repair with heavyweight polypropylene mesh was performed. Subjects received either normal saline (WKY-C n = 8 and SHRPS-C n = 8) or 40 mg/kg losartan (WKY-L n = 8) and SHRPS-L n = 8) in the postoperative period. Blood pressure was recorded preoperatively and weekly after surgery. Necropsy with en-bloc resection of the abdominal wall was performed at postoperative day 30. Macroscopic and microscopic evaluations of the specimens were conducted. H&E and Masson's trichrome were used for histologic evaluation. RESULTS Both groups receiving Losartan showed a significant reduction of blood pressure after surgery (WKY-L: 130/85 vs 116/81 mmHg, SHRPS-L: 176/137 vs 122/101 mmHg, p < 0.01). A significant reduction in mesh incorporation and adherence scores were also observed on macroscopic analysis in Losartan groups (p < 0.01 and p = 0.02, respectively). Microscopically, higher immature fibroplasia was observed after Losartan, with a significant reduction in scar plate formation and inflammatory response on the prosthetic surface (p = 0.04 and p = 0.02, respectively). CONCLUSION Losartan modifies the interaction between the host tissue and the prosthesis. An impairment in mesh integration and immature fibroplasia in both normotensive and hypertensive rats detected in our model warrants further research.
Collapse
Affiliation(s)
- M E Peña
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina
| | - C A Angeramo
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina
| | - F Schlottmann
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina
| | - E E Sadava
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina.
- Division of Abdominal Wall Surgery, Department of Surgery, Hospital Alemán of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Kyriakides TR, Kim HJ, Zheng C, Harkins L, Tao W, Deschenes E. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater 2022; 17:10.1088/1748-605X/ac5574. [PMID: 35168213 PMCID: PMC9159526 DOI: 10.1088/1748-605x/ac5574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Implanted biomaterials elicit a series of distinct immune and repair-like responses that are collectively known as the foreign body reaction (FBR). These include processes involving innate immune inflammatory cells and wound repair cells that contribute to the encapsulation of biomaterials with a dense collagenous and largely avascular capsule. Numerous studies have shown that the early phase is dominated by macrophages that fuse to form foreign body giant cells that are considered a hallmark of the FBR. With the advent of more precise cell characterization techniques, specific macrophage subsets have been identified and linked to more or less favorable outcomes. Moreover, studies comparing synthetic- and natural-based polymer biomaterials have allowed the identification of macrophage subtypes that distinguish between fibrotic and regenerative responses. More recently, cells associated with adaptive immunity have been shown to participate in the FBR to synthetic polymers. This suggests the existence of cross-talk between innate and adaptive immune cells that depends on the nature of the implants. However, the exact participation of adaptive immune cells, such as T and B cells, remains unclear. In fact, contradictory studies suggest either the independence or dependence of the FBR on these cells. Here, we review the evidence for the involvement of adaptive immunity in the FBR to synthetic polymers with a focus on cellular and molecular components. In addition, we examine the possibility that such biomaterials induce specific antibody responses resulting in the engagement of adaptive immune cells.
Collapse
Affiliation(s)
- Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University. New Haven CT 06405,Department of Pathology, Yale University. New Haven CT 06405,Vascular Biology and Therapeutics Program. Yale University. New Haven CT 06405
| | - Hyun-Je Kim
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Lauren Harkins
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Wanyun Tao
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Emily Deschenes
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| |
Collapse
|
16
|
Guler Z, Roovers JP. Role of Fibroblasts and Myofibroblasts on the Pathogenesis and Treatment of Pelvic Organ Prolapse. Biomolecules 2022; 12:biom12010094. [PMID: 35053242 PMCID: PMC8773530 DOI: 10.3390/biom12010094] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Pelvic organ prolapse (POP) is a multifactorial connective tissue disorder caused by damage to the supportive structures of the pelvic floor, leading to the descent of pelvic organs in the vagina. In women with POP, fibroblast function is disturbed or altered, which causes impaired collagen metabolism that affects the mechanical properties of the tissue. Ideal surgical repair, either native tissue repair or POP surgery using an implant, aims to create a functional pelvic floor that is load-bearing, activating fibroblasts to regulate collagen metabolism without creating fibrotic tissue. Fibroblast function plays a crucial role in the pathophysiology of POP by directly affecting the connective tissue quality. On the other hand, fibroblasts determine the success of the POP treatment, as the fibroblast-to-(myo)fibroblast transition is the key event during wound healing and tissue repair. In this review, we aim to resolve the question of “cause and result” for the fibroblasts in the development and treatment of POP. This review may contribute to preventing the development and progress of anatomical abnormalities involved in POP and to optimizing surgical outcomes.
Collapse
|
17
|
Abhari RE, Izett-Kay ML, Morris HL, Cartwright R, Snelling SJB. Host-biomaterial interactions in mesh complications after pelvic floor reconstructive surgery. Nat Rev Urol 2021; 18:725-738. [PMID: 34545239 DOI: 10.1038/s41585-021-00511-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Polypropylene (PPL) mesh is widely used in pelvic floor reconstructive surgery for prolapse and stress urinary incontinence. However, some women, particularly those treated using transvaginal PPL mesh placement for prolapse, experience intractable pain and mesh exposure or extrusion. Explanted tissue from patients with complications following transvaginal implantation of mesh is typified by a dense fibrous capsule with an immune cell-rich infiltrate, suggesting that the host immune response has a role in transvaginal PPL mesh complications through the separate contributions of the host (patient), the biological niche within which the material is implanted and biomaterial properties of the mesh. This immune response might be strongly influenced by both the baseline inflammatory status of the patient, surgical technique and experience, and the unique hormonal, immune and microbial tissue niche of the vagina. Mesh porosity, surface area and stiffness also might have an effect on the immune and tissue response to transvaginal mesh placement. Thus, a regulatory pathway is needed for mesh development that recognizes the roles of host and biological factors in driving the immune response to mesh, as well as mandatory mesh registries and the longitudinal surveillance of patients.
Collapse
Affiliation(s)
- Roxanna E Abhari
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.
| | - Matthew L Izett-Kay
- Department of Urogynaecology, Oxford University Hospitals NHS Trust, Oxford, UK.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Hayley L Morris
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Rufus Cartwright
- Department of Urogynaecology, London North West Hospitals NHS Trust, London, UK.,Department of Epidemiology & Biostatistics, Imperial College London, London, UK
| | - Sarah J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
18
|
Characterization of innate and adaptive immune cells involved in the foreign body reaction to polypropylene meshes in the human abdomen. Hernia 2021; 26:309-323. [PMID: 33788008 PMCID: PMC8881270 DOI: 10.1007/s10029-021-02396-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Background Polypropylene (PP) mesh is widely used to reinforce tissues. The foreign body reaction (FBR) to the implant is dominated by innate immune cells, especially macrophages. However, considerable numbers of adaptive immune cells, namely T cells, have also been regularly observed, which appear to play a crucial role in the long-term host response. Methods This study investigated the FBR to seven human PP meshes, which were removed from the abdomen for recurrence after a median of one year. Using immunofluorescence microscopy, the FBR was examined for various innate (CD11b+ myeloid, CD68+ macrophages, CD56+ NK) and adaptive immune cells (CD3+ T, CD4+ T-helper, CD8+ cytotoxic, FoxP3+ T-regulatory, CD20+ B) as well as “conventional” immune cells (defined as cells expressing their specific immune cell marker without co-expressing CD68). Results T-helper cells (19%) and regulatory T-cells (25%) were present at comparable rates to macrophages, and clustered significantly toward the mesh fibers. For all cell types the lowest proportions of “conventional” cells (< 60%) were observed at the mesh–tissue interface, but increased considerably at about 50–100 µm, indicating reduced stimulation with rising distance to the mesh fibers. Conclusion Both innate and adaptive immune cells participate in the chronic FBR to PP meshes with T cells and macrophages being the predominant cell types, respectively. In concordance with the previous data, many cells presented a “hybrid” pattern near the mesh fibers. The complexity of the immune reaction seen within the foreign body granuloma may explain why approaches focusing on specific cell types have not been very successful in reducing the chronic FBR. Supplementary Information The online version contains supplementary material available at 10.1007/s10029-021-02396-7.
Collapse
|
19
|
Comparison of 2 single incision slings on the vagina in an ovine model. Am J Obstet Gynecol 2021; 224:78.e1-78.e7. [PMID: 32707267 DOI: 10.1016/j.ajog.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Stress urinary incontinence carries a significant healthcare burden for women worldwide. Single incision slings are minimally invasive mesh devices designed to treat stress urinary incontinence. For prolapse repair, meshes with higher porosity and lower structural stiffness have been associated with improved outcomes. OBJECTIVE In this study, we compared the higher stiffness, lower porosity Altis sling with the lower stiffness, higher porosity Solyx sling in an ovine model. We hypothesized that SIS-B would have a negative impact on the host response. STUDY DESIGN A total of Altis and Solyx single incision slings were implanted suburethrally into sheep according to the manufacturer's instructions on minimal tension. The mesh-urethral-vaginal complex and adjacent ungrafted vagina (no mesh control) were harvested en bloc at 3 months. Masson's trichrome and picrosirius red staining of 6 μm thin sections was performed to measure interfiber distance and tissue integration. Smooth muscle contractility to a 120 mM KCl stimulus was performed in an organ bath to measure myofiber-driven contractions. Standard biochemical assays were used to quantify glycosaminoglycan, total collagen, and elastin content, and collagen subtypes. Bending stiffness was performed in response to a uniaxial force to define susceptibility to folding/buckling. Statistical analysis was performed using Mann-Whitney, Gabriel's pairwise post hoc, Wilcoxon matched-pairs, and chi-square tests. RESULTS The animals had similar ages (3-5 years), parity (multiparous), and weights (45-72 kg). Trichrome cross sections showed that the Altis sling buckled in a "C" or "S" shape in most samples (8 of 11), whereas buckling after Solyx sling implantation was observed in only a single sample (1 of 13; P=.004). Tissue integration, as measured by the presence of collagen or smooth muscle between the mesh fibers on trichrome 4× imaging, was increased in samples implanted with the Solyx sling compared with the Altis sling (P<.05). Total collagen content decreased significantly with both products when compared with the ungrafted vagina consistent with stress shielding. There was no difference in the 2 groups with regard to glycosaminoglycan or elastin content. The Altis sling mesh tissue complex demonstrated significantly higher amounts of both collagen types I and III than the Solyx sling-implanted tissue and the ungrafted control. Smooth muscle contractility in response to 120 mM KCl was decreased after implantation of both slings compared with the sham (P=.011 and P<.01), with no difference between mesh types (P=.099). Bending stiffness in the Altis sling was more than 4 times lower than in the Solyx, indicating an increased propensity to buckle (0.0186 vs 0.0883). CONCLUSION The structurally stiffer Altis sling had decreased tissue integration and increased propensity to buckle after implantation. Increased collagen types I and III after the implantation of this device suggests that these changes may be associated with a fibrotic response. In contrast, the Solyx sling largely maintained a flat configuration and had improved tissue integration. The deformation of the Altis sling is not an intended effect and is likely caused by its lower bending stiffness. Both meshes induced a decrease in collagen content and smooth muscle contractility similar to previous findings for prolapse meshes and consistent with stress shielding. The long-term impact of buckling warrants further investigation.
Collapse
|
20
|
T regulatory cells and TGF-β1: Predictors of the host response in mesh complications. Acta Biomater 2020; 115:127-135. [PMID: 32771596 DOI: 10.1016/j.actbio.2020.07.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Polypropylene mesh is frequently used in urogynecology procedures; however, pain and mesh exposure into the vagina occur in ~10% of cases. Mesh-induced pain, which occurs with or without exposure, persists after removal in 50% of cases. Chronic pain history predicts poor response to mesh removal but only a fraction have this diagnosis. We hypothesize that mesh induced pain is correlated with fibrosis and failure to improve with a heightened inflammatory and fibrotic host response. Women undergoing mesh removal were offered participation in a mesh biorepository. Standardized questionnaires including visual analog scale (VAS) pelvic pain scores were completed at enrollment and 6 months after removal. Responders were considered those with ≥13 mm VAS improvement. 30 mesh-tissue explants were randomly selected for analysis. Samples were labeled for CD8, CD4 (Th) and FoxP3 (Tregs). Peri-fiber collagen deposition (fibrosis) was measured using a customized semi-quantitative assay. Concentrations of TGF-b1, bFGF, MCP-1, PDGF-BB, and IGFBP-1 in tissue were determined by immunoassay and compared to vaginal control biopsies with pathway analysis. VAS pain scores were correlated with degree of histologic fibrosis. Responders had more Tregs (7.8 vs 0.3 per mm2, p = 0.036) and patients were 1.6 times as likely to be a responder for every additional Treg/mm2 (p = 0.05). Pro-fibrotic TGF-β1 was doubled in nonresponders (p = 0.032). On pathway analysis, decreased bFGF and increased PDGF-BB provide a possible mechanism for upregulation of TGF-β1. In conclusion, fibrosis is a plausible mechanism of pain complications and the adaptive immune response likely contributes to mitigation/prevention of complications and recovery in affected patients. STATEMENT OF SIGNIFICANCE: Polypropylene mesh improves anatomical outcomes in urogynecologic procedures, but is associated with complications, including pain and exposure through the vaginal epithelium. Mesh-induced pain is difficult to treat, and it is unclear why only half of women experience pain improvement after mesh removal. In this study, patient pain correlated with the presence of fibrosis and women with more T regulatory cells and lower TGF-β1 were more likely to have pain improvement following mesh removal. These findings implicate fibrosis as a mechanism of pain complications and suggest that the adaptive immune response may be responsible for prevention of complication and recovery. This improved understanding of how mesh can lead to pain moves us closer to the ultimate goal of preventing mesh complications.
Collapse
|
21
|
Jürgensen HJ, van Putten S, Nørregaard KS, Bugge TH, Engelholm LH, Behrendt N, Madsen DH. Cellular uptake of collagens and implications for immune cell regulation in disease. Cell Mol Life Sci 2020; 77:3161-3176. [PMID: 32100084 PMCID: PMC11105017 DOI: 10.1007/s00018-020-03481-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.
Collapse
Affiliation(s)
- Henrik J Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark.
| | - Sander van Putten
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Kirstine S Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730, Herlev, Denmark.
| |
Collapse
|