1
|
Cahn D, Stern A, Buckenmeyer M, Wolf M, Duncan GA. Extracellular Matrix Limits Nanoparticle Diffusion and Cellular Uptake in a Tissue-Specific Manner. ACS NANO 2024; 18:32045-32055. [PMID: 39499215 DOI: 10.1021/acsnano.4c10381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Overexpression and remodeling of the extracellular matrix (ECM) in cancer and other diseases may significantly reduce the ability of nanoparticles to reach target sites, preventing the effective delivery of therapeutic cargo. Here, we evaluate how tissue-specific properties of the ECM affect nanoparticle diffusion using fluorescence video microscopy and cellular uptake via flow cytometry. In addition, we determined how poly(ethylene glycol) (PEG) chain length and branching influence the ability of PEGylated nanoparticles to overcome the ECM barrier from different tissues. We found that purified collagen, in the absence of other ECM proteins and polysaccharides, presented a greater barrier to nanoparticle diffusion compared to the decellularized ECM from the liver, lung, and small intestine submucosa. Nanoparticles with dense PEG coatings achieved up to ∼2000-fold enhancements in diffusion rate and cellular uptake up to ∼5-fold greater than non-PEGylated nanoparticles in the presence of the ECM. We also found nanoparticle mobility in the ECM varied significantly between tissue types, and the optimal nanoparticle PEGylation strategy to enhance ECM penetration was strongly dependent on ECM concentration. Overall, our data support the use of low molecular weight PEG coatings which provide an optimal balance of nanoparticle penetration through the ECM and uptake in target cells. However, tissue-specific enhancements in ECM penetration and cellular uptake were observed for nanoparticles bearing a branched PEG coating. These studies provide insights into tissue specific ECM barrier functions, which can facilitate the design of nanoparticles that effectively transport through target tissues, improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Devorah Cahn
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Cancer Biomaterials Engineering Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Alexa Stern
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Michael Buckenmeyer
- Cancer Biomaterials Engineering Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Matthew Wolf
- Cancer Biomaterials Engineering Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Moxon SR, McMurran Z, Kibble MJ, Domingos M, Gough JE, Richardson SM. 3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture. Biofabrication 2024; 17:015005. [PMID: 39366424 PMCID: PMC11499629 DOI: 10.1088/1758-5090/ad8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Intervertebral disc (IVD) function is achieved through integration of its two component regions: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is soft (0.3-5 kPa), gelatinous and populated by spherical NP cells in a polysaccharide-rich extracellular matrix (ECM). The AF is much stiffer (∼100 kPa) and contains layers of elongated AF cells in an aligned, fibrous ECM. Degeneration of the disc is a common problem with age being a major risk factor. Progression of IVD degeneration leads to chronic pain and can result in permanent disability. The development of therapeutic solutions for IVD degeneration is impaired by a lack ofin vitromodels of the disc that are capable of replicating the fundamental structure and biology of the tissue. This study aims to investigate if a newly developed suspended hydrogel bioprinting system (termed SLAM) could be employed to fabricate IVD analogues with integrated structural and compositional features similar to native tissue. Bioprinted IVD analogues were fabricated to recapitulate structural, morphological and biological components present in the native tissue. The constructs replicated key structural components of native tissue with the presence of a central, polysaccharide-rich NP surrounded by organised, aligned collagen fibres in the AF. Cell tracking, actin and matrix staining demonstrated that embedded NP and AF cells exhibited morphologies and phenotypes analogous to what is observedin vivowith elongated, aligned AF cells and spherical NP cells that deposited HA into the surrounding environment. Critically, it was also observed that the NP and AF regions contained a defined cellular and material interface and segregated regions of the two cell types, thus mimicking the highly regulated structure of the IVD.
Collapse
Affiliation(s)
- S R Moxon
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - Z McMurran
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - M J Kibble
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - M Domingos
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - J E Gough
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - S M Richardson
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Rampratap P, Lasorsa A, Arunachalam A, Kamperman M, Walvoort MTC, van der Wel PCA. Resolving Atomic-Level Dynamics and Interactions of High-Molecular-Weight Hyaluronic Acid by Multidimensional Solid-State NMR. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43317-43328. [PMID: 39121380 PMCID: PMC11345730 DOI: 10.1021/acsami.4c08428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
High-molecular-weight (HMW) hyaluronic acid (HA) is a highly abundant natural polysaccharide and a fundamental component of the extracellular matrix (ECM). Its size and concentration regulate tissues' macro- and microenvironments, and its upregulation is a hallmark feature of certain tumors. Yet, the conformational dynamics of HMW-HA and how it engages with the components of the ECM microenvironment remain poorly understood at the molecular level. Probing the molecular structure and dynamics of HMW polysaccharides in a hydrated, physiological-like environment is crucial and also technically challenging. Here, we deploy advanced magic-angle spinning (MAS) solid-state NMR spectroscopy in combination with isotopic enrichment to enable an in-depth study of HMW-HA to address this challenge. This approach resolves multiple coexisting HA conformations and dynamics as a function of environmental conditions. By combining 13C-labeled HA with unlabeled ECM components, we detect by MAS NMR HA-specific changes in global and local conformational dynamics as a consequence of hydration and ECM interactions. These measurements reveal atom-specific variations in the dynamics and structure of the N-acetylglucosamine moiety of HA. We discuss possible implications for interactions that stabilize the structure of HMW-HA and facilitate its recognition by HA-binding proteins. The described methods apply similarly to the studies of the molecular structure and dynamics of HA in tumor contexts and in other biological tissues as well as HMW-HA hydrogels and nanoparticles used for biomedical and/or pharmaceutical applications.
Collapse
Affiliation(s)
- Pushpa Rampratap
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Alessia Lasorsa
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Abinaya Arunachalam
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marthe T. C. Walvoort
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Patrick C. A. van der Wel
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
4
|
Xu Y, Yao Y, Gao J. Cell-Derived Matrix: Production, Decellularization, and Application of Wound Repair. Stem Cells Int 2024; 2024:7398473. [PMID: 38882595 PMCID: PMC11178417 DOI: 10.1155/2024/7398473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Chronic nonhealing wounds significantly reduce patients' quality of life and are a major burden on healthcare systems. Over the past few decades, tissue engineering materials have emerged as a viable option for wound healing, with cell-derived extracellular matrix (CDM) showing remarkable results. The CDM's compatibility and resemblance to the natural tissue microenvironment confer distinct advantages to tissue-engineered scaffolds in wound repair. This review summarizes the current processes for CDM preparation, various cell decellularization protocols, and common characterization methods. Furthermore, it discusses the applications of CDM in wound healing, including skin defect and wound repair, angiogenesis, and engineered vessels, and offers perspectives on future developments.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| |
Collapse
|
5
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Guillaumin S, Gurdal M, Zeugolis DI. Gums as Macromolecular Crowding Agents in Human Skin Fibroblast Cultures. Life (Basel) 2024; 14:435. [PMID: 38672707 PMCID: PMC11051389 DOI: 10.3390/life14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Even though tissue-engineered medicines are under intense academic, clinical, and commercial investigation, only a handful of products have been commercialised, primarily due to the costs associated with their prolonged manufacturing. While macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition in eukaryotic cell culture, possibly offering a solution in this procrastinating tissue-engineered medicine development, there is still no widely accepted macromolecular crowding agent. With these in mind, we herein assessed the potential of gum Arabic, gum gellan, gum karaya, and gum xanthan as macromolecular crowding agents in WS1 skin fibroblast cultures (no macromolecular crowding and carrageenan were used as a control). Dynamic light scattering analysis revealed that all macromolecules had negative charge and were polydispersed. None of the macromolecules affected basic cellular function. At day 7 (the longest time point assessed), gel electrophoresis analysis revealed that all macromolecules significantly increased collagen type I deposition in comparison to the non-macromolecular crowding group. Also at day 7, immunofluorescence analysis revealed that carrageenan; the 50 µg/mL, 75 µg/mL, and 100 µg/mL gum gellan; and the 500 µg/mL and 1000 µg/mL gum xanthan significantly increased both collagen type I and collagen type III deposition and only carrageenan significantly increased collagen type V deposition, all in comparison to the non-macromolecular crowding group at the respective time point. This preliminary study demonstrates the potential of gums as macromolecular crowding agents, but more detailed biological studies are needed to fully exploit their potential in the development of tissue-engineered medicines.
Collapse
Affiliation(s)
- Salome Guillaumin
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
7
|
Du S, Elliman SJ, Zeugolis DI, O'Brien T. Carrageenan as a macromolecular crowding agent in human umbilical cord derived mesenchymal stromal cell culture. Int J Biol Macromol 2023; 251:126353. [PMID: 37591431 DOI: 10.1016/j.ijbiomac.2023.126353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Cell sheet tissue engineering requires prolonged in vitro culture for the development of implantable devices. Unfortunately, lengthy in vitro culture is associated with cell phenotype loss and substantially higher cost of goods, which collectively hinder clinical translation and commercialisation of tissue engineered medicines. Although macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition, whilst maintaining cellular phenotype, the optimal macromolecular crowding agent still remains elusive. Herein, we evaluated the biophysical properties of seven different carrageenan molecules at five different concentrations and their effect on human umbilical cord-derived mesenchymal stromal cell morphology, viability, metabolic activity, proliferation, extracellular matrix deposition and surface marker expression. All types of carrageenan (CR) assessed demonstrated a hydrodynamic radius increase as a function of increasing concentration; high polydispersity; and negative charge. Two iota CRs were excluded from further analysis due to poor solubility in cell culture. Among the remaining five carrageenans, the lambda medium viscosity type at concentrations of 10 and 50 μg/ml did not affect cell morphology, viability, metabolic activity, proliferation and expression of surface markers and significantly increased the deposition of collagen types I, III and IV, fibronectin and laminin. Our data highlight the potential of lambda medium viscosity carrageenan as a macromolecular crowding agent for the accelerated development of functional tissue engineered medicines.
Collapse
Affiliation(s)
- Shanshan Du
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | | | - Dimitrios I Zeugolis
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research, School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland; Orbsen Therapeutics Ltd, IDA Business Park, Dangan, Galway, Ireland.
| |
Collapse
|
8
|
Garnica-Galvez S, Skoufos I, Tzora A, Diakakis N, Prassinos N, Zeugolis DI. Macromolecular crowding in equine bone marrow mesenchymal stromal cell cultures using single and double hyaluronic acid macromolecules. Acta Biomater 2023; 170:111-123. [PMID: 37634833 DOI: 10.1016/j.actbio.2023.08.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Macromolecular crowding (MMC) enhances and accelerates extracellular matrix (ECM) deposition in eukaryotic cell culture. Single hyaluronic acid (HA) molecules have not induced a notable increase in the amount and rate of deposited ECM. Thus, herein we assessed the physicochemical properties and biological consequences in equine bone marrow mesenchymal stromal cell cultures of single and mixed HA molecules and correlated them to the most widely used MMC agents, the FicollⓇ cocktail (FC) and carrageenan (CR). Dynamic light scattering analysis revealed that all HA cocktails had significantly higher hydrodynamic radius than the FC and CR; the FC and the 0.5 mg/ml 100 kDa and 500 kDa single HA molecules had the highest charge; and, in general, all molecules had high polydispersity index. Biological analyses revealed that none of the MMC agents affected cell morphology and basic cell functions; in general, CR outperformed all other macromolecules in collagen type I and V deposition; FC, the individual HA molecules and the HA cocktails outperformed CR in collagen type III deposition; FC outperformed CR and the individual HA molecules and the HA cocktails outperformed their constituent HA molecules in collagen type IV deposition; FC and certain HA cocktails outperformed CR and constituent HA molecules in collagen type VI deposition; and all individual HA molecules outperformed FC and CR and the HA cocktails outperformed their constituent HA molecules in laminin deposition. With respect to tri-lineage analysis, CR and HA enhanced chondrogenesis and osteogenesis, whilst FC enhanced adipogenesis. This work opens new avenues in mixed MMC in eukaryotic cell culture. STATEMENT OF SIGNIFICANCE: Mixed macromolecular crowding (MMC) in eukaryotic cell culture is still under-investigated. Herein, single and double hyaluronic acid (HA) macromolecules, along with the traditional MMC agents FicollⓇ cocktail (FC) and carrageenan (CR), were used as MMC agents in equine mesenchymal stromal cell cultures. Biological analysis showed that none of the MMC agents affected cell morphology and basic cell functions. Protein deposition analysis made apparent that CR outperformed all other macromolecules in collagen type I and collagen type V deposition, whilst FC, the individual HA macromolecules and the HA cocktails outperformed CR in collagen type III deposition. Tri-lineage analysis revealed that CR and HA enhanced chondrogenesis and osteogenesis, whilst FC enhanced adipogenesis. These data illustrate that MMC agents are not inert macromolecules.
Collapse
Affiliation(s)
- Sergio Garnica-Galvez
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece; School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | - Nikolaos Diakakis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikitas Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
9
|
Costa EM, Silva S, Pereira CF, Ribeiro AB, Casanova F, Freixo R, Pintado M, Ramos ÓL. Carboxymethyl Cellulose as a Food Emulsifier: Are Its Days Numbered? Polymers (Basel) 2023; 15:polym15102408. [PMID: 37242982 DOI: 10.3390/polym15102408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Carboxymethyl cellulose use in industry is ubiquitous. Though it is recognized as safe by the EFSA and FDA, newer works have raised concerns related to its safety, as in vivo studies showed evidence of gut dysbiosis associated with CMC's presence. Herein lies the question, is CMC a gut pro-inflammatory compound? As no work addressed this question, we sought to understand whether CMC was pro-inflammatory through the immunomodulation of GI tract epithelial cells. The results showed that while CMC was not cytotoxic up to 25 mg/mL towards Caco-2, HT29-MTX and Hep G2 cells, it had an overall pro-inflammatory behavior. In a Caco-2 monolayer, CMC by itself increased IL-6, IL-8 and TNF-α secretion, with the latter increasing by 1924%, and with these increases being 9.7 times superior to the one obtained for the IL-1β pro-inflammation control. In co-culture models, an increase in secretion in the apical side, particularly for IL-6 (692% increase), was observed, and when RAW 264.7 was added, data showed a more complex scenario as stimulation of pro-inflammatory (IL-6, MCP-1 and TNF-α) and anti-inflammatory (IL-10 and IFN-β) cytokines in the basal side was observed. Considering these results, CMC may exert a pro-inflammatory effect in the intestinal lumen, and despite more studies being required, the incorporation of CMC in foodstuffs must be carefully considered in the future to minimize potential GI tract dysbiosis.
Collapse
Affiliation(s)
- Eduardo M Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Silva
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alessandra B Ribeiro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Francisca Casanova
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ricardo Freixo
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L Ramos
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
10
|
Macromolecular crowding regulates matrix composition and gene expression in human gingival fibroblast cultures. Sci Rep 2023; 13:2047. [PMID: 36739306 PMCID: PMC9899282 DOI: 10.1038/s41598-023-29252-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023] Open
Abstract
Standard cell cultures are performed in aqueous media with a low macromolecule concentration compared to tissue microenvironment. In macromolecular crowding (MMC) experiments, synthetic polymeric crowders are added into cell culture media to better mimic macromolecule concentrations found in vivo. However, their effect on cultured cells is incompletely understood and appears context-dependent. Here we show using human gingival fibroblasts, a cell type associated with fast and scarless wound healing, that MMC (standard medium supplemented with Ficoll 70/400) potently modulates fibroblast phenotype and extracellular matrix (ECM) composition compared to standard culture media (nMMC) over time. MMC significantly reduced cell numbers, but increased accumulation of collagen I, cellular fibronectin, and tenascin C, while suppressing level of SPARC (Secreted Protein Acidic and Cysteine Rich). Out of the 75 wound healing and ECM related genes studied, MMC significantly modulated expression of 25 genes compared to nMMC condition. MMC also suppressed myofibroblast markers and promoted deposition of basement membrane molecules collagen IV, laminin 1, and expression of LAMB3 (Laminin Subunit Beta 3) gene. In cell-derived matrices produced by a novel decellularization protocol, the altered molecular composition of MMC matrices was replicated. Thus, MMC may improve cell culture models for research and provide novel approaches for regenerative therapy.
Collapse
|
11
|
Korntner SH, Di Nubila A, Gaspar D, Zeugolis DI. Macromolecular crowding in animal component-free, xeno-free and foetal bovine serum media for human bone marrow mesenchymal stromal cell expansion and differentiation. Front Bioeng Biotechnol 2023; 11:1136827. [PMID: 36949882 PMCID: PMC10025396 DOI: 10.3389/fbioe.2023.1136827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Cell culture media containing undefined animal-derived components and prolonged in vitro culture periods in the absence of native extracellular matrix result in phenotypic drift of human bone marrow stromal cells (hBMSCs). Methods: Herein, we assessed whether animal component-free (ACF) or xeno-free (XF) media formulations maintain hBMSC phenotypic characteristics more effectively than foetal bovine serum (FBS)-based media. In addition, we assessed whether tissue-specific extracellular matrix, induced via macromolecular crowding (MMC) during expansion and/or differentiation, can more tightly control hBMSC fate. Results: Cells expanded in animal component-free media showed overall the highest phenotype maintenance, as judged by cluster of differentiation expression analysis. Contrary to FBS media, ACF and XF media increased cellularity over time in culture, as measured by total DNA concentration. While MMC with Ficoll™ increased collagen deposition of cells in FBS media, FBS media induced significantly lower collagen synthesis and/or deposition than the ACF and XF media. Cells expanded in FBS media showed higher adipogenic differentiation than ACF and XF media, which was augmented by MMC with Ficoll™ during expansion. Similarly, Ficoll™ crowding also increased chondrogenic differentiation. Of note, donor-to-donor variability was observed for collagen type I deposition and trilineage differentiation capacity of hBMSCs. Conclusion: Collectively, our data indicate that appropriate screening of donors, media and supplements, in this case MMC agent, should be conducted for the development of clinically relevant hBMSC medicines.
Collapse
Affiliation(s)
- Stefanie H. Korntner
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Alessia Di Nubila
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- *Correspondence: Dimitrios I. Zeugolis,
| |
Collapse
|
12
|
Sinaci CB, Çiçek Ç, Filinte G, Güven Ü. The Effect of Ex-Vivo Hyaluronic Acid on Myofibroblast and Collagen in Dupuytren Disease. J Hand Surg Asian Pac Vol 2022; 27:975-981. [PMID: 36476083 DOI: 10.1142/s2424835522500916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Dupuytren disease (DD) is characterised by increased myofibroblast/fibroblast activity and type3/type1 collagen ratios. Hyaluronic acid (HA) is major component of the extracellular matrix and some studies have showed that HA limits myofibroblast activity and decreases type3/type1 collagen ratio. The aim of this study is to determine the effect of the ex-vivo application of HA on cultured fibroblasts obtained from normal and diseased tissue from patients with DD. This is the initial step towards defining the use of HA as a new approach for medical treatment of DD. Methods: Tissue samples were obtained from both healthy forearm (C) and unhealthy palmar (D) fascia of patients undergoing surgery for DD. Tissue samples were cultured and divided into four groups depending on the addition of HA [C(HA-), C(HA+), D(HA-) and D(HA+)]. The tissues were evaluated using Western blot to detect effect of HA on myofibroblast (by measuring alpha smooth muscle actin [α-SMA) and on the ratio of type3/type1 collagen by measuring collagen type1 alpha 1 Chain (COL1A1) and collagen type3 alpha 1 Chain (COL3A1). Results: The rate of the average α-SMA value in the D(HA+) group was significantly lower compared to that of the D(HA-) group. The average ratio of type3/type1 collagen in the D(HA+) group was significantly lower compared to the D(HA-) group. Conclusions: The ex-vivo application of HA on cultured fibroblasts obtained from patients with DD resulted in a decrease in myofibroblast/fibroblast activity and type3/type1 collagen ratios. This may pave the way for clinical application of HA in the treatment of DD.
Collapse
Affiliation(s)
- Cem Berkay Sinaci
- Payaslı Clinic, Plastic Reconstructive and Aesthetic Surgery, Private Practice, Istanbul, Turkey
| | - Çağla Çiçek
- Department of Plastic Reconstructive and Aesthetic Surgery, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey
| | - Gaye Filinte
- Department of Plastic Reconstructive and Aesthetic Surgery, University of Health Science, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey
| | - Ülkügül Güven
- Department of Biochemistry, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
13
|
De Pieri A, Korntner SH, Capella-Monsonis H, Tsiapalis D, Kostjuk SV, Churbanov S, Timashev P, Gorelov A, Rochev Y, Zeugolis DI. Macromolecular crowding transforms regenerative medicine by enabling the accelerated development of functional and truly three-dimensional cell assembled micro tissues. Biomaterials 2022; 287:121674. [PMID: 35835003 DOI: 10.1016/j.biomaterials.2022.121674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Scaffold-free in vitro organogenesis exploits the innate ability of cells to synthesise and deposit their own extracellular matrix to fabricate tissue-like assemblies. Unfortunately, cell-assembled tissue engineered concepts require prolonged ex vivo culture periods of very high cell numbers for the development of a borderline three-dimensional implantable device, which are associated with phenotypic drift and high manufacturing costs, thus, hindering their clinical translation and commercialisation. Herein, we report the accelerated (10 days) development of a truly three-dimensional (338.1 ± 42.9 μm) scaffold-free tissue equivalent that promotes fast wound healing and induces formation of neotissue composed of mature collagen fibres, using human adipose derived stem cells seeded at only 50,000 cells/cm2 on an poly (N-isopropylacrylamide-co-N-tert-butylacrylamide (PNIPAM86-NTBA14) temperature-responsive electrospun scaffold and grown under macromolecular crowding conditions (50 μg/ml carrageenan). Our data pave the path for a new era in scaffold-free regenerative medicine.
Collapse
Affiliation(s)
- Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Spiddal, Galway, Ireland
| | - Stefanie H Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Hector Capella-Monsonis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Tsiapalis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Sergei V Kostjuk
- Department of Chemistry, Belarusian State University and Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Semyon Churbanov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander Gorelov
- School of Chemistry & Chemical Biology, University College Dublin, Dublin, Ireland
| | - Yuri Rochev
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
14
|
Shologu N, Gurdal M, Szegezdi E, FitzGerald U, Zeugolis DI. Macromolecular crowding in the development of a three-dimensional organotypic human breast cancer model. Biomaterials 2022; 287:121642. [PMID: 35724540 DOI: 10.1016/j.biomaterials.2022.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Although cell-derived matrices are at the forefront of scientific research and technological innovation for the development of in vitro tumour models, their two-dimensional structure and low extracellular matrix composition restrict their capacity to accurately predict toxicity of candidate molecules. Herein, we assessed the potential of macromolecular crowding (a biophysical phenomenon that significantly enhances and accelerates extracellular matrix deposition, resulting in three-dimensional tissue surrogates) in improving cell-derived matrices in vitro tumour models. Among the various decellularisation protocols assessed (NH4OH, DOC, SDS/EDTA, NP40), the NP40 appeared to be the most effective in removing cellular matter and the least destructive to the deposited matrix. Among the various cell types (mammary, skin, lung fibroblasts) used to produce the cell-derived matrices, the mammary fibroblast derived matrices produced under macromolecular crowding conditions and decellularised with NP40 resulted in significant increase in focal adhesion molecules, matrix metalloproteinases and proinflammatory cytokines, when seeded with MDA-MB-231 cells. Further, macromolecular crowding derived matrices significantly increased doxorubicin resistance and reduced the impact of intracellular reactive oxygen species mediated cell death. Collectively our data clearly illustrate the potential of macromolecular crowding in the development of cell-derived matrices-based in vitro tumour models that more accurately resemble the tumour microenvironment.
Collapse
Affiliation(s)
- Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Eva Szegezdi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Apoptosis Research Centre, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Una FitzGerald
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Galway Neuroscience Centre, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
15
|
Miescher I, Wolint P, Opelz C, Snedeker JG, Giovanoli P, Calcagni M, Buschmann J. Impact of High-Molecular-Weight Hyaluronic Acid on Gene Expression in Rabbit Achilles Tenocytes In Vitro. Int J Mol Sci 2022; 23:ijms23147926. [PMID: 35887273 PMCID: PMC9320370 DOI: 10.3390/ijms23147926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Surgical tendon repair often leads to adhesion formation, leading to joint stiffness and a reduced range of motion. Tubular implants set around sutured tendons might help to reduce peritendinous adhesions. The lubricant hyaluronic acid (HA) is a viable option for optimizing such tubes with the goal of further enhancing the anti-adhesive effect. As the implant degrades over time and diffusion is presumed, the impact of HA on tendon cells is important to know. (2) Methods: A culture medium of rabbit Achilles tenocytes was supplemented with high-molecular-weight (HMW) HA and the growth curves of the cells were assessed. Additionally, after 3, 7 and 14 days, the gene expression of several markers was analyzed for matrix assembly, tendon differentiation, fibrosis, proliferation, matrix remodeling, pro-inflammation and resolution. (3) Results: The addition of HA decreased matrix marker genes, downregulated the fibrosis marker α-SMA for a short time and slightly increased the matrix-remodeling gene MMP-2. Of the pro-inflammatory marker genes, only IL-6 was significantly upregulated. IL-6 has to be kept in check, although IL-6 is also needed for a proper initial inflammation and efficient resolution. (4) Conclusions: The observed effects in vitro support the intended anti-adhesion effect and therefore, the use of HMW HA is promising as a biodegradable implant for tendon repair.
Collapse
Affiliation(s)
- Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (I.M.); (P.W.); (C.O.); (P.G.); (M.C.)
| | - Petra Wolint
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (I.M.); (P.W.); (C.O.); (P.G.); (M.C.)
| | - Christine Opelz
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (I.M.); (P.W.); (C.O.); (P.G.); (M.C.)
| | - Jess G. Snedeker
- Orthopaedic Biomechanics, University Clinic Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland;
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (I.M.); (P.W.); (C.O.); (P.G.); (M.C.)
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (I.M.); (P.W.); (C.O.); (P.G.); (M.C.)
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (I.M.); (P.W.); (C.O.); (P.G.); (M.C.)
- Correspondence: ; Tel.: +41-44-255-98-95
| |
Collapse
|
16
|
Characterization and Evaluation of Commercial Carboxymethyl Cellulose Potential as an Active Ingredient for Cosmetics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carboxymethyl cellulose is the most used water-soluble cellulose with applications in industries such as food, cosmetics, and tissue engineering. However, due to a perceived lack of biological activity, carboxymethyl cellulose is mostly used as a structural element. As such, this work sought to investigate whether CMC possesses relevant biological properties that could grant it added value as a cosmeceutical ingredient in future skincare formulations. To that end, CMC samples (Mw between 471 and 322 kDa) skin cell cytotoxicity, impact upon pro-collagen I α I production, and inflammatory response were evaluated. Results showed that samples were not cytotoxic towards HaCat and HDFa up to 10 mg/mL while simultaneously promoting intracellular production of pro-collagen I α I up by 228% relative to the basal metabolism, which appeared to be related to the highest DS and Mw. Additionally, CMC samples modulated HaCat immune response as they decreased by ca. 1.4-fold IL-8 production and increased IL-6 levels by ca. five fold. Despite this increase, only two samples presented IL-6 levels similar to those of the inflammation control. Considering these results, CMC showed potential to be a more natural alternative to traditional bioactive cosmetic ingredients and, as it is capable of being a bioactive and structural ingredient, it may play a key role in future skincare formulations.
Collapse
|
17
|
Li C, Zhang X, Dong M, Han X. Progress on Crowding Effect in Cell-like Structures. MEMBRANES 2022; 12:593. [PMID: 35736300 PMCID: PMC9228500 DOI: 10.3390/membranes12060593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022]
Abstract
Several biological macromolecules, such as proteins, nucleic acids, and polysaccharides, occupy about 30% of the space in cells, resulting in a crowded macromolecule environment. The crowding effect within cells exerts an impact on the functions of biological components, the assembly behavior of biomacromolecules, and the thermodynamics and kinetics of metabolic reactions. Cell-like structures provide confined and independent compartments for studying the working mechanisms of cells, which can be used to study the physiological functions arising from the crowding effect of macromolecules in cells. This article mainly summarizes the progress of research on the macromolecular crowding effects in cell-like structures. It includes the effects of this crowding on actin assembly behavior, tubulin aggregation behavior, and gene expression. The challenges and future trends in this field are presented at the end of the paper.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| |
Collapse
|
18
|
Wang KN, Liu LY, Mao D, Hou MX, Tan CP, Mao ZW, Liu B. A Nuclear-Targeted AIE Photosensitizer for Enzyme Inhibition and Photosensitization in Cancer Cell Ablation. Angew Chem Int Ed Engl 2022; 61:e202114600. [PMID: 35132748 DOI: 10.1002/anie.202114600] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/24/2022]
Abstract
The nucleus is considered the ideal target for anti-tumor therapy because DNA and some enzymes in the nucleus are the main causes of cell canceration and malignant proliferation. However, nuclear target drugs with good biosafety and high efficiency in cancer treatment are rare. Herein, a nuclear-targeted material MeTPAE with aggregation-induced emission (AIE) characteristics was developed based on a triphenylamine structure skeleton. MeTPAE can not only interact with histone deacetylases (HDACs) to inhibit cell proliferation but also damage telomere and nucleic acids precisely through photodynamic treatment (PDT). The cocktail strategy of MeTPAE caused obvious cell cycle arrest and showed excellent PDT anti-tumor activity, which offered new opportunities for the effective treatment of malignant tumors.
Collapse
Affiliation(s)
- Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Ming-Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
19
|
Später T, Assunção M, Lit KK, Gong G, Wang X, Chen YY, Rao Y, Li Y, Yiu CHK, Laschke MW, Menger MD, Wang D, Tuan RS, Khoo KH, Raghunath M, Guo J, Blocki A. Engineering microparticles based on solidified stem cell secretome with an augmented pro-angiogenic factor portfolio for therapeutic angiogenesis. Bioact Mater 2022; 17:526-541. [PMID: 35846945 PMCID: PMC9270501 DOI: 10.1016/j.bioactmat.2022.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue (re)vascularization strategies face various challenges, as therapeutic cells do not survive long enough in situ, while the administration of pro-angiogenic factors is hampered by fast clearance and insufficient ability to emulate complex spatiotemporal signaling. Here, we propose to address these limitations by engineering a functional biomaterial capable of capturing and concentrating the pro-angiogenic activities of mesenchymal stem cells (MSCs). In particular, dextran sulfate, a high molecular weight sulfated glucose polymer, supplemented to MSC cultures, interacts with MSC-derived extracellular matrix (ECM) components and facilitates their co-assembly and accumulation in the pericellular space. Upon decellularization, the resulting dextran sulfate-ECM hybrid material can be processed into MIcroparticles of SOlidified Secretome (MIPSOS). The insoluble format of MIPSOS protects protein components from degradation, while facilitating their sustained release. Proteomic analysis demonstrates that MIPSOS are highly enriched in pro-angiogenic factors, resulting in an enhanced pro-angiogenic bioactivity when compared to naïve MSC-derived ECM (cECM). Consequently, intravital microscopy of full-thickness skin wounds treated with MIPSOS demonstrates accelerated revascularization and healing, far superior to the therapeutic potential of cECM. Hence, the microparticle-based solidified stem cell secretome provides a promising platform to address major limitations of current therapeutic angiogenesis approaches. Dextran sulfate assembles with mesenchymal stem cell secretome. As a result, microparticles of solidified stem cell secretome (MIPSOS) are formed. The insoluble MIPSOS format protects proteins from premature degradation. MIPSOS are enriched in pro-angiogenic factors and exhibit gradual release kinetics. MIPSOS demonstrate superior pro-angiogenic properties and thus therapeutic potential.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kwok Keung Lit
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yi-Yun Chen
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yucong Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shun Hing Institute of Advanced Engineering (SHIAE), Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Dan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kay-Hooi Khoo
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, China
| | - Michael Raghunath
- Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Corresponding author. BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China
- Corresponding author. School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
20
|
Wang K, Liu L, Mao D, Hou M, Tan C, Mao Z, Liu B. A Nuclear‐Targeted AIE Photosensitizer for Enzyme Inhibition and Photosensitization in Cancer Cell Ablation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Ming‐Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
21
|
Louisthelmy R, Burke BM, Cornelison RC. Brain Cancer Cell-Derived Matrices and Effects on Astrocyte Migration. Cells Tissues Organs 2022; 212:21-31. [PMID: 35168244 PMCID: PMC9376193 DOI: 10.1159/000522609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-derived matrices are useful tools for studying the extracellular matrix (ECM) of different cell types and testing the effects on cell migration or wound repair. These matrices typically are generated using extended culture with ascorbic acid to boost ECM production. Applying this technique to cancer cell cultures could advance the study of cancer ECM and its effects on recruitment and training of the tumor microenvironment, but ascorbic acid is potently cytotoxic to cancer cells. Macromolecular crowding (MMC) agents can also be added to increase matrix deposition based on the excluded volume principle. We report the use of MMC alone as an effective strategy to generate brain cancer cell-derived matrices for downstream analyses and cell migration studies. We cultured the mouse glioblastoma cell line GL261 for 1 week in the presence of three previously reported MMC agents (carrageenan, Ficoll 70/400, and hyaluronic acid). We measured the resulting deposition of collagens and sulfated glycosaminoglycans using quantitative assays, as well as other matrix components by immunostaining. Both carrageenan and Ficoll promoted significantly more accumulation of total collagen content, sulfated glycosaminoglycan content, and fibronectin staining. Only Ficoll, however, also demonstrated a significant increase in collagen I staining. The results were more variable in 3D spheroid culture. We focused on Ficoll MMC matrices, which were isolated using the small molecule Raptinal to induce cancer cell apoptosis and matrix decellularization. The cancer cell-derived matrix promoted significantly faster migration of human astrocytes in a scratch wound assay, which may be explained by focal adhesion morphology and an increase in cellular metabolic activity. Ultimately, these data show MMC culture is a useful technique to generate cancer cell-derived matrices and study the effects on stromal cell migration related to wound repair.
Collapse
Affiliation(s)
- Rebecca Louisthelmy
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 10002
| | - Brycen M Burke
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 10002
| | - R Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 10002
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 10002
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 10002
| |
Collapse
|
22
|
Nellinger S, Mrsic I, Keller S, Heine S, Southan A, Bach M, Volz A, Chassé T, Kluger PJ. Cell‐derived and enzyme‐based decellularized extracellular matrix exhibit compositional and structural differences that are relevant for its use as a biomaterial. Biotechnol Bioeng 2022; 119:1142-1156. [DOI: 10.1002/bit.28047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Ivana Mrsic
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Silke Keller
- 3R‐Center for In Vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
- Department for Microphysiological Systems Institute of Biomedical Engineering, Faculty of Medicine of the Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
| | - Simon Heine
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
| | - Monika Bach
- Core Facility Hohenheim, University of Hohenheim Emil‐Wolff‐Str. 12 70599 Stuttgart Germany
| | - Ann‐Cathrin Volz
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
| |
Collapse
|
23
|
Yoo YI, Ko KW, Cha SG, Park SY, Woo J, Han DK. Highly effective induction of cell-derived extracellular matrix by macromolecular crowding for osteogenic differentiation of mesenchymal stem cells. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Rubí-Sans G, Nyga A, Rebollo E, Pérez-Amodio S, Otero J, Navajas D, Mateos-Timoneda MA, Engel E. Development of Cell-Derived Matrices for Three-Dimensional In Vitro Cancer Cell Models. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44108-44123. [PMID: 34494824 DOI: 10.1021/acsami.1c13630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Elena Rebollo
- Molecular Imaging Platform, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| | - Jorge Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona 08036, Spain
- CIBER de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona 08036, Spain
- CIBER de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Miguel A Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès (Barcelona) 08195, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| |
Collapse
|
25
|
Al-Maawi S, Rother S, Halfter N, Fiebig KM, Moritz J, Moeller S, Schnabelrauch M, Kirkpatrick CJ, Sader R, Wiesmann HP, Scharnweber D, Hintze V, Ghanaati S. Covalent linkage of sulfated hyaluronan to the collagen scaffold Mucograft® enhances scaffold stability and reduces proinflammatory macrophage activation in vivo. Bioact Mater 2021; 8:420-434. [PMID: 34541411 PMCID: PMC8429620 DOI: 10.1016/j.bioactmat.2021.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
Sulfated glycosaminoglycans (sGAG) show interaction with biological mediator proteins. Although collagen-based biomaterials are widely used in clinics, their combination with high-sulfated hyaluronan (sHA3) is unexplored. This study aims to functionalize a collagen-based scaffold (Mucograft®) with sHA3 via electrostatic (sHA3/PBS) or covalent binding to collagen fibrils (sHA3+EDC/NHS). Crosslinking without sHA3 was used as a control (EDC/NHS Ctrl). The properties of the sHA3-functionalized materials were characterized. In vitro growth factor and cytokine release after culturing with liquid platelet-rich fibrin was performed by means of ELISA. The cellular reaction to the biomaterials was analyzed in a subcutaneous rat model. The study revealed that covalent linking of sHA3 to collagen allowed only a marginal release of sHA3 over 28 days in contrast to electrostatically bound sHA3. sHA3+EDC/NHS scaffolds showed reduced vascular endothelial growth factor (VEGF), transforming growth factor beta 1 (TGF-β1) and enhanced interleukin-8 (IL-8) and epithelial growth factor (EGF) release in vitro compared to the other scaffolds. Both sHA3/PBS and EDC/NHS Ctrl scaffolds showed a high proinflammatory reaction (M1: CD-68+/CCR7+) and induced multinucleated giant cell (MNGC) formation in vivo. Only sHA3+EDC/NHS scaffolds reduced the proinflammatory macrophage M1 response and did not induce MNGC formation during the 30 days. SHA3+EDC/NHS scaffolds had a stable structure in vivo and showed sufficient integration into the implantation region after 30 days, whereas EDC/NHS Ctrl scaffolds underwent marked disintegration and lost their initial structure. In summary, functionalized collagen (sHA3+EDC/NHS) modulates the inflammatory response and is a promising biomaterial as a stable scaffold for full-thickness skin regeneration in the future. Covalent linking of high-sulfated hyaluronan (sHA3) to collagen allows a sustained release of sHA3. Covalent linking of sHA3 to collagen modulates the release of growth factor and cytokines in vitro. Covalent linking of sHA3 to collagen suppresses the induction of multinucleated giant cells in vivo. Covalent linking of sHA3 to collagen reduces the proinflammatory macrophage M1 response in vivo. Functionalized collagen with sHA3 is promising for full-thickness skin regeneration.
Collapse
Affiliation(s)
- Sarah Al-Maawi
- Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt Am Main, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Karen M Fiebig
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Juliane Moritz
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V., Prüssingstr. 27B, 07745, Jena, Germany
| | | | | | - Robert Sader
- Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt Am Main, Germany
| | - Hans-Peter Wiesmann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Shahram Ghanaati
- Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt Am Main, Germany
| |
Collapse
|
26
|
Zini J, Kekkonen J, Kaikkonen VA, Laaksonen T, Keränen P, Talala T, Mäkynen AJ, Yliperttula M, Nissinen I. Drug diffusivities in nanofibrillar cellulose hydrogel by combined time-resolved Raman and fluorescence spectroscopy. J Control Release 2021; 334:367-375. [PMID: 33930478 DOI: 10.1016/j.jconrel.2021.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Hydrogels, natural and synthetic origin, are actively studied for their use for implants and payload carriers. These biomaterials for delivery systems have enormous potential in basic biomedical research, drug development, and long-term delivery of biologics. Nanofibrillated cellulose (NFC) hydrogels, both natural and anionic (ANFC) ones, allow drug loading for immediate and controlled release via the slow drug dissolution of solid drug crystals into hydrogel and its subsequent release. This property makes NFC originated hydrogels an interesting non-toxic and non-human origin material as drug reservoir for long-term controlled release formulation or implant for patient care. A compelling tool for studying NFC hydrogels is Raman spectroscopy, which enables to resolve the chemical structures of different molecules in a high-water content like hydrogels, since Raman spectroscopy is insensitive to water molecules. That offers real time investigation of label-free drugs and their release in high-water-content media. Despite the huge potential of Raman spectroscopy in bio-pharmaceutical applications, the strong fluorescence background of many drug samples masking the faint Raman signal has restricted the widespread use of it. In this study we used a Raman spectrometer capable of suppressing the unpleasant fluorescence background by combining a pulsed laser and time-resolved complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) line sensor for the label-free investigation of Metronidazole and Vitamin C diffusivities in ANFC. The results show the possibility to modulate the ANFC-based implants and drug delivery systems, when the release rate needs to be set to a desired value. More importantly, the now developed label free real-time method is universal and can be adapted to any hydrogel/drug combination for producing reliable drug diffusion coefficient data in complex and heterogeneous systems, where traditional sampling-based methods are cumbersome to use. The wide temporal range of the time-resolved CMOS SPAD sensors makes it possible to capture also the fluorescence decay of samples, giving rise to a combined time-resolved Raman and fluorescence spectroscopy, which provides additional information on the chemical, functional and structural changes in samples.
Collapse
Affiliation(s)
- Jacopo Zini
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Jere Kekkonen
- Circuits and Systems Research Unit, University of Oulu, 90014 Oulu, Finland.
| | - Ville A Kaikkonen
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, 90014 Oulu, Finland.
| | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Pekka Keränen
- Circuits and Systems Research Unit, University of Oulu, 90014 Oulu, Finland.
| | - Tuomo Talala
- Circuits and Systems Research Unit, University of Oulu, 90014 Oulu, Finland.
| | - Anssi J Mäkynen
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, 90014 Oulu, Finland.
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Ilkka Nissinen
- Circuits and Systems Research Unit, University of Oulu, 90014 Oulu, Finland.
| |
Collapse
|
27
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
28
|
Raghunath M, Zeugolis DI. Transforming eukaryotic cell culture with macromolecular crowding. Trends Biochem Sci 2021; 46:805-811. [PMID: 33994289 DOI: 10.1016/j.tibs.2021.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
In multicellular organisms, the intracellular and extracellular spaces are considerably packed with a diverse range of macromolecular species. Yet, standard eukaryotic cell culture is performed in dilute, and deprived of macromolecules culture media, that barely imitate the density and complex macromolecular composition of tissues. Essentially, we drown cells in a sea of media and then expect them to perform physiologically. Herein, we argue the use of macromolecular crowding (MMC) in eukaryotic cell culture for regenerative medicine and drug discovery purposes.
Collapse
Affiliation(s)
- Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland; Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
29
|
Zhao Y, Zheng X, Zheng Y, Chen Y, Fei W, Wang F, Zheng C. Extracellular Matrix: Emerging Roles and Potential Therapeutic Targets for Breast Cancer. Front Oncol 2021; 11:650453. [PMID: 33968752 PMCID: PMC8100244 DOI: 10.3389/fonc.2021.650453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that the extracellular matrix (ECM) is an important regulator of breast cancer (BC). The ECM comprises of highly variable and dynamic components. Compared with normal breast tissue under homeostasis, the ECM undergoes many changes in composition and organization during BC progression. Induced ECM proteins, including fibrinogen, fibronectin, hyaluronic acid, and matricellular proteins, have been identified as important components of BC metastatic cells in recent years. These proteins play major roles in BC progression, invasion, and metastasis. Importantly, several specific ECM molecules, receptors, and remodeling enzymes are involved in promoting resistance to therapeutic intervention. Additional analysis of these ECM proteins and their downstream signaling pathways may reveal promising therapeutic targets against BC. These potential drug targets may be combined with new nanoparticle technologies. This review summarizes recent advances in functional nanoparticles that target the ECM to treat BC. Accurate nanomaterials may offer a new approach to BC treatment.
Collapse
Affiliation(s)
- Yunchun Zhao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Garnica-Galvez S, Korntner SH, Skoufos I, Tzora A, Diakakis N, Prassinos N, Zeugolis DI. Hyaluronic Acid as Macromolecular Crowder in Equine Adipose-Derived Stem Cell Cultures. Cells 2021; 10:859. [PMID: 33918830 PMCID: PMC8070604 DOI: 10.3390/cells10040859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
The use of macromolecular crowding in the development of extracellular matrix-rich cell-assembled tissue equivalents is continuously gaining pace in regenerative engineering. Despite the significant advancements in the field, the optimal macromolecular crowder still remains elusive. Herein, the physicochemical properties of different concentrations of different molecular weights hyaluronic acid (HA) and their influence on equine adipose-derived stem cell cultures were assessed. Within the different concentrations and molecular weight HAs, the 10 mg/mL 100 kDa and 500 kDa HAs exhibited the highest negative charge and hydrodynamic radius, and the 10 mg/mL 100 kDa HA exhibited the lowest polydispersity index and the highest % fraction volume occupancy. Although HA had the potential to act as a macromolecular crowding agent, it did not outperform carrageenan and Ficoll®, the most widely used macromolecular crowding molecules, in enhanced and accelerated collagen I, collagen III and collagen IV deposition.
Collapse
Affiliation(s)
- Sergio Garnica-Galvez
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (S.G.-G.); (I.S.); (A.T.)
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland;
| | - Stefanie H. Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland;
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (S.G.-G.); (I.S.); (A.T.)
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (S.G.-G.); (I.S.); (A.T.)
| | - Nikolaos Diakakis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Nikitas Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland;
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6904 Lugano, Switzerland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), School of Mechanical and Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
31
|
Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. NPJ Regen Med 2021; 6:18. [PMID: 33782415 PMCID: PMC8007731 DOI: 10.1038/s41536-021-00133-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023] Open
Abstract
Cell-based scaffold-free therapies seek to develop in vitro organotypic three-dimensional (3D) tissue-like surrogates, capitalising upon the inherent capacity of cells to create tissues with efficiency and sophistication that is still unparalleled by human-made devices. Although automation systems have been realised and (some) success stories have been witnessed over the years in clinical and commercial arenas, in vitro organogenesis is far from becoming a standard way of care. This limited technology transfer is largely attributed to scalability-associated costs, considering that the development of a borderline 3D implantable device requires very high number of functional cells and prolonged ex vivo culture periods. Herein, we critically discuss advancements and shortfalls of scaffold-free cell-based tissue engineering strategies, along with pioneering concepts that have the potential to transform regenerative and reparative medicine.
Collapse
|
32
|
Assunção M, Yiu CHK, Wan HY, Wang D, Ker DFE, Tuan RS, Blocki A. Hyaluronic acid drives mesenchymal stromal cell-derived extracellular matrix assembly by promoting fibronectin fibrillogenesis. J Mater Chem B 2021; 9:7205-7215. [PMID: 33710248 DOI: 10.1039/d1tb00268f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyaluronic acid (HA)-based biomaterials have been demonstrated to promote wound healing and tissue regeneration, owing to the intrinsic and important role of HA in these processes. A deeper understanding of the biological functions of HA would enable better informed decisions on applications involving HA-based biomaterial design. HA and fibronectin are both major components of the provisional extracellular matrix (ECM) during wound healing and regeneration. Both biomacromolecules exhibit the same spatiotemporal distribution, with fibronectin possessing direct binding sites for HA. As HA is one of the first components present in the wound healing bed, we hypothesized that HA may be involved in the deposition, and subsequently fibrillogenesis, of fibronectin. This hypothesis was tested by exposing cultures of mesenchymal stromal cells (MSCs), which are thought to be involved in the early phase of wound healing, to high molecular weight HA (HMWHA). The results showed that treatment of human bone marrow derived MSCs (bmMSCs) with exogenous HMWHA increased fibronectin fibril formation during early ECM deposition. On the other hand, partial depletion of endogenous HA led to a drastic impairment of fibronectin fibril formation, despite detectable granular presence of fibronectin in the perinuclear region, comparable to observations made under the well-established ROCK inhibition-mediated impairment of fibronectin fibrillogenesis. These findings suggest the functional involvement of HA in effective fibronectin fibrillogenesis. The hypothesis was further supported by the co-alignment of fibronectin, HA and integrin α5 at sites of ongoing fibronectin fibrillogenesis, suggesting that HA might be directly involved in fibrillar adhesions. Given the essential function of fibronectin in ECM assembly and maturation, HA may play a major enabling role in initiating and propagating ECM deposition. Thus, HA, as a readily available biomaterial, presents practical advantages for de novo ECM-rich tissue formation in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Marisa Assunção
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Chi Him Kendrick Yiu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Ho-Ying Wan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China and Department of Orthopaedics & Traumatology, Faculty of Medicine, CUHK, Shatin, Hong Kong SAR, China and Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China and Department of Orthopaedics & Traumatology, Faculty of Medicine, CUHK, Shatin, Hong Kong SAR, China and Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China and Department of Orthopaedics & Traumatology, Faculty of Medicine, CUHK, Shatin, Hong Kong SAR, China
| |
Collapse
|
33
|
Zeugolis DI. Bioinspired in vitro microenvironments to control cell fate: focus on macromolecular crowding. Am J Physiol Cell Physiol 2021; 320:C842-C849. [PMID: 33656930 DOI: 10.1152/ajpcell.00380.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of therapeutic regenerative medicine and accurate drug discovery cell-based products requires effective, with respect to obtaining sufficient numbers of viable, proliferative, and functional cell populations, cell expansion ex vivo. Unfortunately, traditional cell culture systems fail to recapitulate the multifaceted tissue milieu in vitro, resulting in cell phenotypic drift, loss of functionality, senescence, and apoptosis. Substrate-, environment-, and media-induced approaches are under intense investigation as a means to maintain cell phenotype and function while in culture. In this context, herein, the potential of macromolecular crowding, a biophysical phenomenon with considerable biological consequences, is discussed.
Collapse
Affiliation(s)
- Dimitrios I Zeugolis
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Faculty of Biomedical Sciences, Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Università della Svizzera Italiana, Lugano, Switzerland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives. Int J Mol Sci 2021; 22:ijms22020913. [PMID: 33477599 PMCID: PMC7831300 DOI: 10.3390/ijms22020913] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is the most common valvular heart disease in developed countries and in the ageing population. It is strongly correlated to median age, affecting up to 13% of the population over the age of 65. Pathophysiological analysis indicates CAVD as a result of an active and degenerative disease, starting with sclerosis and chronic inflammation and then leaflet calcification, which ultimately can account for aortic stenosis. Although CAVD has been firstly recognized as a passive event mostly resulting from a degenerative aging process, much evidences suggests that calcification arises from different active processes, involving both aortic valve-resident cells (valve endothelial cells, valve interstitial cells, mesenchymal stem cells, innate immunity cells) and circulating cells (circulating mesenchymal cells, immunity cells). Moreover, a role for the cell-derived "matrix vesicles" and extracellular matrix (ECM) components has also been recognized. The aim of this work is to review the cellular and molecular alterations occurring in aortic valve during CAVD pathogenesis, focusing on the role of ECM in the natural course of the disease.
Collapse
|
35
|
Ross ML, Kunkel J, Long S, Asuri P. Combined Effects of Confinement and Macromolecular Crowding on Protein Stability. Int J Mol Sci 2020; 21:ijms21228516. [PMID: 33198190 PMCID: PMC7697604 DOI: 10.3390/ijms21228516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
Confinement and crowding have been shown to affect protein fates, including folding, functional stability, and their interactions with self and other proteins. Using both theoretical and experimental studies, researchers have established the independent effects of confinement or crowding, but only a few studies have explored their effects in combination; therefore, their combined impact on protein fates is still relatively unknown. Here, we investigated the combined effects of confinement and crowding on protein stability using the pores of agarose hydrogels as a confining agent and the biopolymer, dextran, as a crowding agent. The addition of dextran further stabilized the enzymes encapsulated in agarose; moreover, the observed increases in enhancements (due to the addition of dextran) exceeded the sum of the individual enhancements due to confinement and crowding. These results suggest that even though confinement and crowding may behave differently in how they influence protein fates, these conditions may be combined to provide synergistic benefits for protein stabilization. In summary, our study demonstrated the successful use of polymer-based platforms to advance our understanding of how in vivo like environments impact protein function and structure.
Collapse
|
36
|
Keller S, Liedek A, Shendi D, Bach M, Tovar GEM, Kluger PJ, Southan A. Eclectic characterisation of chemically modified cell-derived matrices obtained by metabolic glycoengineering and re-assessment of commonly used methods. RSC Adv 2020; 10:35273-35286. [PMID: 35515672 PMCID: PMC9056897 DOI: 10.1039/d0ra06819e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 01/28/2023] Open
Abstract
Azide-bearing cell-derived extracellular matrices ("clickECMs") have emerged as a highly exciting new class of biomaterials. They conserve substantial characteristics of the natural extracellular matrix (ECM) and offer simultaneously small abiotic functional groups that enable bioorthogonal bioconjugation reactions. Despite their attractiveness, investigation of their biomolecular composition is very challenging due to the insoluble and highly complex nature of cell-derived matrices (CDMs). Yet, thorough qualitative and quantitative analysis of the overall material composition, organisation, localisation, and distribution of typical ECM-specific biomolecules is essential for consistent advancement of CDMs and the understanding of the prospective functions of the developed biomaterial. In this study, we evaluated frequently used methods for the analysis of complex CDMs. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and (immune)histochemical staining methods in combination with several microscopic techniques were found to be highly eligible. Commercially available colorimetric protein assays turned out to deliver inaccurate information on CDMs. In contrast, we determined the nitrogen content of CDMs by elementary analysis and converted it into total protein content using conversion factors which were calculated from matching amino acid compositions. The amount of insoluble collagens was assessed based on the hydroxyproline content. The Sircol™ assay was identified as a suitable method to quantify soluble collagens while the Blyscan™ assay was found to be well-suited for the quantification of sulphated glycosaminoglycans (sGAGs). Eventually, we propose a series of suitable methods to reliably characterise the biomolecular composition of fibroblast-derived clickECM.
Collapse
Affiliation(s)
- Silke Keller
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany .,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Anke Liedek
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Dalia Shendi
- Department of Biomedical Engineering, Worcester Polytechnic Institute Worcester MA USA
| | - Monika Bach
- University of Hohenheim, Core Facility, Module 3: Analytical Chemistry Unit Emil-Wolff-Str. 12 70599 Stuttgart Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany .,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Petra J Kluger
- School of Applied Chemistry, Reutlingen University Alteburgstraße 150 72762 Reutlingen Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| |
Collapse
|
37
|
Pukfukdee P, Banlunara W, Rutwaree T, Limcharoen B, Sawutdeechaikul P, Pattarakankul T, Sansureerungsikul T, Toprangkobsin P, Leelahavanichkul A, Panchaprateep R, Asawanonda P, Palaga T, Wanichwecharungruang S. Solid Composite Material for Delivering Viable Cells into Skin Tissues via Detachable Dissolvable Microneedles. ACS APPLIED BIO MATERIALS 2020; 3:4581-4589. [PMID: 35025457 DOI: 10.1021/acsabm.0c00498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Delivering cells to desired locations in the body is needed for disease treatments, tissue repairs, and various scientific investigations such as animal models for drug development. Here, we report the solid composite material that when embedded with viable cells, can temporarily keep cells alive. Using the material, we also show the fabrication of detachable dissolvable microneedles (DMNs) that can instantly deliver viable cells into skin tissue. B16-F10-murine-melanoma (B16-F10) and human-embryonic-kidney-293T (HEK293T) cells embedded in the solid matrix of the hyaluronic/polyvinylpyrolidone/maltose (HA/PVP/maltose) mixture show 50.6 ± 12.0 and 71.0 ± 5.96% survivals, respectively, when kept at 4 °C for 24 h. Detachable DMNs made of the HA/PVP/maltose mixture and loaded with B16-F10-cells were constructed, and the obtained DMN patches could detach the cell-loaded needles into the skin within 1 min of patch application. In vivo intradermal tumorgrafting mice with the DMNs containing 800 cells of B16-F10 developed tumors 10 times bigger in volume than tumors induced by hypodermic needle injection of suspension containing 100,000 cells. We anticipate this work to be a starting point for viable cell encapsulation in the solid matrix and viable cell delivery via DMNs.
Collapse
Affiliation(s)
- Puttikorn Pukfukdee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teeranut Rutwaree
- Mineed Technology, 141-145 Innovation Cluster 2, Thailand Science Park, Pathumthani 12120 Thailand
| | - Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Thitiporn Pattarakankul
- Center of Excellence in Advanced Materials and Bio-Interfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pattrawadee Toprangkobsin
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pravit Asawanonda
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
38
|
Wallace RG, Kenealy MR, Brady AJ, Twomey L, Duffy E, Degryse B, Caballero-Lima D, Moyna NM, Custaud MA, Meade-Murphy G, Morrin A, Murphy RP. Development of dynamic cell and organotypic skin models, for the investigation of a novel visco-elastic burns treatment using molecular and cellular approaches. Burns 2020; 46:1585-1602. [PMID: 32475797 DOI: 10.1016/j.burns.2020.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Burn injuries are a major cause of morbidity and mortality worldwide. Despite advances in therapeutic strategies for the management of patients with severe burns, the sequelae are pathophysiologically profound, up to the systemic and metabolic levels. Management of patients with a severe burn injury is a long-term, complex process, with treatment dependent on the degree and location of the burn and total body surface area (TBSA) affected. In adverse conditions with limited resources, efficient triage, stabilisation, and rapid transfer to a specialised intensive care burn centre is necessary to provide optimal outcomes. This initial lag time and the form of primary treatment initiated, from injury to specialist care, is crucial for the burn patient. This study aims to investigate the efficacy of a novel visco-elastic burn dressing with a proprietary bio-stimulatory marine mineral complex (MXC) as a primary care treatment to initiate a healthy healing process prior to specialist care. METHODS A new versatile emergency burn dressing saturated in a >90% translucent water-based, sterile, oil-free gel and carrying a unique bio-stimulatory marine mineral complex (MXC) was developed. This dressing was tested using LabSkin as a burn model platform. LabSkin a novel cellular 3D-dermal organotypic full thickness human skin equivalent, incorporating fully-differentiated dermal and epidermal components that functionally models skin. Cell and molecular analysis was carried out by in vitro Real-Time Cellular Analysis (RTCA), thermal analysis, and focused transcriptomic array profiling for quantitative gene expression analysis, interrogating both wound healing and fibrosis/scarring molecular pathways. In vivo analysis was also performed to assess the bio-mechanical and physiological effects of this novel dressing on human skin. RESULTS This hybrid emergency burn dressing (EBD) with MXC was hypoallergenic, and improved the barrier function of skin resulting in increased hydration up to 24 h. It was demonstrated to effectively initiate cooling upon application, limiting the continuous burn effect and preventing local tissue from damage and necrosis. xCELLigence RTCA® on primary human dermal cells (keratinocyte, fibroblast and micro-vascular endothelial) demonstrated improved cellular function with respect to tensegrity, migration, proliferation and cell-cell contact (barrier formation) [1]. Quantitative gene profiling supported the physiological and cellular function finding. A beneficial quid pro quo regulation of genes involved in wound healing and fibrosis formation was observed at 24 and 48 h time points. CONCLUSION Utilisation of this EBD + MXC as a primary treatment is an effective and easily applicable treatment in cases of burn injury, proving both a cooling and hydrating environment for the wound. It regulates inflammation and promotes healing in preparation for specialised secondary burn wound management. Moreover, it promotes a healthy remodelling phenotype that may potentially mitigate scarring. Based on our findings, this EBD + MXC is ideal for use in all pre-hospital, pre-surgical and resource limited settings.
Collapse
Affiliation(s)
- Robert G Wallace
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | - Mary-Rose Kenealy
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | - Aidan J Brady
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | - Laura Twomey
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland; Technological University Dublin, Ireland
| | - Emer Duffy
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Bernard Degryse
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland; Integrative Cell & Molecular Physiology Group, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | | | - Niall M Moyna
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland
| | | | | | - Aoife Morrin
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Ronan P Murphy
- Center for Preventive Medicine, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland; Integrative Cell & Molecular Physiology Group, School of Health & Human Performance, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
39
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Sodium Hyaluronate Supplemented Culture Media as a New hMSC Chondrogenic Differentiation Media-Model for in vitro/ex vivo Screening of Potential Cartilage Repair Therapies. Front Bioeng Biotechnol 2020; 8:243. [PMID: 32296689 PMCID: PMC7136394 DOI: 10.3389/fbioe.2020.00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Surgical strategies to treat articular cartilage injury such as microfracture, expose human bone marrow stem cells (hMSCs) to synovial fluid and its components. High molecular weight hyaluronan (hMwt HA) is one of the most abundant bioactive macromolecules of healthy synovial fluid (hSF) and it plays an important role in the protection of opposing articular cartilage surfaces within the synovial joint. Although hMwt HA has been extensively used to attempt the engineering of the cartilage tissue, its effect as media supplement has not been established. Indeed, current media are often simple in their composition and doesn't recapitulate the rheological and biological features of hSF. In addition, critical in vivo molecules that can potentially change the chondrogenic behavior of hBMSCs to make the in vitro results more predictive of the real in vivo outcome, are lacking. In order to be one step closer to the in vivo physiology of hSF, a new culture media supplemented with physiological level of hMwt HA was developed and the effect of the hMwt HA on the chondrogenesis of hMSCs that would be present in a traumatic defect after marrow stimulation techniques, was investigated. hBMSC-seeded fibrin-polyurethane constructs were cultured in a serum free chondropermissive control medium (HA- TGFβ-). This medium was further supplemented with 10 ng/mL TGFβ1 (HA- TGFβ+) or 2 mg/ml hMwt HA 1.8 MDa (HA+ TGFβ-) or both (HA+ TGFβ+). Alternatively, 1 MDa HA was mixed with the fibrin at 0.2 mg/ml (HASc TGFβ+). The effect of hMwt HA on hMSC differentiation was investigated at the gene expression level by RT-qPCR and total DNA, sulfated glycosaminoglycans and Safranin O staining were evaluated. Addition of hMwt HA to the culture media, significantly increased the synthesis of sulfated glycosaminoglycans, especially in the early days of chondrogenesis, and reduced the upregulation of the hypertrophic cartilage marker collagen X. hMwt HA added inside the fibrin gel(HASc TGF+) led to the best matrix deposition. hMwt HA can be one key medium component in a more reliable in vitro/ex vivo system to reduce in vitro artifacts, enable more accurate pre-screening of potential cartilage repair therapies and reduce the need for animal studies.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Davos, Switzerland
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, United Kingdom
| | - Alicia Jennifer El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Martin James Stoddart
- AO Research Institute Davos, Davos, Switzerland
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, United Kingdom
| |
Collapse
|