1
|
Bui VD, Jeon J, Duong VH, Shin S, Lee J, Ghahari F, Kim CH, Jo YJ, Jung WK, Um W, Park JH. Chondroitin sulfate-based microneedles for transdermal delivery of stem cell-derived extracellular vesicles to treat rheumatoid arthritis. J Control Release 2024; 375:105-115. [PMID: 39218160 DOI: 10.1016/j.jconrel.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
For the non-invasive treatment of rheumatoid arthritis (RA), a chondroitin sulfate C (CSC)-based dissolving microneedles (cMN) was prepared to deliver human adipose stem cell-derived extracellular vesicles (hASC-EV) into inflamed joints. Owing to their anti-inflammatory function, the hASC-EV-bearing cMN (EV@cMN) significantly suppressed activated fibroblast-like synoviocytes (aFLS) and M1 macrophages (M1), which are responsible for the progression of RA. In addition, EV@cMN facilitated the chondrogenic differentiation of bone marrow-derived stem cells. In mice with collagen-induced arthritis, EV@cMN efficiently delivered both hASC-EV and CSC to inflamed joints. Interestingly, pro-inflammatory cytokines in the inflamed joints were remarkably downregulated by the synergistic effect of CSC and hASC-EV. Consequently, as judged from the overall clinical score and joint swelling, EV@cMN showed an outstanding therapeutic effect, even comparable to the wild-type mice, without significant adverse effects. Overall, EV@cMN might have therapeutic potential for RA by efficiently delivering CSC and hASC-EV into the inflamed joints in a non-invasive manner.
Collapse
Affiliation(s)
- Van Dat Bui
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Van Hieu Duong
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sol Shin
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Farrokhroo Ghahari
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yu Jin Jo
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Chow SKH, Gao Q, Pius A, Morita M, Ergul Y, Murayama M, Shinohara I, Cekuc MS, Ma C, Susuki Y, Goodman SB. The Advantages and Shortcomings of Stem Cell Therapy for Enhanced Bone Healing. Tissue Eng Part C Methods 2024; 30:415-430. [PMID: 39311464 DOI: 10.1089/ten.tec.2024.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
This review explores the regenerative potential of key progenitor cell types and therapeutic strategies to improve healing of complex fractures and bone defects. We define, summarize, and discuss the differentiation potential of totipotent, pluripotent, and multipotent stem cells, emphasizing the advantages and shortcomings of cell therapy for bone repair and regeneration. The fundamental role of mesenchymal stem cells is highlighted due to their multipotency to differentiate into the key lineage cells including osteoblasts, osteocytes, and chondrocytes, which are crucial for bone formation and remodeling. Hematopoietic stem cells (HSCs) also play a significant role; immune cells such as macrophages and T-cells modulate inflammation and tissue repair. Osteoclasts are multinucleated cells that are important to bone remodeling. Vascular progenitor (VP) cells are critical to oxygen and nutrient supply. The dynamic interplay among these lineages and their microenvironment is essential for effective bone restoration. Therapies involving cells that are more than "minimally manipulated" are controversial and include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs, derived from early-stage embryos, possess pluripotent capabilities and have shown promise in preclinical studies for bone healing. iPSCs, reprogrammed from somatic cells, offer personalized medicine applications and can differentiate into various tissue-specific cell lines. Minimally manipulative cell therapy approaches such as the use of bone marrow aspirate concentrate (BMAC), exosomes, and various biomaterials for local delivery are explored for their effectiveness in bone regeneration. BMAC, which contains mostly immune cells but few mesenchymal and VPs, probably improves bone healing by facilitating paracrine-mediated intercellular communication. Exosome isolation harnesses the biological signals and cellular by-products that are a primary source for cell crosstalk and activation. Safe, efficacious, and cost-effective strategies to enhance bone healing using novel cellular therapies are part of a changing paradigm to modulate the inflammatory, repair, and regenerative pathways to achieve earlier more robust tissue healing and improved physical function. Impact Statement Stem cell therapy holds immense potential for bone healing due to its ability to regenerate damaged tissue. Nonmanipulated bone marrow aspirate contains mesenchymal stem cells that promote bone repair and reduce healing time. Induced pluripotent stem cells offer the advantage of creating patient-specific cells that can differentiate into osteoblasts, aiding in bone regeneration. Other delivery methods, such as scaffold-based techniques, enhance stem cell integration and function. Collectively, these approaches can improve treatment outcomes, reduce recovery periods, and advance our understanding of bone healing mechanisms, making them pivotal in orthopedic research and regenerative medicine.
Collapse
Affiliation(s)
- Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Alexa Pius
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mayu Morita
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yasemin Ergul
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mehmet Sertac Cekuc
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Chao Ma
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Lo HL, Lin SY, Ho CJ, Ming-Kung Y, Lu CC. Effect of lyophilized exosomes derived from umbilical cord stem cells on chronic anterior cruciate ligament cell injury. J Orthop Surg Res 2024; 19:554. [PMID: 39252098 PMCID: PMC11382386 DOI: 10.1186/s13018-024-05029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Facilitating the healing process of injured anterior cruciate ligament (ACL) tissue is crucial for patients to safely return to sports. Stem cell derived exosomes have shown positive effects on enhancing the regeneration of injured tendons/ligaments. However, clinical application of exosomes in terms of storage and pre-assembly is challenging. We hypothesized that lyophilized exosomes derived from human umbilical cord stem cells (hUSC-EX) could enhance the cell activity of chronically injured ACL cells. MATERIALS AND METHODS We harvested the 8 weeks injured ACL cells from rabbit under IACUC (No. 110232) approval. The studied exosomes were purified from the culture medium of human umbilical cord stem cells (IRB approval No. A202205014), lyophilized to store, and hydrated for use. We compared exosome treated cells with non-exosome treated cells (control group) from the same rabbits. We examined the cell viability, proliferation, migration capability and gene expression of type I and III collagen, TGFβ, VEGF, and tenogenesis in the 8 weeks injured ACL cells after hUSC-EX treatment. RESULTS After hydration, the average size of hUSC-EX was 84.5 ± 70.6 nm, and the cells tested positive for the Alix, TSG101, CD9, CD63, and CD81 proteins but negative for the α-Tubulin protein. After 24 h of treatment, hUSC-EX significantly improved the cell viability, proliferation and migration capability of 8 weeks injured ACL cells compared to that of no exosome treatment group. In addition, the expression of collagen synthesis, TGFβ, VEGF, and tenogenesis gene were all significantly increased in the 8 weeks injured ACL cells after 24 h hUSC-EX delivery. DISCUSSION Lyophilized exosomes are easily stored and readily usable after hydration, thereby preserving their characteristic properties. Treatment with lyophilized hUSC-EX improved the activity and gene expression of 8 weeks injured ACL cells. CONCLUSION Lyophilized hUSC-EX preserve the characteristics of exosomes and can improve chronically injured (8 weeks) ACL cells. Lyophilized hUSC-EX could serve as effective and safe biomaterials that are ready to use at room temperature to enhance cell activity in patients with partial ACL tears and after remnant preservation ACL reconstruction.
Collapse
Affiliation(s)
- Hon Lok Lo
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Yen Lin
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan
- Department of Orthopedics, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Jung Ho
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeh Ming-Kung
- School of Pharmacy, Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Orthopedics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
5
|
Yang L, Li W, Zhao Y, Shang L. Magnetic Polysaccharide Mesenchymal Stem Cells Exosomes Delivery Microcarriers for Synergistic Therapy of Osteoarthritis. ACS NANO 2024. [PMID: 39039744 DOI: 10.1021/acsnano.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease that afflicts more than 250 million people worldwide, impairing their mobility and quality of life. However, conventional drug therapy is palliative. Exosomes (Exo), although with the potential to fundamentally repair cartilage, face challenges in their efficient enrichment and delivery. In this study, we developed magnetic polysaccharide hydrogel particles as microcarriers for synergistic therapy of OA. The microcarriers were composed of modified natural polysaccharides, hyaluronic acid (HAMA), and chondroitin sulfate (CSMA), and were generated from microfluidic electrospray in combination with a cryogelation process. Magnetic nanoparticles with spiny structures capable of capturing stem cell Exo were encapsulated within the microcarriers together with an anti-inflammatory drug diclofenac sodium (DS). The released DS and Exo from the microcarriers had a synergistic effect in alleviating the OA symptoms and promoting cartilage repair. The in vitro and in vivo results demonstrated the excellent performance of the microcarrier for OA treatment. We believe this work has potential for Exo therapy of OA and other related diseases.
Collapse
Affiliation(s)
- Lei Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wenzhao Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Luoran Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
An Q, Zhou Z, Xu C, Xiao Q. Exosomes derived from mir-337-3p over-expressing tendon stem cells protect against apoptosis of tenocytes via targeting caspase3. BMC Musculoskelet Disord 2024; 25:561. [PMID: 39030590 PMCID: PMC11264700 DOI: 10.1186/s12891-024-07691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Tendons are important dense fibrous structures connecting muscle to bone, and tendon stem cells (TDSCs) affect their repair and regeneration. The role of TDSC-derived exosomes (TDSC-Exos) is still being unexplored; therefore, this study aimed to investigate the protective effect of TDSC-Exos on tenocytes. METHODS The TDSCs and tenocytes were all derived from Sprague Dawley (SD) rats. The expression of positive and negative markers of TDSCs were detected by flow cytometry, and the multi-differentiation ability was also detected to identify TDSCs. Exos were derived from TDSCs using ultracentrifugation; furthermore, Exos enriched with microRNA(miR)-377-3p were generated from TDSCs stably overexpressing miR-377-3p after transfection, identified with transmission electron microscopy (TEM), western blot and PKH26 staining assay. Moreover, the cell functions of tenocytes were evaluated by MTT, EdU, transwell, and flow cytometry. Dual luciferase reporter and RNA pull-down assays were used to verify the binding sites of miR-337-3p and caspase3 (CASP3) predicted by Targetscan. RESULTS Exos (miR-337-3p) were taken up by tenocytes, and promoted the proliferation, migration, and invasion and suppressed the apoptosis of tenocytes in a dose-dependent manner. Bioinformatics analysis showed that CASP3 was a target of miR-377-3p, which was further verified by luciferase and RNA pull-down assays. Moreover, over-expressed CASP3 reversed the effects of Exos (miR-337-3p) on cell functions of tenocytes. CONCLUSIONS Our findings suggest that Exos derived from miR-337-3p over-expressing TDSCs could potentially protect against tenocyte apoptosis by regulating CASP3. This novel therapeutic approach holds promise for the treatment of tendon injury, offering a glimmer of hope for improved patient outcomes.
Collapse
Affiliation(s)
- Qing An
- Department of Hand Surgery, The First Affiliated Hospital of JinZhou Medical University, No.2, Renmin Street, Section 5, Guta District, Jinzhou City, Liaoning Province, 121000, China
| | - Zipeng Zhou
- Department of Hand Surgery, The First Affiliated Hospital of JinZhou Medical University, No.2, Renmin Street, Section 5, Guta District, Jinzhou City, Liaoning Province, 121000, China
| | - Chang Xu
- Department of Hand Surgery, The First Affiliated Hospital of JinZhou Medical University, No.2, Renmin Street, Section 5, Guta District, Jinzhou City, Liaoning Province, 121000, China
| | - Qiang Xiao
- Department of Hand Surgery, The First Affiliated Hospital of JinZhou Medical University, No.2, Renmin Street, Section 5, Guta District, Jinzhou City, Liaoning Province, 121000, China.
| |
Collapse
|
7
|
Shi X, Hu X, Jiang N, Mao J. Regenerative endodontic therapy: From laboratory bench to clinical practice. J Adv Res 2024:S2090-1232(24)00267-4. [PMID: 38969092 DOI: 10.1016/j.jare.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy. AIM OF REVIEW This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality. KEY SCIENTIFIC CONCEPTS OF REVIEW In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
8
|
Chen C, Song C, Liu B, Wang Y, Jia J, Pang K, Wang Y, Wang P. Activation of BMP4/SMAD pathway by HIF-1α in hypoxic environment promotes osteogenic differentiation of BMSCs and leads to ectopic bone formation. Tissue Cell 2024; 88:102376. [PMID: 38608407 DOI: 10.1016/j.tice.2024.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE Heterotopic ossification (HO), also known as ossifying myositis, is a condition that produces abnormal bone and cartilage tissue in the soft tissues. Hypoxia inducible factor lα (HIF-lα) regulates the expression of various genes, which is closely related to the promotion of bone formation, and Drosophila mothers against decapentaplegic protein (SMAD) mediates the signal transduction in the Bone morphogenetic protein (BMP) signaling pathway, which affects the function of osteoblasts and osteoclasts, and thus plays a key role in the regulation of bone remodeling. We aimed to investigate the mechanism by which HIF-1α induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in a hypoxic environment. METHODS A cellular hypoxia model was constructed to verify the expression of HIF-1α, while alizarin red staining was performed to observe the osteogenic differentiation ability of bone marrow mesenchymal stem cells (BMSCs). Alizarin red staining was used to analyze the late mineralization ability of the cells. Western blot analysis was performed to analyze the expression levels of osteogenesis-related factors OCN, OPN proteins as well as the pathway proteins BMP4, p-Smad1/5/8, and Smad1. We also constructed a rat model of ectopic bone formation, observed ectopic ossification by X-ray, and verified the success of the rat model by ELISA of HIF-1α. HE staining was used to observe the matrix and trabecular structure of bone, and Masson staining was used to observe the collagen and trabecular structure of bone. Immunohistochemistry analyzed the expression of OCN and OPN in ectopic bone tissues, and WB analyzed the expression of pathway proteins BMP4, p-Smad1/5/8 and Smad1 in ectopic bone tissues to verify the signaling pathway of ectopic bone formation. RESULTS Our results indicate that hypoxic environment upregulates HIF-1a expression and activates BMP4/SMAD signaling pathway. This led to an increase in ALP content and enhanced expression of the osteogenesis-related factors OCN and OPN, resulting in enhanced osteogenic differentiation of BMSCs. The results of our in vivo experiments showed that rats inoculated with BMSCs overexpressing HIF-1α showed bony structures in tendon tissues, enhanced expression of the bone signaling pathways BMP4 and p-Smad1/5/8, and enhanced expression levels of the osteogenic-related factors OCN and OPN, resulting in the formation of ectopic bone. CONCLUSIONS These data further suggest a novel mechanistic view that hypoxic bone marrow BMSCs activate the BMP4/SMAD pathway by up-regulating the expression level of HIF-1α, thereby promoting the secretion of osteogenic factors leading to ectopic bone formation.
Collapse
Affiliation(s)
- Cong Chen
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Chunhao Song
- Department of Medical Imaging, Weihai Wendeng District People Hospital, Weihai 264200, China
| | - Bo Liu
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Yitao Wang
- Department of Laboratory, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Jun Jia
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Kai Pang
- Department of Operations Management, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Yuanhao Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Peng Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China.
| |
Collapse
|
9
|
Centeno CJ, Fausel Z, Dodson E, Berger DR, Steinmetz NJ. Percutaneous bone marrow concentrate and platelet products versus exercise therapy for the treatment of rotator cuff tears: a randomized controlled, crossover trial with 2-year follow-up. BMC Musculoskelet Disord 2024; 25:392. [PMID: 38762734 PMCID: PMC11102209 DOI: 10.1186/s12891-024-07519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Surgical repair is recommended for the treatment of high-grade partial and full thickness rotator cuff tears, although evidence shows surgery is not necessarily superior to non-surgical therapy. The purpose of this study was to compare percutaneous orthobiologic treatment to a home exercise therapy program for supraspinatus tears. METHODS In this randomized-controlled, crossover design, participants with a torn supraspinatus tendon received either 'BMC treatment', consisting of a combination of autologous bone marrow concentrate (BMC) and platelet products, or underwent a home exercise therapy program. After three months, patients randomized to exercise therapy could crossover to receive BMC treatment if not satisfied with shoulder progression. Patient-reported outcomes of Numeric Pain Scale (NPS), Disabilities of the Arm, Shoulder, and Hand, (DASH), and a modified Single Assessment Numeric Evaluation (SANE) were collected at 1, 3, 6, 12, and 24 months. Pre- and post-treatment MRI were assessed using the Snyder Classification system. RESULTS Fifty-one patients were enrolled and randomized to the BMC treatment group (n = 34) or the exercise therapy group (n = 17). Significantly greater improvement in median ΔDASH, ΔNPS, and SANE scores were reported by the BMC treatment group compared to the exercise therapy group (-11.7 vs -3.8, P = 0.01; -2.0 vs 0.5, P = 0.004; and 50.0 vs 0.0, P < 0.001; respectively) after three months. Patient-reported outcomes continued to progress through the study's two-year follow-up period without a serious adverse event. Of patients with both pre- and post-treatment MRIs, a majority (73%) showed evidence of healing post-BMC treatment. CONCLUSIONS Patients reported significantly greater changes in function, pain, and overall improvement following BMC treatment compared to exercise therapy for high grade partial and full thickness supraspinatus tears. TRIAL REGISTRATION This protocol was registered with www. CLINICALTRIALS gov (NCT01788683; 11/02/2013).
Collapse
Affiliation(s)
- Christopher J Centeno
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA
- Regenexx, LLC, Research and Development, Broomfield, CO, 80021, USA
| | - Zachary Fausel
- Regenexx, LLC, Research and Development, Broomfield, CO, 80021, USA
| | - Ehren Dodson
- Regenexx, LLC, Research and Development, Broomfield, CO, 80021, USA.
| | - Dustin R Berger
- Regenexx, LLC, Research and Development, Broomfield, CO, 80021, USA
| | | |
Collapse
|
10
|
Zakeri Z, Heiderzadeh M, Kocaarslan A, Metin E, Hosseini Karimi SN, Saghati S, Vural A, Akyoldaş G, Baysal K, Yağcı Y, Gürsoy-Özdemir Y, Taşoğlu S, Rahbarghazi R, Sokullu E. Exosomes encapsulated in hydrogels for effective central nervous system drug delivery. Biomater Sci 2024; 12:2561-2578. [PMID: 38602364 DOI: 10.1039/d3bm01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.
Collapse
Affiliation(s)
- Ziba Zakeri
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Morteza Heiderzadeh
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Azra Kocaarslan
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Ecem Metin
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atay Vural
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Göktuğ Akyoldaş
- Department of Neurosurgery, Koç University Hospital, Istanbul 34450, Turkey
| | - Kemal Baysal
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Biochemistry, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Yusuf Yağcı
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Savaş Taşoğlu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Mechanical Engineering Department, School of Engineering, Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| |
Collapse
|
11
|
Reis IL, Lopes B, Sousa P, Sousa AC, Caseiro AR, Mendonça CM, Santos JM, Atayde LM, Alvites RD, Maurício AC. Equine Musculoskeletal Pathologies: Clinical Approaches and Therapeutical Perspectives-A Review. Vet Sci 2024; 11:190. [PMID: 38787162 PMCID: PMC11126110 DOI: 10.3390/vetsci11050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Musculoskeletal injuries such as equine osteoarthritis, osteoarticular defects, tendonitis/desmitis, and muscular disorders are prevalent among sport horses, with a fair prognosis for returning to exercise or previous performance levels. The field of equine medicine has witnessed rapid and fruitful development, resulting in a diverse range of therapeutic options for musculoskeletal problems. Staying abreast of these advancements can be challenging, prompting the need for a comprehensive review of commonly used and recent treatments. The aim is to compile current therapeutic options for managing these injuries, spanning from simple to complex physiotherapy techniques, conservative treatments including steroidal and non-steroidal anti-inflammatory drugs, hyaluronic acid, polysulfated glycosaminoglycans, pentosan polysulfate, and polyacrylamides, to promising regenerative therapies such as hemoderivatives and stem cell-based therapies. Each therapeutic modality is scrutinized for its benefits, limitations, and potential synergistic actions to facilitate their most effective application for the intended healing/regeneration of the injured tissue/organ and subsequent patient recovery. While stem cell-based therapies have emerged as particularly promising for equine musculoskeletal injuries, a multidisciplinary approach is underscored throughout the discussion, emphasizing the importance of considering various therapeutic modalities in tandem.
Collapse
Affiliation(s)
- Inês L. Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana C. Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana R. Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Veterinary Sciences Department, University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
| | - Carla M. Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Jorge M. Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís M. Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| |
Collapse
|
12
|
Ao Y, Yan W, Wu Y. Sport medicine among the past three decades in China. Chin Med J (Engl) 2024; 137:757-761. [PMID: 38533586 PMCID: PMC10997221 DOI: 10.1097/cm9.0000000000003039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 03/28/2024] Open
Affiliation(s)
- Yingfang Ao
- Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Wenqiang Yan
- Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Yue Wu
- Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| |
Collapse
|
13
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024:e12999. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Xu C, Xie X, Shi P, Xue K, Li Y, Wu Y, Wang J. LepR-expressing cells are a critical population in periodontal healing post periodontitis. J Bone Miner Res 2024; 39:59-72. [PMID: 38630879 DOI: 10.1093/jbmr/zjad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 04/19/2024]
Abstract
Identification of promising seed cells plays a pivotal role in achieving tissue regeneration. This study demonstrated that LepR-expressing cells (LepR+ cells) are required for maintaining periodontal homeostasis at the adult stage. We further investigated how LepR+ cells behave in periodontal healing using a ligature-induced periodontitis (PD) and a self-healing murine model with LepRCre/+; R26RtdTomato/+ mice. Lineage tracing experiments revealed that the largely suppressed osteogenic ability of LepR+ cells results from periodontal inflammation. Periodontal defects were partially recovered when the ligature was removed, in which the osteogenic differentiation of LepR+ cell lineage was promoted and contributed to the newly formed alveolar bone. A cell ablation model established with LepRCre/+; R26RtdTomato/+; R26RDTA/+ mice further proved that LepR+ cells are an important cell source of newly formed alveolar bone. Expressions of β-catenin and LEF1 in LepR+ cells were upregulated when the inflammatory stimuli were removed, which are consistent with the functional changes observed during periodontal healing. Furthermore, the conditional upregulation of WNT signaling or the application of sclerostin neutralized antibody promoted the osteogenic function of LepR+ cells. In contrast, the specific knockdown of β-catenin in LepR+ human periodontal ligament cells with small interfering RNA caused arrested osteogenic function. Our findings identified the LepR+ cell lineage as a critical cell population for endogenous periodontal healing post PD, which is regulated by the WNT signaling pathway, making it a promising seed cell population in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Chunmei Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peilei Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kun Xue
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yue Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
15
|
Li M, Shi L, Chen X, Yi D, Ding Y, Chen J, Xing G, Chen S, Wang L, Zhang Y, Zhu Y, Wang Y. In-situ gelation of fibrin gel encapsulating platelet-rich plasma-derived exosomes promotes rotator cuff healing. Commun Biol 2024; 7:205. [PMID: 38374439 PMCID: PMC10876555 DOI: 10.1038/s42003-024-05882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Although platelet-rich plasma-derived exosomes (PRP-Exos) hold significant repair potential, their efficacy in treating rotator cuff tear (RCT) remains unknown. In light of the potential for clinical translation of fibrin gel and PRP-Exos, we evaluated their combined impact on RCT healing and explored suitable gel implantation techniques. In vitro experiments demonstrated that PRP-Exos effectively enhanced key phenotypes changes in tendon stem/progenitor cells. Multi-modality imaging, including conventional ultrasound, shear wave elastography ultrasound, and micro-computed tomography, and histopathological assessments were performed to collectively evaluate the regenerative effects on RCT. The regenerated tendons exhibited a well-ordered structure, while bone and cartilage regeneration were significantly improved. PRP-Exos participated in the healing process of RCT. In-situ gelation of fibrin gel-encapsulated PRP-Exos at the bone-tendon interface during surgery proved to be a feasible gel implantation method that benefits the healing outcome. Comprehensive multi-modality postoperative evaluations were necessary, providing a reliable foundation for post-injury repair.
Collapse
Affiliation(s)
- Molin Li
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Lin Shi
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xianghui Chen
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dan Yi
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yufei Ding
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guanghui Xing
- Department of Ultrasound, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, China
- No. 962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Yaqiong Zhu
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
16
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
17
|
Chen SH, Lee YW, Kao HK, Yang PC, Chen SH, Liu SW, Yang PC, Lin YJ, Huang CC. The Transplantation of 3-Dimensional Spheroids of Adipose-Derived Stem Cells Promotes Achilles Tendon Healing in Rabbits by Enhancing the Proliferation of Tenocytes and Suppressing M1 Macrophages. Am J Sports Med 2024; 52:406-422. [PMID: 38193194 DOI: 10.1177/03635465231214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Tendons have limited regenerative potential, so healing of ruptured tendon tissue requires a prolonged period, and the prognosis is suboptimal. Although stem cell transplantation-based approaches show promise for accelerating tendon repair, the resultant therapeutic efficacy remains unsatisfactory. HYPOTHESIS The transplantation of stem cells preassembled as 3-dimensional spheroids achieves a superior therapeutic outcome compared with the transplantation of single-cell suspensions. STUDY DESIGN Controlled laboratory study. METHODS Adipose-derived stem cells (ADSCs) were assembled as spheroids using a methylcellulose hydrogel system. The secretome of ADSC suspensions or spheroids was collected and utilized to treat tenocytes and macrophages to evaluate their therapeutic potential and investigate the mechanisms underlying their effects. RNA sequencing was performed to investigate the global difference in gene expression between ADSC suspensions and spheroids in an in vitro inflammatory microenvironment. For the in vivo experiment, rabbits that underwent Achilles tendon transection, followed by stump suturing, were randomly assigned to 1 of 3 groups: intratendinous injection of saline, rabbit ADSCs as conventional single-cell suspensions, or preassembled ADSC spheroids. The tendons were harvested for biomechanical testing and histological analysis at 4 weeks postoperatively. RESULTS Our in vitro results demonstrated that the secretome of ADSCs assembled as spheroids exhibited enhanced modulatory activity in (1) tenocyte proliferation (P = .015) and migration (P = .001) by activating extracellular signal-regulated kinase (ERK) signaling and (2) the suppression of the secretion of interleukin-6 (P = .005) and interleukin-1α (P = .042) by M1 macrophages via the COX-2/PGE2/EP4 signaling axis. Gene expression profiling of cells exposed to an inflammatory milieu revealed significantly enriched terms that were associated with the immune response, cytokines, and tissue remodeling in preassembled ADSC spheroids. Ex vivo fluorescence imaging revealed that the engraftment efficiency of ADSCs in the form of spheroids was higher than that of ADSCs in single-cell suspensions (P = .003). Furthermore, the transplantation of ADSC spheroids showed superior therapeutic effects in promoting the healing of sutured stumps, as evidenced by improvements in the tensile strength (P = .019) and fiber alignment (P < .001) of the repaired tendons. CONCLUSION The assembly of ADSCs as spheroids significantly advanced their potential to harness tenocytes and macrophages. As a proof of concept, this study clearly demonstrates the effectiveness of using ADSC spheroids to promote tendon regeneration. CLINICAL RELEVANCE The present study lays a foundation for future clinical applications of stem cell spheroid-based therapy for the management of tendon injuries.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Wei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Ching Yang
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Hsien Chen
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Zhang T, Li D, Wang Y, Zhang C, Yang W, Gao G. Delivering umbilical cord mesenchymal stem cell exosomes through hydrogel ameliorates vaginal atrophy in ovariectomized rats. Aging (Albany NY) 2023; 15:14292-14305. [PMID: 38059876 PMCID: PMC10756086 DOI: 10.18632/aging.205302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Menopausal and postmenopausal women often experience vaginal atrophy due to estrogen deficiency. Mesenchymal stem cell exosomes have emerged as potential therapeutic agents, capable of promoting tissue regeneration and repair. OBJECTIVE This study aimed to explore the benefits of exosomes on VK2 cells and the therapeutic effect of topical exosomal hydrogel on atrophic vaginas. METHODS Exosomes were extracted using the high-speed centrifugation method, and their effects on VK2 cell proliferation, migration, and differentiation were observed through co-culture. The menopause model was induced by ovariectomy in rats, followed by the injection of exosome-loaded hydrogel into their vaginas. The treatment's effectiveness was evaluated by measuring vaginal epithelium thickness using HE staining, and assessing vaginal mucosa proliferation and lamina propria angiogenesis using Ki67 and anti-CD31 staining, respectively. RESULTS Exosomes significantly promoted VK2 cell proliferation and migration, but had no significant effect on differentiation. The exosome hydrogel increased the expression of Ki67 and CD31, leading to a significant improvement in epithelial thickness. CONCLUSIONS UcMSC- ex can stimulate the proliferation and migration of VK2 cells, but do not appear to promote differentiation. Topical application of exosome hydrogel enhances vaginal epithelium thickness to a certain degree, offering a promising non-hormonal therapeutic strategy to alleviate vaginal atrophy in postmenopausal women.
Collapse
Affiliation(s)
- Tao Zhang
- Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Dandan Li
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou 101400, Beijing, China
| | - Yanting Wang
- Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Changping 102206, Beijing, China
| | - Wenlan Yang
- Department of Orthopedics, Peking University International Hospital, Changping 102206, Beijing, China
| | - Guolan Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou 101400, Beijing, China
| |
Collapse
|
19
|
Song W, Ma Z, Wang X, Wang Y, Wu D, Wang C, He D, Kong L, Yu W, Li JJ, Li H, He Y. Macroporous Granular Hydrogels Functionalized with Aligned Architecture and Small Extracellular Vesicles Stimulate Osteoporotic Tendon-To-Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304090. [PMID: 37867219 PMCID: PMC10700691 DOI: 10.1002/advs.202304090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Osteoporotic tendon-to-bone healing (TBH) after rotator cuff repair (RCR) is a significant orthopedic challenge. Considering the aligned architecture of the tendon, inflammatory microenvironment at the injury site, and the need for endogenous cell/tissue infiltration, there is an imminent need for an ideal scaffold to promote TBH that has aligned architecture, ability to modulate inflammation, and macroporous structure. Herein, a novel macroporous hydrogel comprising sodium alginate/hyaluronic acid/small extracellular vesicles from adipose-derived stem cells (sEVs) (MHA-sEVs) with aligned architecture and immunomodulatory ability is fabricated. When implanted subcutaneously, MHA-sEVs significantly improve cell infiltration and tissue integration through its macroporous structure. When applied to the osteoporotic RCR model, MHA-sEVs promote TBH by improving tendon repair through macroporous aligned architecture while enhancing bone regeneration by modulating inflammation. Notably, the biomechanical strength of MHA-sEVs is approximately two times higher than the control group, indicating great potential in reducing postoperative retear rates. Further cell-hydrogel interaction studies reveal that the alignment of microfiber gels in MHA-sEVs induces tenogenic differentiation of tendon-derived stem cells, while sEVs improve mitochondrial dysfunction in M1 macrophages (Mφ) and inhibit Mφ polarization toward M1 via nuclear factor-kappaB (NF-κb) signaling pathway. Taken together, MHA-sEVs provide a promising strategy for future clinical application in promoting osteoporotic TBH.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhijie Ma
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xin Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yifei Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Di Wu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Chongyang Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Dan He
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Lingzhi Kong
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Weilin Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Jiao Jiao Li
- School of Biomedical EngineeringFaculty of Engineering and ITUniversity of Technology SydneySydneyNew South Wales2007Australia
| | - Haiyan Li
- Chemical and Environmental Engineering DepartmentSchool of EngineeringSTEM CollegeRMIT University124 La Trobe St.MelbourneVictoria3000Australia
| | - Yaohua He
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
- Department of Orthopedic SurgeryJinshan District Central Hospital affiliated to Shanghai University of Medicine & Health SciencesJinshan Branch of Shanghai Sixth People's HospitalShanghai201500China
| |
Collapse
|
20
|
Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, Guo JJ. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Control Release 2023; 364:90-108. [PMID: 37866405 DOI: 10.1016/j.jconrel.2023.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Sports medicine is generally associated with soft tissue injuries including muscle injuries, meniscus and ligament injuries, tendon ruptures, tendinopathy, rotator cuff tears, and tendon-bone healing during injuries. Tendon and ligament injuries are the most common sport injuries accounting for 30-40% of all injuries. Therapies for tendon injuries can be divided into surgical and non-surgical methods. Surgical methods mainly depend on the operative procedures, the surgeons and postoperative interventions. In non-surgical methods, cell therapy with stem cells and cell-free therapy with secretome of stem cell origin are current directions. Exosomes are the main paracrine factors of mesenchymal stem cells (MSCs) containing biological components such as proteins, nucleic acids and lipids. Compared with MSCs, MSC-exosomes (MSC-exos) possess the capacity to escape phagocytosis and achieve long-term circulation. In addition, the functions of exosomes from various cell sources in soft tissue injuries in sports medicine have been gradually revealed in recent years. Along with the biological and biomaterial advances in exosomes, exosomes can be designed as drug carriers with biomaterials and exosome research is providing promising contributions in cell biology. Exosomes with biomaterial have the potential of becoming one of the novel therapeutic modalities in regenerative researches. This review summarizes the derives of exosomes in soft tissue regeneration and focuses on the biological and biomaterial mechanism and advances in exosomal therapy in soft tissue injuries.
Collapse
Affiliation(s)
- Yulun Xue
- Department of Orthopaedic Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215006, Jiangsu, PR China; Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Tang Chin
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Alexander Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Department of Haematology, Mater Dei Hospital, Msida, Malta
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.
| |
Collapse
|
21
|
Simon L, Lapinte V, Morille M. Exploring the role of polymers to overcome ongoing challenges in the field of extracellular vesicles. J Extracell Vesicles 2023; 12:e12386. [PMID: 38050832 PMCID: PMC10696644 DOI: 10.1002/jev2.12386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring nanoparticles released from all eucaryotic and procaryotic cells. While their role was formerly largely underestimated, EVs are now clearly established as key mediators of intercellular communication. Therefore, these vesicles constitute an attractive topic of study for both basic and applied research with great potential, for example, as a new class of biomarkers, as cell-free therapeutics or as drug delivery systems. However, the complexity and biological origin of EVs sometimes complicate their identification and therapeutic use. Thus, this rapidly expanding research field requires new methods and tools for the production, enrichment, detection, and therapeutic application of EVs. In this review, we have sought to explain how polymer materials actively contributed to overcome some of the limitations associated to EVs. Indeed, thanks to their infinite diversity of composition and properties, polymers can act through a variety of strategies and at different stages of EVs development. Overall, we would like to emphasize the importance of multidisciplinary research involving polymers to address persistent limitations in the field of EVs.
Collapse
Affiliation(s)
| | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Institut universitaire de France (IUF)ParisFrance
| |
Collapse
|
22
|
Zhang T, Wu Y, Li X, Zhang A, Liu H, Shi M, Zhang Z, Lu W, Guo Y, Tang X, Cui Q, Li Z. Small extracellular vesicles derived from tendon stem cells promote the healing of injured Achilles tendons by regulating miR-145-3p. Acta Biomater 2023; 172:280-296. [PMID: 37806377 DOI: 10.1016/j.actbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The therapeutic role of tendon stem cells (TSCs) in tendon-related injuries has been well documented. Small extracellular vesicles (sEVs) are being increasingly used as new biotherapeutic agents for various diseases. Therefore, the potential function of TSC-sEVs in tendon injury repair warrants further investigation. In this study, we explored the effects of TSC-sEVs on TSC proliferation, migration, and differentiation in vitro in an autocrine manner. We further used a novel exosomal topical treatment with TSC-sEVs loaded with gelatin methacryloyl (GelMA) hydrogel in vivo; we mixed sufficient amounts of TSC-sEVs with GelMA hydrogel to cover the damaged molded Achilles tendon tissue and then exposed them to UV irradiation for coagulation. GelMA loading ensured that TSC-sEVs were slowly released at the injury site over a long period, thereby achieving their full local therapeutic effects. Treatment with TSC-sEVs loaded with GelMA significantly improved the histological score of the regenerated tendon by increasing the tendon expression while inhibiting the formation of excessive ossification and improving the mechanical properties of the tissue. Moreover, miRNA sequencing in TSC-sEVs, TSCs, and TSCs receiving sEVs revealed that TSC-sEVs altered the miRNA expression profile of TSCs, with increased expression of miR-145-3p. In conclusion, our study demonstrates that TSC-sEVs can play a key role in treating tendon injuries and that loading them with GelMA can enhance their effect in vivo. Moreover, miR-145-3p has a major functional role in the effect of TSC-sEVs. This study offers new therapeutic ideas for the local treatment of Achilles tendon injuries using sEVs. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that TSC-sEVs play a key role in treating tendon injuries and that loading them with GelMA hydrogel can act as a fixation and slow release in vivo. Moreover, it identifies the major functional role of miR-145-3p in the effect of TSCs that were identified and validated by miRNA sequencing. Our study provides a basis for further research on GelMA slow-release assays that have potential clinical applications. It offers new therapeutic ideas for the local treatment of Achilles tendon injuries using TSC-sEVs.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Yang Wu
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150028, PR China
| | - Xiangqi Li
- Department of General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Aodan Zhang
- Department of General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Hengchen Liu
- Department of General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Manyu Shi
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150028, PR China
| | - Zenan Zhang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150028, PR China
| | - Wenjun Lu
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150028, PR China
| | - Yujun Guo
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150028, PR China
| | - Xin Tang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150028, PR China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150028, PR China.
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150028, PR China.
| |
Collapse
|
23
|
Yin H, Mao K, Huang Y, Guo A, Shi L. Tendon stem/progenitor cells are promising reparative cell sources for multiple musculoskeletal injuries of concomitant articular cartilage lesions associated with ligament injuries. J Orthop Surg Res 2023; 18:869. [PMID: 37968672 PMCID: PMC10647040 DOI: 10.1186/s13018-023-04313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Trauma-related articular cartilage lesions usually occur in conjunction with ligament injuries. Torn ligaments are frequently reconstructed with tendon autograft and has been proven to achieve satisfactory clinical outcomes. However, treatments for the concomitant articular cartilage lesions are still very insufficient. The current study was aimed to evaluate whether stem cells derived from tendon tissue can be considered as an alternative reparative cell source for cartilage repair. METHODS Primary human tendon stem/progenitor cells (hTSPCs) were isolated from 4 male patients (32 ± 8 years) who underwent ACL reconstruction surgery with autologous semitendinosus and gracilis tendons. The excessive tendon tissue after graft preparation was processed for primary cell isolation with an enzyme digestion protocol. Decellularization cartilage matrix (DCM) was used to provide a chondrogenic microenvironment for hTSPCs. Cell viability, cell morphology on the DCM, as well as their chondrogenic differentiation were evaluated. RESULTS DAPI staining and DNA quantitative analysis (61.47 μg per mg dry weight before and 2.64 μg/mg after decellularization) showed that most of the cells in the cartilage lacuna were removed after decellularization process. Whilst, the basic structure of the cartilage tissue was preserved and the main ECM components, collagen type II and sGAG were retained after decellularization, which were revealed by DMMB assay and histology. Live/dead staining and proliferative assay demonstrated that DCM supported attachment, survival and proliferation of hTSPCs with an excellent biocompatibility. Furthermore, gene expression analysis indicated that chondrogenic differentiation of hTSPC was induced by the DCM microenvironment, with upregulation of chondrogenesis-related marker genes, COL 2 and SOX9, without the use of exogenous growth factors. CONCLUSION DCM supported hTSPCs attachment and proliferation with high biocompatibility. Moreover, TSPCs underwent a distinct chondrogenesis after the induction of a chondrogenic microenvironment provided by DCM. These results indicated that TSPCs are promising reparative cell sources for promoting cartilage repair. Particularly, in the cohort that articular cartilage lesions occur in conjunction with ligament injuries, autologous TSPCs can be isolated from a portion of the tendon autograph harvested for ligaments reconstruction. In future clinical practice, combined ligament reconstruction with TSPCs- based therapy for articular cartilage repair can to be considered to achieve superior repair of these associated injuries, in which autologous TSPCs can be isolated from a portion of the tendon autograph harvested for ligaments reconstruction.
Collapse
Affiliation(s)
- Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Kelei Mao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Yufu Huang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lin Shi
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
24
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
25
|
Caliani Carrera AL, Minto BW, Malard P, Brunel HDSS. The Role of Mesenchymal Stem Cell Secretome (Extracellular Microvesicles and Exosomes) in Animals' Musculoskeletal and Neurologic-Related Disorders. Vet Med Int 2023; 2023:8819506. [PMID: 38023428 PMCID: PMC10645499 DOI: 10.1155/2023/8819506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The advances in regenerative medicine are very important for the development of medicine and the discovery of stem cells has shown a greater capacity to raise the level of therapeutic quality while their use becomes more accessible, especially in their mesenchymal form. In veterinary medicine, it is not different. The use of those cells, as well as recent advances related to the use of their extracellular vesicles, demonstrates a great opportunity to enhance therapeutic methods and ensure more life quality for patients, which can be in clinical or surgical treatments. Knowing the advances in these modalities and the growing clinical and surgery research and demands for innovations in orthopedic and neurology medicines, this paper aimed to review the literature about the methodologies of use and applications such as the pathways of action and the advances that were postulated for microvesicles and exosomes derived from mesenchymal stem cells in veterinary medicine, especially for musculoskeletal disorders and related injuries.
Collapse
Affiliation(s)
- Alefe Luiz Caliani Carrera
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Bruno Watanabe Minto
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Patrícia Malard
- Catholic University of Brasilia, Brasília, Federal District, Brazil
| | | |
Collapse
|
26
|
Rodeo SA. Exosomes: The New Kid on the Block in Orthobiologics. Am J Sports Med 2023; 51:3363-3366. [PMID: 37917821 DOI: 10.1177/03635465231207060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
|
27
|
Wang Y, Li J. Current progress in growth factors and extracellular vesicles in tendon healing. Int Wound J 2023; 20:3871-3883. [PMID: 37291064 PMCID: PMC10588330 DOI: 10.1111/iwj.14261] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
Tendon injury healing is a complex process that involves the participation of a significant number of molecules and cells, including growth factors molecules in a key role. Numerous studies have demonstrated the function of growth factors in tendon healing, and the recent emergence of EV has also provided a new visual field for promoting tendon healing. This review examines the tendon structure, growth, and development, as well as the physiological process of its healing after injury. The review assesses the role of six substances in tendon healing: insulin-like growth factor-I (IGF-I), transforming growth factor β (TGFβ), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and EV. Different growth factors are active at various stages of healing and exhibit separate physiological activities. IGF-1 is expressed immediately after injury and stimulates the mitosis of various cells while suppressing the response to inflammation. VEGF, which is also active immediately after injury, accelerates local metabolism by promoting vascular network formation and positively impacts the activities of other growth factors. However, VEGF's protracted action could be harmful to tendon healing. PDGF, the earliest discovered cytokine to influence tendon healing, has a powerful cell chemotaxis and promotes cell proliferation, but it can equally accelerate the response to inflammation and relieve local adhesions. Also useful for relieving tendon adhesion is TGF- β, which is active almost during the entire phase of tendon healing. As a powerful active substance, in addition to its participation in the field of cardiovascular and cerebrovascular vessels, tumour and chronic wounds, TGF- β reportedly plays a role in promoting cell proliferation, activating growth factors, and inhibiting inflammatory response during tendon healing.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Zhang Y, Ju W, Zhang H, Mengyun L, Shen W, Chen X. Mechanisms and therapeutic prospects of mesenchymal stem cells-derived exosomes for tendinopathy. Stem Cell Res Ther 2023; 14:307. [PMID: 37880763 PMCID: PMC10601253 DOI: 10.1186/s13287-023-03431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/26/2023] [Indexed: 10/27/2023] Open
Abstract
Tendinopathy is a debilitating and crippling syndrome resulting from the degeneration of tendon tissue, leading to loss of mechanical properties and function, and eventual tendon rupture. Unfortunately, there is currently no treatment for tendinopathy that can prevent or delay its progression. Exosomes are small extracellular vesicles that transport bioactive substances produced by cells, such as proteins, lipids, mRNAs, non-coding RNAs, and DNA. They can generate by mesenchymal stem cells (MSCs) throughout the body and play a role in intercellular communication and regulation of homeostasis. Recent research suggests that MSCs-derived exosomes (MSCs-exos) may serve as useful therapeutic candidates for promoting tendon healing. This review focuses on the function and mechanisms of MSCs-exos in tendinopathy treatment and discusses their potential application for treating this condition.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Liu Mengyun
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Shen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
29
|
Hosseinzadeh M, Kamali A, Baghaban Eslaminejad M, Hosseini S. Higher ratios of chondrocyte to mesenchymal stem cells elevate the therapeutic effects of extracellular vesicles harvested from chondrocyte/mesenchymal stem cell co-culture on osteoarthritis in a rat model. Cell Tissue Res 2023; 394:145-162. [PMID: 37526734 DOI: 10.1007/s00441-023-03819-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Extracellular vesicles (EVs) may have a key therapeutic role and offer an innovative treatment for osteoarthritis (OA). Studies have shown that ratio of MSC/chondrocyte could affect their therapeutic outcomes. Here, we investigate the chondrogenic potential and therapeutic effect of EVs derived from MSCs and chondrocytes in the naïve, chondrogenically primed, and co-culture states to treat OA. EVs are isolated from naïve MSCs (M-EV), chondrogenically primed MSCs (cpM-EV), chondrocytes (C-EV), and co-cultures of chondrocytes plus MSCs at ratios of 1:1 (C/M-EV), 2:1 (2C/M-EV), and 4:1 (4C/M-EV). We characterized the isolated EVs in terms of surface markers, morphology, size, and zeta potential, and evaluated their chondrogenic potential in vitro by qRT-PCR and histological analyses. Next, these EVs were intra-articularly injected into osteoarthritic cartilage of a rat model and assessed by radiography, gait parameters, and histological and immunohistochemical analyses. EVs obtained from chondrocytes co-cultured with MSCs resulted in improved matrix production and functional differentiation. Our research showed that close proximity between the two cell types was essential for this response, and improved chondrogenesis and matrix formation were the outcomes of this interaction in vitro. Furthermore, in the in vivo rat OA model induced by a monoiodoacetate (MIA), we observed recovery from OA by increasing ratio of the C/M-derived EV group compared to the other groups. Our findings show that the increasing chondrocyte ratio to MSC leads to high chondrogenic induction and the therapeutic effect of harvested EVs for cartilage repair.
Collapse
Affiliation(s)
- Maryam Hosseinzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Kamali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
30
|
Data K, Kulus M, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Decellularization of Dense Regular Connective Tissue-Cellular and Molecular Modification with Applications in Regenerative Medicine. Cells 2023; 12:2293. [PMID: 37759515 PMCID: PMC10528602 DOI: 10.3390/cells12182293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration.
Collapse
Affiliation(s)
- Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
31
|
Lu J, Chen H, Lyu K, Jiang L, Chen Y, Long L, Wang X, Shi H, Li S. The Functions and Mechanisms of Tendon Stem/Progenitor Cells in Tendon Healing. Stem Cells Int 2023; 2023:1258024. [PMID: 37731626 PMCID: PMC10509002 DOI: 10.1155/2023/1258024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Tendon injury is one of the prevalent disorders of the musculoskeletal system in orthopedics and is characterized by pain and limitation of joint function. Due to the difficulty of spontaneous tendon healing, and the scar tissue and low mechanical properties that usually develops after healing. Therefore, the healing of tendon injury remains a clinical challenge. Although there are a multitude of approaches to treating tendon injury, the therapeutic effects have not been satisfactory to date. Recent studies have shown that stem cell therapy has a facilitative effect on tendon healing. In particular, tendon stem/progenitor cells (TSPCs), a type of stem cell from tendon tissue, play an important role not only in tendon development and tendon homeostasis, but also in tendon healing. Compared to other stem cells, TSPCs have the potential to spontaneously differentiate into tenocytes and express higher levels of tendon-related genes. TSPCs promote tendon healing by three mechanisms: modulating the inflammatory response, promoting tenocyte proliferation, and accelerating collagen production and balancing extracellular matrix remodeling. However, current investigations have shown that TSPCs also have a negative effect on tendon healing. For example, misdifferentiation of TSPCs leads to a "failed healing response," which in turn leads to the development of chronic tendon injury (tendinopathy). The focus of this paper is to describe the characteristics of TSPCs and tenocytes, to demonstrate the roles of TSPCs in tendon healing, while discussing the approaches used to culture and differentiate TSPCs. In addition, the limitations of TSPCs in clinical application and their potential therapeutic strategies are elucidated.
Collapse
Affiliation(s)
- Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hui Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houyin Shi
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Li Q, Yu H, Zhao F, Cao C, Wu T, Fan Y, Ao Y, Hu X. 3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303650. [PMID: 37424038 PMCID: PMC10502685 DOI: 10.1002/advs.202303650] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 07/11/2023]
Abstract
In clinical practice, repairing osteochondral defects presents a challenge due to the varying biological properties of articular cartilages and subchondral bones. Thus, elucidating how spatial microenvironment-specific biomimetic scaffolds can be used to simultaneously regenerate osteochondral tissue is an important research topic. Herein, a novel bioinspired double-network hydrogel scaffold produced via 3D printing with tissue-specific decellularized extracellular matrix (dECM) and human adipose mesenchymal stem cell (MSC)-derived exosomes is described. The bionic hydrogel scaffolds promote rat bone marrow MSC attachment, spread, migration, proliferation, and chondrogenic and osteogenic differentiation in vitro, as determined based on the sustained release of bioactive exosomes. Furthermore, the 3D-printed microenvironment-specific heterogeneous bilayer scaffolds efficiently accelerate the simultaneous regeneration of cartilage and subchondral bone tissues in a rat preclinical model. In conclusion, 3D dECM-based microenvironment-specific biomimetics encapsulated with bioactive exosomes can serve as a novel cell-free recipe for stem cell therapy when treating injured or degenerative joints. This strategy provides a promising platform for complex zonal tissue regeneration whilst holding attractive clinical translation potential.
Collapse
Affiliation(s)
- Qi Li
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Center of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Huilei Yu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Fengyuan Zhao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Chenxi Cao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Tong Wu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Yifei Fan
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Yingfang Ao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Xiaoqing Hu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| |
Collapse
|
33
|
Cui J, Zhang YJ, Li X, Luo JJ, Zhao LL, Xie XY, Ding W, Luo JC, Qin TW. Decellularized tendon scaffolds loaded with collagen targeted extracellular vesicles from tendon-derived stem cells facilitate tendon regeneration. J Control Release 2023; 360:842-857. [PMID: 37478916 DOI: 10.1016/j.jconrel.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Stem cell-based treatment of tendon injuries remains to have some inherent issues. Extracellular vesicles derived from stem cells have shown promising achievements in tendon regeneration, though their retention in vivo is low. This study reports on the use of a collagen binding domain (CBD) to bind extracellular vesicles, obtained from tendon-derived stem cells (TDSCs), to collagen. CBD-extracellular vesicles (CBD-EVs) were coupled to decellularized bovine tendon sheets (DBTS) to fabricate a bio-functionalized scaffold (CBD-EVs-DBTS). Our results show that thus obtained bio-functionalized scaffolds facilitate the proliferation, migration and tenogenic differentiation of stem cells in vitro. Furthermore, the scaffolds promote endogenous stem cell recruitment to the defects, facilitate collagen deposition and improve the biomechanics of injured tendons, thus resulting in functional regeneration of tendons.
Collapse
Affiliation(s)
- Jing Cui
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Jing Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuan Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Jiao Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei-Lei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin-Yue Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing-Cong Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Wu Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Teo KYW, Tan R, Wong KL, Hey DHW, Hui JHP, Toh WS. Small extracellular vesicles from mesenchymal stromal cells: the next therapeutic paradigm for musculoskeletal disorders. Cytotherapy 2023; 25:837-846. [PMID: 37191613 DOI: 10.1016/j.jcyt.2023.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Musculoskeletal disorders are one of the biggest contributors to morbidity and place an enormous burden on the health care system in an aging population. Owing to their immunomodulatory and regenerative properties, mesenchymal stromal/stem cells (MSCs) have demonstrated therapeutic efficacy for treatment of a wide variety of conditions, including musculoskeletal disorders. Although MSCs were originally thought to differentiate and replace injured/diseased tissues, it is now accepted that MSCs mediate tissue repair through secretion of trophic factors, particularly extracellular vesicles (EVs). Endowed with a diverse cargo of bioactive lipids, proteins, nucleic acids and metabolites, MSC-EVs have been shown to elicit diverse cellular responses and interact with many cell types needed in tissue repair. The present review aims to summarize the latest advances in the use of native MSC-EVs for musculoskeletal regeneration, examine the cargo molecules and mechanisms underlying their therapeutic effects, and discuss the progress and challenges in their translation to the clinic.
Collapse
Affiliation(s)
- Kristeen Ye Wen Teo
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Faculty of Dentistry, National University of Singapore, Singapore, Republic of Singapore
| | - Rachel Tan
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Keng Lin Wong
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Department of Orthopedic Surgery, Sengkang General Hospital, Singapore Health Services, Singapore, Republic of Singapore
| | - Dennis Hwee Weng Hey
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - James Hoi Po Hui
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Wei Seong Toh
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Faculty of Dentistry, National University of Singapore, Singapore, Republic of Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Republic of Singapore; Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
35
|
Zhao W, Zhang H, Liu R, Cui R. Advances in Immunomodulatory Mechanisms of Mesenchymal Stem Cells-Derived Exosome on Immune Cells in Scar Formation. Int J Nanomedicine 2023; 18:3643-3662. [PMID: 37427367 PMCID: PMC10327916 DOI: 10.2147/ijn.s412717] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Pathological scars are the result of over-repair and excessive tissue proliferation of the skin injury. It may cause serious dysfunction, resulting in psychological and physiological burdens on the patients. Currently, mesenchymal stem cells-derived exosomes (MSC-Exo) displayed a promising therapeutic effect on wound repair and scar attenuation. But the regulatory mechanisms are opinions vary. In view of inflammation has long been proven as the initial factor of wound healing and scarring, and the unique immunomodulation mechanism of MSC-Exo, the utilization of MSC-Exo may be promising therapeutic for pathological scars. However, different immune cells function differently during wound repair and scar formation. The immunoregulatory mechanism of MSC-Exo would differ among different immune cells and molecules. Herein, this review gave a comprehensive summary of MSC-Exo immunomodulating different immune cells in wound healing and scar formation to provide basic theoretical references and therapeutic exploration of inflammatory wound healing and pathological scars.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Huimin Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rui Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rongtao Cui
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
36
|
Shi W, Wu J, Pi Y, Yan X, Hu X, Cheng J, Yu H, Shao Z. E7 Peptide Enables BMSC Adhesion and Promotes Chondrogenic Differentiation of BMSCs Via the LncRNA H19/miR675 Axis. Bioengineering (Basel) 2023; 10:781. [PMID: 37508808 PMCID: PMC10376115 DOI: 10.3390/bioengineering10070781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic strategies based on utilizing endogenous BMSCs have been developed for the regeneration of bone, cartilage, and ligaments. We previously found that E7 peptide (EPLQLKM) could enhance BMSC homing in bio-scaffolds and, therefore, promote cartilage regeneration. However, the profile and mechanisms of E7 peptide in cartilage regeneration remain elusive. In this study, we examined the effect of E7 peptide on the BMSC phenotype, including adhesion, viability and chondrogenic differentiation, and its underlying mechanism. The konjac glucomannan microsphere (KGM), a carrier material that is free of BMSC adhesion ability, was used as the solid base of E7 peptide to better explore the independent role of E7 peptide in BMSC behavior. The results showed that E7 peptide could support BMSC adhesion and viability in a comparable manner to RGD and promote superior chondrogenic differentiation to RGD. We examined differentially expressed genes of BMSCs induced by E7 compared to RGD. Subsequently, a real-time PCR validated the significantly upregulated expression of lncRNA H19, and the knockdown of lncRNA H19 or miR675, a downstream functional unit of H19, could significantly obscure the chondrogenic differentiation induced by E7. In conclusion, this study confirmed the independent role of E7 in the adhesion and viability of BMSCs and revealed the pro-chondrogenic effect of E7 on BMSCs via the H19/miR675 axis. These results could help establish new therapeutic strategies based on employing endogenous BMSCs for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Weili Shi
- Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing 100191, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Yanbin Pi
- Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing 100191, China
| | - Xingran Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Hu
- Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing 100191, China
| | - Jin Cheng
- Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing 100191, China
| | - Huilei Yu
- Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing 100191, China
| | - Zhenxing Shao
- Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing 100191, China
| |
Collapse
|
37
|
Soukup R, Gerner I, Mohr T, Gueltekin S, Grillari J, Jenner F. Mesenchymal Stem Cell Conditioned Medium Modulates Inflammation in Tenocytes: Complete Conditioned Medium Has Superior Therapeutic Efficacy than Its Extracellular Vesicle Fraction. Int J Mol Sci 2023; 24:10857. [PMID: 37446034 PMCID: PMC10342101 DOI: 10.3390/ijms241310857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells (MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs), have shown promise in tissue regeneration and immunomodulation. However, it remains unclear which components of the secretome contribute to their therapeutic effects. This study aimed to compare the efficacy of CM, EVs, and the soluble protein fraction (PF) in treating inflamed tenocytes. CM exhibited the highest protein and particle concentrations, followed by PF and EVs. Inflammation significantly altered gene expression in tenocytes, with CM showing the most distinct separation from the inflamed control group. Treatment with CM resulted in the most significant differential gene expression, with both upregulated and downregulated genes related to inflammation and tissue regeneration. EV treatment also demonstrated a therapeutic effect, albeit to a lesser extent. These findings suggest that CM holds superior therapeutic efficacy compared with its EV fraction alone, emphasizing the importance of the complete secretome in tendon injury treatment.
Collapse
Affiliation(s)
- Robert Soukup
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Thomas Mohr
- Science Consult DI Thomas Mohr KG, 2353 Guntramsdorf, Austria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sinan Gueltekin
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1090 Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
38
|
Zou M, Wang J, Shao Z. Therapeutic Potential of Exosomes in Tendon and Tendon-Bone Healing: A Systematic Review of Preclinical Studies. J Funct Biomater 2023; 14:299. [PMID: 37367263 PMCID: PMC10299056 DOI: 10.3390/jfb14060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Exosomes have been proven to play a positive role in tendon and tendon-bone healing. Here, we systematically review the literature to evaluate the efficacy of exosomes in tendon and tendon-bone healing. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic and comprehensive review of the literature was performed on 21 January 2023. The electronic databases searched included Medline (through PubMed), Web of Science, Embase, Scopus, Cochrane Library and Ovid. In the end, a total of 1794 articles were systematically reviewed. Furthermore, a "snowball" search was also carried out. Finally, forty-six studies were included for analysis, with the total sample size being 1481 rats, 416 mice, 330 rabbits, 48 dogs, and 12 sheep. In these studies, exosomes promoted tendon and tendon-bone healing and displayed improved histological, biomechanical and morphological outcomes. Some studies also suggested the mechanism of exosomes in promoting tendon and tendon-bone healing, mainly through the following aspects: (1) suppressing inflammatory response and regulating macrophage polarization; (2) regulating gene expression, reshaping cell microenvironment and reconstructing extracellular matrix; (3) promoting angiogenesis. The risk of bias in the included studies was low on the whole. This systematic review provides evidence of the positive effect of exosomes on tendon and tendon-bone healing in preclinical studies. The unclear-to-low risk of bias highlights the significance of standardization of outcome reporting. It should be noted that the most suitable source, isolation methods, concentration and administration frequency of exosomes are still unknown. Additionally, few studies have used large animals as subjects. Further studies may be required on comparing the safety and efficacy of different treatment parameters in large animal models, which would be conducive to the design of clinical trials.
Collapse
Affiliation(s)
- Mingrui Zou
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jingzhou Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Zhenxing Shao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| |
Collapse
|
39
|
Wang DR, Pan J. Extracellular vesicles: Emerged as a promising strategy for regenerative medicine. World J Stem Cells 2023; 15:165-181. [PMID: 37181006 PMCID: PMC10173817 DOI: 10.4252/wjsc.v15.i4.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Cell transplantation therapy has certain limitations including immune rejection and limited cell viability, which seriously hinder the transformation of stem cell-based tissue regeneration into clinical practice. Extracellular vesicles (EVs) not only possess the advantages of its derived cells, but also can avoid the risks of cell transplantation. EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities, tissue repair and regeneration by transmitting a variety of biological signals, showing great potential in cell-free tissue regeneration. In this review, we summarized the origins and characteristics of EVs, introduced the pivotal role of EVs in diverse tissues regeneration, discussed the underlying mechanisms, prospects, and challenges of EVs. We also pointed out the problems that need to be solved, application directions, and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.
Collapse
Affiliation(s)
- Dian-Ri Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
40
|
Leal Reis I, Lopes B, Sousa P, Sousa AC, Branquinho M, Caseiro AR, Pedrosa SS, Rêma A, Oliveira C, Porto B, Atayde L, Amorim I, Alvites R, Santos JM, Maurício AC. Allogenic Synovia-Derived Mesenchymal Stem Cells for Treatment of Equine Tendinopathies and Desmopathies-Proof of Concept. Animals (Basel) 2023; 13:ani13081312. [PMID: 37106875 PMCID: PMC10135243 DOI: 10.3390/ani13081312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Tendon and ligament injuries are frequent in sport horses and humans, and such injuries represent a significant therapeutic challenge. Tissue regeneration and function recovery are the paramount goals of tendon and ligament lesion management. Nowadays, several regenerative treatments are being developed, based on the use of stem cell and stem cell-based therapies. In the present study, the preparation of equine synovial membrane mesenchymal stem cells (eSM-MSCs) is described for clinical use, collection, transport, isolation, differentiation, characterization, and application. These cells are fibroblast-like and grow in clusters. They retain osteogenic, chondrogenic, and adipogenic differentiation potential. We present 16 clinical cases of tendonitis and desmitis, treated with allogenic eSM-MSCs and autologous serum, and we also include their evaluation, treatment, and follow-up. The concerns associated with the use of autologous serum as a vehicle are related to a reduced immunogenic response after the administration of this therapeutic combination, as well as the pro-regenerative effects from the growth factors and immunoglobulins that are part of its constitution. Most of the cases (14/16) healed in 30 days and presented good outcomes. Treatment of tendon and ligament lesions with a mixture of eSM-MSCs and autologous serum appears to be a promising clinical option for this category of lesions in equine patients.
Collapse
Affiliation(s)
- Inês Leal Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Jorge Miguel Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
41
|
Zhu Y, Yang K, Cheng Y, Liu Y, Gu R, Liu X, Liu H, Zhang X, Liu Y. Apoptotic Vesicles Regulate Bone Metabolism via the miR1324/SNX14/SMAD1/5 Signaling Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205813. [PMID: 36670083 DOI: 10.1002/smll.202205813] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mesenchymal stem cells (MSCs) are widely used in the treatment of diseases. After their in vivo application, MSCs undergo apoptosis and release apoptotic vesicles (apoVs). This study investigates the role of apoVs derived from human bone marrow mesenchymal stem cells (hBMMSCs) in bone metabolism and the molecular mechanism of the observed effects. The results show that apoVs can promote osteogenesis and inhibit osteoclast formation in vitro and in vivo. ApoVs may therefore attenuate the bone loss caused by primary and secondary osteoporosis and stimulate bone regeneration in areas of bone defect. The mechanisms responsible for apoV-induced bone regeneration include the release of miR1324, which inhibit expression of the target gene Sorting Nexin 14 (SNX14) and thus activate the SMAD1/5 pathway in target cells. Given that MSC-derived apoVs are easily obtained and stored, with low risks of immunological rejection and neoplastic transformation, The findings suggest a novel therapeutic strategy to treat bone loss, including via cell-free approaches to bone tissue engineering.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yawen Cheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yaoshan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
42
|
Chen LY, Kao TW, Chen CC, Niaz N, Lee HL, Chen YH, Kuo CC, Shen YA. Frontier Review of the Molecular Mechanisms and Current Approaches of Stem Cell-Derived Exosomes. Cells 2023; 12:cells12071018. [PMID: 37048091 PMCID: PMC10093591 DOI: 10.3390/cells12071018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are effective therapeutic vehicles that may transport their substances across cells. They are shown to possess the capacity to affect cell proliferation, migration, anti-apoptosis, anti-scarring, and angiogenesis, via the action of transporting molecular components. Possessing immense potential in regenerative medicine, exosomes, especially stem cell-derived exosomes, have the advantages of low immunogenicity, minimal invasiveness, and broad clinical applicability. Exosome biodistribution and pharmacokinetics may be altered, in response to recent advancements in technology, for the purpose of treating particular illnesses. Yet, prior to clinical application, it is crucial to ascertain the ideal dose and any potential negative consequences of an exosome. This review focuses on the therapeutic potential of stem cell-derived exosomes and further illustrates the molecular mechanisms that underpin their potential in musculoskeletal regeneration, wound healing, female infertility, cardiac recovery, immunomodulation, neurological disease, and metabolic regulation. In addition, we provide a summary of the currently effective techniques for isolating exosomes, and describe the innovations in biomaterials that improve the efficacy of exosome-based treatments. Overall, this paper provides an updated overview of the biological factors found in stem cell-derived exosomes, as well as potential targets for future cell-free therapeutic applications.
Collapse
|
43
|
Cai J, Xu J, Ye Z, Wang L, Zheng T, Zhang T, Li Y, Jiang J, Zhao J. Exosomes Derived From Kartogenin-Preconditioned Mesenchymal Stem Cells Promote Cartilage Formation and Collagen Maturation for Enthesis Regeneration in a Rat Model of Chronic Rotator Cuff Tear. Am J Sports Med 2023; 51:1267-1276. [PMID: 36917828 DOI: 10.1177/03635465231155927] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Poor tendon-to-bone healing in chronic rotator cuff tears (RCTs) is related to unsatisfactory outcomes. Exosomes derived from mesenchymal stem cells reportedly enhance rotator cuff healing. However, the difficulty in producing exosomes with a stronger effect on enthesis regeneration must be resolved. PURPOSE To study the effect of exosomes derived from kartogenin (KGN)-preconditioned human bone marrow mesenchymal stem cells (KGN-Exos) on tendon-to-bone healing in a rat model of chronic RCT. STUDY DESIGN Controlled laboratory study. METHODS Exosome-loaded sodium alginate hydrogel (SAH) was prepared. Moreover, exosomes were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) or 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (Dil) for in vivo tracking. Bilateral rotator cuff repair (RCR) was conducted in an established chronic RCT rat model. A total of 66 rats were randomized to control, untreated exosome (un-Exos), and KGN-Exos groups to receive local injections of pure SAH, un-Exos, or KGN-Exos SAH at the repaired site. The presence of DiR/Dil-labeled exosomes was assessed at 1 day and 1 week, and tendon-to-bone healing was evaluated histologically, immunohistochemically, and biomechanically at 4 and 8 weeks. RESULTS Both un-Exos and KGN-Exos exhibited sustained release from SAH for up to 96 hours. In vivo study revealed that un-Exos and KGN-Exos were localized to the repaired site at 1 week. Moreover, the KGN-Exos group showed a higher histological score and increased glycosaminoglycan and collagen II expression at 4 and 8 weeks. In addition, more mature and better-organized collagen fibers with higher ratios of collagen I to collagen III were observed at 8 weeks in the tendon-to-bone interface compared with those in the control and un-Exos groups. Biomechanically, the KGN-Exos group had the highest failure load (28.12 ± 2.40 N) and stiffness (28.57 ± 2.49 N/mm) among the 3 groups at 8 weeks. CONCLUSION Local injection of SAH with sustained KGN-Exos release could effectively promote cartilage formation as well as collagen maturation and organization for enthesis regeneration, contributing to enhanced biomechanical properties after RCR. CLINICAL RELEVANCE KGN-Exos injection may be used as a cell-free therapeutic option to accelerate tendon-to-bone healing in chronic RCT.
Collapse
Affiliation(s)
- Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zheng
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlun Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufeng Li
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Empagliflozin-Pretreated Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Attenuated Heart Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7747727. [PMID: 36852325 PMCID: PMC9966826 DOI: 10.1155/2023/7747727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023]
Abstract
Objective Small extracellular vesicles derived from mesenchymal stem cells (MSCs) play important roles in cardiac protection. Studies have shown that the cardiovascular protection of sodium-glucose cotransporter 2 inhibitor (SGLT2i) is independent of its hypoglycemic effect. This study is aimed at investigating whether small extracellular vesicles derived from MSCs pretreated with empagliflozin (EMPA) has a stronger cardioprotective function after myocardial infarction (MI) and to explore the underlying mechanisms. Methods and Results We evaluated the effects of EMPA on MSCs and the effects of EMPA-pretreated MSCs-derived small extracellular vesicles (EMPA-sEV) on myocardial apoptosis, angiogenesis, and cardiac function after MI in vitro and in vivo. The small extracellular vesicles of control MSCs (MSC-sEV) and EMPA-pretreated MSCs were extracted, respectively. Small extracellular vesicles were cocultured with apoptotic H9c2 cells induced by H2O2 or injected into the infarcted area of the Sprague-Dawley (SD) rat myocardial infarction model. EMPA increased the cell viability, migration ability, and inhibited apoptosis and senescence of MSCs. In vitro, EMPA-sEV inhibited apoptosis of H9c2 cells compared with the control group (MSC-sEV). In the SD rat model of MI, EMPA-sEV inhibited myocardial apoptosis and promoted angiogenesis in the infarct marginal areas compared with the MSC-sEV. Meanwhile, EMPA-sEV reduced infarct size and improved cardiac function. Through small extracellular vesicles (miRNA) sequencing, we found several differentially expressed miRNAs, among which miR-214-3p was significantly elevated in EMPA-sEV. Coculture of miR-214-3p high expression MSC-derived small extracellular vesicles with H9c2 cells produced similar protective effects. In addition, miR-214-3p was found to promote AKT phosphorylation in H9c2 cells. Conclusions Our data suggest that EMPA-sEV significantly improve cardiac repair after MI by inhibiting myocardial apoptosis. miR-214-3p at least partially mediated the myocardial protection of EMPA-sEV through the AKT signaling pathway.
Collapse
|
45
|
Graça AL, Domingues RMA, Gomez-Florit M, Gomes ME. Platelet-Derived Extracellular Vesicles Promote Tenogenic Differentiation of Stem Cells on Bioengineered Living Fibers. Int J Mol Sci 2023; 24:ijms24043516. [PMID: 36834925 PMCID: PMC9959969 DOI: 10.3390/ijms24043516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tendon mimetic scaffolds that recreate the tendon hierarchical structure and niche have increasing potential to fully restore tendon functionality. However, most scaffolds lack biofunctionality to boost the tenogenic differentiation of stem cells. In this study, we assessed the role of platelet-derived extracellular vesicles (EVs) in stem cells' tenogenic commitment using a 3D bioengineered in vitro tendon model. First, we relied on fibrous scaffolds coated with collagen hydrogels encapsulating human adipose-derived stem cells (hASCs) to bioengineer our composite living fibers. We found that the hASCs in our fibers showed high elongation and cytoskeleton anisotropic organization, typical of tenocytes. Moreover, acting as biological cues, platelet-derived EVs boosted the hASCs' tenogenic commitment, prevented phenotypic drift, enhanced the deposition of the tendon-like extracellular matrix, and induced lower collagen matrix contraction. In conclusion, our living fibers provided an in vitro system for tendon tissue engineering, allowing us to study not only the tendon microenvironment but also the influence of biochemical cues on stem cell behavior. More importantly, we showed that platelet-derived EVs are a promising biochemical tool for tissue engineering and regenerative medicine applications that are worthy of further exploration, as paracrine signaling might potentiate tendon repair and regeneration.
Collapse
Affiliation(s)
- Ana L. Graça
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Manuel Gomez-Florit
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Correspondence: (M.G.-F.); (M.E.G.)
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (M.G.-F.); (M.E.G.)
| |
Collapse
|
46
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
47
|
Mattei V, Delle Monache S. Dental Pulp Stem Cells (DPSCs) and Tissue Regeneration: Mechanisms Mediated by Direct, Paracrine, or Autocrine Effects. Biomedicines 2023; 11:biomedicines11020386. [PMID: 36830923 PMCID: PMC9953448 DOI: 10.3390/biomedicines11020386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Among mesenchymal stem cells, dental pulp stem cells (DPSCs) were discovered most recently [...].
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy
- Correspondence: (V.M.); (S.D.M.)
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (V.M.); (S.D.M.)
| |
Collapse
|
48
|
Quintero D, Perucca Orfei C, Kaplan LD, de Girolamo L, Best TM, Kouroupis D. The roles and therapeutic potentialof mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. Front Bioeng Biotechnol 2023; 11:1040762. [PMID: 36741745 PMCID: PMC9892947 DOI: 10.3389/fbioe.2023.1040762] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Tendinopathies encompass a highly prevalent, multi-faceted spectrum of disorders, characterized by activity-related pain, compromised function, and propensity for an extended absence from sport and the workplace. The pathophysiology of tendinopathy continues to evolve. For decades, it has been related primarily to repetitive overload trauma but more recently, the onset of tendinopathy has been attributed to the tissue's failed attempt to heal after subclinical inflammatory and immune challenges (failed healing model). Conventional tendinopathy management produces only short-term symptomatic relief and often results in incomplete repair or healing leading to compromised tendon function. For this reason, there has been increased effort to develop therapeutics to overcome the tissue's failed healing response by targeting the cellular metaplasia and pro-inflammatory extra-cellular environment. On this basis, stem cell-based therapies have been proposed as an alternative therapeutic approach designed to modify the course of the various tendon pathologies. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells often referred to as "medicinal signaling cells" due to their immunomodulatory and anti-inflammatory properties that can produce a pro-regenerative microenvironment in pathological tendons. However, the adoption of MSCs into clinical practice has been limited by FDA regulations and perceived risk of adverse events upon infusion in vivo. The introduction of cell-free approaches, such as the extracellular vesicles of MSCs, has encouraged new perspectives for the treatment of tendinopathies, showing promising short-term results. In this article, we review the most recent advances in MSC-based and MSC-derived therapies for tendinopathies. Preclinical and clinical studies are included with comment on future directions of this rapidly developing therapeutic modality, including the importance of understanding tissue loading and its relationship to any treatment regimen.
Collapse
Affiliation(s)
- Daniel Quintero
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Dimitrios Kouroupis,
| |
Collapse
|
49
|
Zou J, Yang W, Cui W, Li C, Ma C, Ji X, Hong J, Qu Z, Chen J, Liu A, Wu H. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology 2023; 21:14. [PMID: 36642728 PMCID: PMC9841717 DOI: 10.1186/s12951-023-01778-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Tendon-bone insertion (TBI) injuries, such as anterior cruciate ligament injury and rotator cuff injury, are the most common soft tissue injuries. In most situations, surgical tendon/ligament reconstruction is necessary for treating such injuries. However, a significant number of cases failed because healing of the enthesis occurs through scar tissue formation rather than the regeneration of transitional tissue. In recent years, the therapeutic potential of mesenchymal stem cells (MSCs) has been well documented in animal and clinical studies, such as chronic paraplegia, non-ischemic heart failure, and osteoarthritis of the knee. MSCs are multipotent stem cells, which have self-renewability and the ability to differentiate into a wide variety of cells such as chondrocytes, osteoblasts, and adipocytes. Numerous studies have suggested that MSCs could promote angiogenesis and cell proliferation, reduce inflammation, and produce a large number of bioactive molecules involved in the repair. These effects are likely mediated by the paracrine mechanisms of MSCs, particularly through the release of exosomes. Exosomes, nano-sized extracellular vesicles (EVs) with a lipid bilayer and a membrane structure, are naturally released by various cell types. They play an essential role in intercellular communication by transferring bioactive lipids, proteins, and nucleic acids, such as mRNAs and miRNAs, between cells to influence the physiological and pathological processes of recipient cells. Exosomes have been shown to facilitate tissue repair and regeneration. Herein, we discuss the prospective applications of MSC-derived exosomes in TBI injuries. We also review the roles of MSC-EVs and the underlying mechanisms of their effects on promoting tendon-bone healing. At last, we discuss the present challenges and future research directions.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Xiaoxiao Ji
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Jianqiao Hong
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Zihao Qu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Jing Chen
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China.
| |
Collapse
|
50
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|