1
|
Han J, Duan Z, Liu C, Liu Y, Zhao X, Wang B, Cao S, Wu D. Hyperbranched Polymeric 19F MRI Contrast Agents with Long T2 Relaxation Time Based on β-Cyclodextrin and Phosphorycholine. Biomacromolecules 2024; 25:5860-5872. [PMID: 39113312 DOI: 10.1021/acs.biomac.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
19F magnetic resonance imaging (19F MRI) is gaining attention as an emerging diagnostic technology. Effective 19F MRI contrast agents (CAs) for in vivo applications require a long transverse (or spin-spin) relaxation time (T2), short longitudinal (or spin-lattice) relaxation time (T1), high fluorine content, and excellent biocompatibility. Here, we present a novel hyperbranched polymeric 19F MRI CA based on β-cyclodextrin and phosphorylcholine. The influence of the branching degree and fluorine content on T2 was thoroughly investigated. Results demonstrated a maximum fluorine content of 11.85% and a T2 of 612 ms. This hyperbranched polymeric 19F MRI CA exhibited both great biocompatibility against cells and organs of mice and high-performance imaging capabilities both in vitro and in vivo. The research provides positive insights into the synthesis strategies, topological design, and selection of fluorine tags for 19F MRI CAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Xinyu Zhao
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Shuaishuai Cao
- Shenzhen University General Hospital, Shenzhen 518055, China
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| |
Collapse
|
2
|
Wang X, Chen J, Li Z, Li Y, Zhang Y, Gong Q, Luo K. A branched polymer-based agent for efficient and precise targeting of fibrosis diseases by magnetic resonance imaging. J Control Release 2024; 373:905-916. [PMID: 39089506 DOI: 10.1016/j.jconrel.2024.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Herein, we synthesized and characterized gadolinium-based hyperbranched polymers, POADGd and PODGd, through RAFT polymerization as magnetic resonance imaging (MRI) contrast agents for detecting fibrosis. POADGd and PODGd contain biocompatible short-chain OEGMA to prolong blood circulation, and they can be decomposed in response to ROS after MRI examination to prevent potential accumulation. The relaxivities of POADGd and PODGd are 9.81 mM-1 s-1 and 9.58 mM-1 s-1 respectively, which are significantly higher than that of DTPA-Gd, a clinically used agent (3.74 mM-1 s-1). In comparison with PODGd, POADGd can specifically target allysine in fibrosis tissues through its oxyamine groups. Therefore, it displays a sharp spatial resolution and a high signal-to-noise ratio in the liver and lung fibrosis tissue at a field strength of 3.0 T or 7.0 T, and the morphology of these fibrosis tissues is accurately delineated. Our MRI diagnosis results based on POADGd are highly aligned with those from pathological examinations, while MRI diagnosis could avoid invasive biopsy. In addition, POADGd shows excellent biosafety and low toxicity. Therefore, POADGd could be applied to non-invasively and accurately diagnose liver and lung fibrosis diseases.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Radiology, Chongqing General Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Jie Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Weng D, Guo R, Dong C, Luo Y, Qiu D, Xu L, Xu G. Magnetic Resonance Imaging of Fibroblast Activation Protein Using a Targeted Gadolinium-Based Contrast Agent. Mol Pharm 2024. [PMID: 39159402 DOI: 10.1021/acs.molpharmaceut.3c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The aim of this study was to synthesize a quinoline-based MRI contrast agent, Gd-DOTA-FAPI04, and assess its capacity for targeting fibroblast activation protein (FAP)-positive tumors in vivo. Gd-DOTA-FAPI04 was synthesized by attaching a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) complex of gadolinium(III) to FAP inhibitor FAPI04. The longitudinal relaxation time (T1) of the contrast agent was measured using a Siemens Prisma 3.0T MR system, and the CCK-8 assay was performed to evaluate its potential cytotoxicity. Male nude mice bearing tumors grown from FAP-expressing fibrosarcoma cells were divided into experimental (n = 4) and control (n = 4) groups, and T1-weighted image enhancement was measured at different times (0, 10, 30, 60, 90, and 120 min) postinjection of Gd-DOTA-FAPI04. The control group received an additional preinjection of excess FAPI04. FAP expression in tumor tissue was investigated by using immunohistochemistry with an anti-FAP antibody. The longitudinal relaxivities of gadodiamide and Gd-DOTA-FAPI04 were measured to be 3.734 mM-1 s-1 and 5.323 mM-1 s-1, respectively. The CCK-8 assay demonstrated that Gd-DOTA-FAPI04 has minimal toxicity to cultured human fibrosarcoma cells. In vivo MRI showed that peak accumulation of Gd-DOTA-FAPI04 in FAP-expressing tumors occurred 1 h postinjection and could be blocked by preinjection of excess FAPI04. Immunohistochemical analysis of harvested tumor tissue supported the above findings. Gd-DOTA-FAPI04 is a promising contrast agent for in vivo imaging of FAP.
Collapse
Affiliation(s)
- Dinghu Weng
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan 430071, Hubei, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, Wuhan 430071, Hubei, China
| | - Rong Guo
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430000, Hubei, China
| | - Changling Dong
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
| | - Yuan Luo
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan 430071, Hubei, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, Wuhan 430071, Hubei, China
| | - Dasheng Qiu
- Department of Nuclear Medicine, Hubei Cancer Hospital, Wuhan 430079, Hubei, China
| | - Liying Xu
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan 430071, Hubei, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, Wuhan 430071, Hubei, China
| | - Guobin Xu
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan 430071, Hubei, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, Wuhan 430071, Hubei, China
| |
Collapse
|
4
|
Pires ICB, Shuchi SI, Tostes BDVA, Santos DKDDN, Burnett WL, Leonce BC, Harvey OR, Coffer JL, de Sousa Filho IA, de Athayde-Filho PF, Junior SA, Mathis JM. Theranostics Using MCM-41-Based Mesoporous Silica Nanoparticles: Integrating Magnetic Resonance Imaging and Novel Chemotherapy for Breast Cancer Treatment. Int J Mol Sci 2024; 25:8097. [PMID: 39125669 PMCID: PMC11311303 DOI: 10.3390/ijms25158097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Advanced breast cancer remains a significant oncological challenge, requiring new approaches to improve clinical outcomes. This study investigated an innovative theranostic agent using the MCM-41-NH2-DTPA-Gd3⁺-MIH nanomaterial, which combined MRI imaging for detection and a novel chemotherapy agent (MIH 2.4Bl) for treatment. The nanomaterial was based on the mesoporous silica type, MCM-41, and was optimized for drug delivery via functionalization with amine groups and conjugation with DTPA and complexation with Gd3+. MRI sensitivity was enhanced by using gadolinium-based contrast agents, which are crucial in identifying early neoplastic lesions. MIH 2.4Bl, with its unique mesoionic structure, allows effective interactions with biomolecules that facilitate its intracellular antitumoral activity. Physicochemical characterization confirmed the nanomaterial synthesis and effective drug incorporation, with 15% of MIH 2.4Bl being adsorbed. Drug release assays indicated that approximately 50% was released within 8 h. MRI phantom studies demonstrated the superior imaging capability of the nanomaterial, with a relaxivity significantly higher than that of the commercial agent Magnevist. In vitro cellular cytotoxicity assays, the effectiveness of the nanomaterial in killing MDA-MB-231 breast cancer cells was demonstrated at an EC50 concentration of 12.6 mg/mL compared to an EC50 concentration of 68.9 mg/mL in normal human mammary epithelial cells (HMECs). In vivo, MRI evaluation in a 4T1 syngeneic mouse model confirmed its efficacy as a contrast agent. This study highlighted the theranostic capabilities of MCM-41-NH2-DTPA-Gd3⁺-MIH and its potential to enhance breast cancer management.
Collapse
Affiliation(s)
- Indira C. B. Pires
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - Samia I. Shuchi
- School of Biomedical Sciences, Departments of Microbiology, Immunology, and Genetics and Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Braulio de V. A. Tostes
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - Dayane K. D. do N. Santos
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - William L. Burnett
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Burke C. Leonce
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Omar R. Harvey
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Jeffery L. Coffer
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Idio Alves de Sousa Filho
- Institute of Chemistry, Federal Rural University of Rio de Janeiro, Rio de Janeiro 23890-000, RJ, Brazil;
| | | | - Severino A. Junior
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - J. Michael Mathis
- School of Biomedical Sciences, Departments of Microbiology, Immunology, and Genetics and Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
5
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
6
|
Yin Q, Gao X, Zhang H, Zhang Z, Yu X, He J, Shi G, Hao L. Fe 3O 4-Cy5.5-trastuzumab magnetic nanoparticles for magnetic resonance/near-infrared imaging targeting HER2 in breast cancer. Biomed Mater 2024; 19:035034. [PMID: 38626777 DOI: 10.1088/1748-605x/ad3f61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
This study developed a probe Fe3O4-Cy5.5-trastuzumab with fluorescence and magnetic resonance imaging functions that can target breast cancer with high HER2 expression, aiming to provide a new theoretical method for the diagnosis of early breast cancer. Fe3O4-Cy5.5-trastuzumab nanoparticles were combined with Fe3O4for T2imaging and Cy5.5 for near-infrared imaging, and coupled with trastuzumab for HER2 targeting. We characterized the nanoparticles used transmission electron microscopy, hydration particle size, Zeta potential, UV and Fourier transform infrared spectroscopy, and examined its magnetism, fluorescence, and relaxation rate related properties. CCK-8 and blood biochemistry analysis evaluated the biosafety and stability of the nanoparticles, and validated the targeting ability of Fe3O4-Cy5.5 trastuzumab nanoparticles throughin vitroandin vivocell and animal experiments. Characterization results showed the successful synthesis of Fe3O4-Cy5.5-trastuzumab nanoparticles with a diameter of 93.72 ± 6.34 nm. The nanoparticles showed a T2relaxation rate 42.29 mM-1s-1, magnetic saturation strength of 27.58 emg g-1. Laser confocal and flow cytometry uptake assay showed that the nanoparticles could effectively target HER2 expressed by breast cancer cells. As indicated byin vitroandin vivostudies, Fe3O4-Cy5.5-trastuzumab were specifically taken up and effectively aggregated to tumour regions with prominent NIRF/MR imaging properties. CCK-8, blood biochemical analysis and histological results suggested Fe3O4-Cy5.5-trastuzumab that exhibited low toxicity to major organs and goodin vivobiocompatibility. The prepared Fe3O4-Cy5.5-trastuzumab exhibited excellent targeting, NIRF/MR imaging performance. It is expected to serve as a safe and effective diagnostic method that lays a theoretical basis for the effective diagnosis of early breast cancer. This study successfully prepared a kind of nanoparticles with near-infrared fluorescence imaging and T2imaging properties, which is expected to serve as a new theory and strategy for early detection of breast cancer.
Collapse
Affiliation(s)
- Qiangqiang Yin
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Xiaolong Gao
- Department of Imaging, Fu Jin Hospital of Traditional Chinese Medicine, Jiamusi, Heilongjiang 156100, People's Republic of China
| | - Hao Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Zhichen Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Xiaoyang Yu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Jialong He
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Guangyue Shi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| |
Collapse
|
7
|
Xu Y, Chen J, Zhang Y, Zhang P. Recent Progress in Peptide-Based Molecular Probes for Disease Bioimaging. Biomacromolecules 2024; 25:2222-2242. [PMID: 38437161 DOI: 10.1021/acs.biomac.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Recent strides in molecular pathology have unveiled distinctive alterations at the molecular level throughout the onset and progression of diseases. Enhancing the in vivo visualization of these biomarkers is crucial for advancing disease classification, staging, and treatment strategies. Peptide-based molecular probes (PMPs) have emerged as versatile tools due to their exceptional ability to discern these molecular changes with unparalleled specificity and precision. In this Perspective, we first summarize the methodologies for crafting innovative functional peptides, emphasizing recent advancements in both peptide library technologies and computer-assisted peptide design approaches. Furthermore, we offer an overview of the latest advances in PMPs within the realm of biological imaging, showcasing their varied applications in diagnostic and therapeutic modalities. We also briefly address current challenges and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Ying Xu
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Junfan Chen
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Pengcheng Zhang
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
8
|
Abrishami A, Bahrami AR, Nekooei S, Sh Saljooghi A, Matin MM. Hybridized quantum dot, silica, and gold nanoparticles for targeted chemo-radiotherapy in colorectal cancer theranostics. Commun Biol 2024; 7:393. [PMID: 38561432 PMCID: PMC10984983 DOI: 10.1038/s42003-024-06043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Multimodal nanoparticles, utilizing quantum dots (QDs), mesoporous silica nanoparticles (MSNs), and gold nanoparticles (Au NPs), offer substantial potential as a smart and targeted drug delivery system for simultaneous cancer therapy and imaging. This method entails coating magnetic GZCIS/ZnS QDs with mesoporous silica, loading epirubicin into the pores, capping with Au NPs, PEGylation, and conjugating with epithelial cell adhesion molecule (EpCAM) aptamers to actively target colorectal cancer (CRC) cells. This study showcases the hybrid QD@MSN-EPI-Au-PEG-Apt nanocarriers (size ~65 nm) with comprehensive characterizations post-synthesis. In vitro studies demonstrate the selective cytotoxicity of these targeted nanocarriers towards HT-29 cells compared to CHO cells, leading to a significant reduction in HT-29 cell survival when combined with irradiation. Targeted delivery of nanocarriers in vivo is validated by enhanced anti-tumor effects with reduced side effects following chemo-radiotherapy, along with imaging in a CRC mouse model. This approach holds promise for improved CRC theranostics.
Collapse
Affiliation(s)
- Amir Abrishami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
9
|
Tahir M, Fakhar-e-Alam M, Asif M, Iqbal MJ, Abbas A, Hassan M, Rehman J, Bhatti QA, Mustafa G, Alothman AA, Mohammad S. Investigation of gadolinium doped manganese nano spinel ferrites via magnetic hypothermia therapy effect towards MCF-7 breast cancer. Heliyon 2024; 10:e24792. [PMID: 38314307 PMCID: PMC10837566 DOI: 10.1016/j.heliyon.2024.e24792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Magnetic spinel ferrite nanoparticles (MSF-NPs) are potential candidates for biomedical applications, especially in cancer diagnosis and therapy due to their excellent physiochemical and magnetic properties. In the current study, MSF-NPs were fabricated by sol-gel auto combustion method. The crystal structure and surface morphology were confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The magnetic properties were studied by VSM (vibrating sample magnetometer). As increasing Gd3+ concentration, the saturation magnetization values decreased from (17.8-2.3) emu/g, while the coercivity decreased from (499-133) Oe at room temperature. Finally, the fabricated MSF-NPs were tested against anticancer activity by MTT assay. The IC50 = 21.27 μg/mL value was observed, showing the strong antiproliferative activity of these nanoparticles. These results suggested that the obtained MSF-NPs would be useful for remote-controlled hyperthermia therapy for cancer treatment and MRI application due to their excellent magnetic properties. These distinct properties make MSF-NPs most suitable for cancer treatment and bright Contrast Agents (T1-MRI).
Collapse
Affiliation(s)
- M. Tahir
- Department of Physics, Government College University, Faisalabad, 38000, Pakistan
| | - M. Fakhar-e-Alam
- Department of Physics, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Asif
- Department of Physics, Government College University, Faisalabad, 38000, Pakistan
| | - M. Javaid Iqbal
- Department of Physics, Government College University, Faisalabad, 38000, Pakistan
| | - Aoun Abbas
- Department of Physics, Government College University, Faisalabad, 38000, Pakistan
| | - Mudassir Hassan
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Javed Rehman
- State Key Laboratory of Metastable Materials Science and Technology, and School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
| | - Qaisar Abbas Bhatti
- Department of Chemistry, Faculty of Sciences, Mohi-Ud-Din Islamic University Nerian Sharif, Azad Jammu & Kashmir, 12010, Pakistan
| | | | - Asma A. Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
11
|
Setia A, Mehata AK, Priya V, Pawde DM, Jain D, Mahto SK, Muthu MS. Current Advances in Nanotheranostics for Molecular Imaging and Therapy of Cardiovascular Disorders. Mol Pharm 2023; 20:4922-4941. [PMID: 37699355 DOI: 10.1021/acs.molpharmaceut.3c00582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cardiovascular diseases (CVDs) refer to a collection of conditions characterized by abnormalities in the cardiovascular system. They are a global problem and one of the leading causes of mortality and disability. Nanotheranostics implies to the combination of diagnostic and therapeutic capabilities inside a single nanoscale platform that has allowed for significant advancement in cardiovascular diagnosis and therapy. These advancements are being developed to improve imaging capabilities, introduce personalized therapies, and boost cardiovascular disease patient treatment outcomes. Significant progress has been achieved in the integration of imaging and therapeutic capabilities within nanocarriers. In the case of cardiovascular disease, nanoparticles provide targeted delivery of therapeutics, genetic material, photothermal, and imaging agents. Directing and monitoring the movement of these therapeutic nanoparticles may be done with pinpoint accuracy by using imaging modalities such as cardiovascular magnetic resonance (CMR), computed tomography (CT), positron emission tomography (PET), photoacoustic/ultrasound, and fluorescence imaging. Recently, there has been an increasing demand of noninvasive for multimodal nanotheranostic platforms. In these platforms, various imaging technologies such as optical and magnetic resonance are integrated into a single nanoparticle. This platform helps in acquiring more accurate descriptions of cardiovascular diseases and provides clues for accurate diagnosis. Advances in surface functionalization methods have strengthened the potential application of nanotheranostics in cardiovascular diagnosis and therapy. In this Review, we have covered the potential impact of nanomedicine on CVDs. Additionally, we have discussed the recently developed various nanoparticles for CVDs imaging. Moreover, advancements in the CMR, CT, PET, ultrasound, and photoacoustic imaging for the CVDs have been discussed. We have limited our discussion to nanomaterials based clinical trials for CVDs and their patents.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Datta Maroti Pawde
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
12
|
Low HY, Yang CT, Xia B, He T, Lam WWC, Ng DCE. Radiolabeled Liposomes for Nuclear Imaging Probes. Molecules 2023; 28:molecules28093798. [PMID: 37175207 PMCID: PMC10180453 DOI: 10.3390/molecules28093798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Quantitative nuclear imaging techniques are in high demand for various disease diagnostics and cancer theranostics. The non-invasive imaging modality requires radiotracing through the radioactive decay emission of the radionuclide. Current preclinical and clinical radiotracers, so-called nuclear imaging probes, are radioisotope-labeled small molecules. Liposomal radiotracers have been rapidly developing as novel nuclear imaging probes. The physicochemical properties and structural characteristics of liposomes have been elucidated to address their long circulation and stability as radiopharmaceuticals. Various radiolabeling methods for synthesizing radionuclides onto liposomes and synthesis strategies have been summarized to render them biocompatible and enable specific targeting. Through a variety of radionuclide labeling methods, radiolabeled liposomes for use as nuclear imaging probes can be obtained for in vivo biodistribution and specific targeting studies. The advantages of radiolabeled liposomes including their use as potential clinical nuclear imaging probes have been highlighted. This review is a comprehensive overview of all recently published liposomal SPECT and PET imaging probes.
Collapse
Affiliation(s)
- Ho Ying Low
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Winnie Wing Chuen Lam
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
13
|
Sobhanan J, Anas A, Biju V. Nanomaterials for Fluorescence and Multimodal Bioimaging. CHEM REC 2023; 23:e202200253. [PMID: 36789795 DOI: 10.1002/tcr.202200253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala, 682 018, India
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| |
Collapse
|
14
|
Yuan G, Liu Z, Wang W, Liu M, Xu Y, Hu W, Fan Y, Zhang X, Liu Y, Si G. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J Nanobiotechnology 2023; 21:68. [PMID: 36849981 PMCID: PMC9969656 DOI: 10.1186/s12951-023-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.
Collapse
Affiliation(s)
- Gang Yuan
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Zhiyin Liu
- grid.488387.8Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Weiming Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Mengnan Liu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanneng Xu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Wei Hu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Yao Fan
- grid.410578.f0000 0001 1114 4286Department of Anus and Intestine Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Xun Zhang
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Guangyan Si
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
15
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
16
|
Dual-modal polypeptide-containing contrast agents for magnetic resonance/fluorescence imaging. Bioorg Chem 2022; 129:106161. [PMID: 36162287 DOI: 10.1016/j.bioorg.2022.106161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022]
Abstract
Dual-modal magnetic resonance/fluorescent imaging (MRI/FI) attracts moreandmoreattentions in diagnosis of tumors. A corresponding dual-modal imaging agent with sufficient tumor sensitivity and specificity should be matched to improve imaging quality. Tripeptide (RGD) and pentapeptide (YIGSR) were selected as the tumor-targeting groups and attached to gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and rhodamine B (RhB), and then make two novel polypeptide-based derivatives (RGD-Gd-DTPA-RhB and YIGSR-Gd-DTPA-RhB), respectively. These derivatives were further characterized and their properties, such as cell uptake, cell cytotoxicity, MRI and FI assay, were measured. YIGSR-Gd-DTPA-RhB and RGD-Gd-DTPA-RhB had high relaxivity, good tumor-targeting property, low cell cytotoxicity and good red FI in B16F10 melanoma cells. Moreover, YIGSR-Gd-DTPA-RhB and RGD-Gd-DTPA-RhB possessed high uptake to B16F10 melanoma, and then achieve highly enhanced FI and MRI of tumors in mice for a prolonged time. Therefore, YIGSR-Gd-DTPA-RhB and RGD-Gd-DTPA-RhB can be applied as the potential agents for tumor targeted MRI/FI in vivo.
Collapse
|
17
|
Ultra-Small and Metabolizable Near-Infrared Au/Gd Nanoclusters for Targeted FL/MRI Imaging and Cancer Theranostics. BIOSENSORS 2022; 12:bios12080558. [PMID: 35892455 PMCID: PMC9329954 DOI: 10.3390/bios12080558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Tumor accurate imaging can effectively guide tumor resection and accurate follow-up targeted therapy. The development of imaging-stable, safe, and metabolizable contrast agents is key to accurate tumor imaging. Herein, ultra-small and metabolizable dual-mode imaging probe Au/Gd@FA NCs is rationally engineered by a simple hydrothermal method to achieve accurate FL/MRI imaging of tumors. The probes exhibit ultra-small size (2.5–3.0 nm), near-infrared fluorescence (690 nm), high quantum yield (4.4%), and a better T1 nuclear magnetic signal compared to commercial MRI contrast agents. By modifying the folic acid (FA) molecules, the uptake and targeting of the probes are effectively improved, enabling specific fluorescence imaging of breast cancer. Au/Gd@FA NCs with good biosafety were found to be excreted in the feces after imaging without affecting the normal physiological metabolism of mice. Intracellular reactive oxygen species (ROS) increased significantly after incubation of Au/Gd@FA NCs with tumor cells under 660 nm laser irradiation, indicating that Au/Gd@FA NCs can promote intracellular ROS production and effectively induce cell apoptosis. Thus, metabolizable Au/Gd@FA NCs provide a potential candidate probe for multimodal imaging and tumor diagnosis in clinical basic research. Meanwhile, Au/Gd@FA NCs mediated excessive intracellular production of ROS that could help promote tumor cell death.
Collapse
|
18
|
Liu Z, Wang P, Xie F, Chen J, Cai M, Li Y, Yan J, Lin Q, Luo F. Virus-Inspired Hollow Mesoporous Gadolinium-Bismuth Nanotheranostics for Magnetic Resonance Imaging-Guided Synergistic Photodynamic-Radiotherapy. Adv Healthc Mater 2022; 11:e2102060. [PMID: 34894092 DOI: 10.1002/adhm.202102060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/23/2021] [Indexed: 12/25/2022]
Abstract
The anti-tumor efficacy of single photodynamic therapy (PDT) and radiotherapy (RT) has been greatly affected by inadequate tumor uptake of photo/radiation sensitizers, limited laser penetration depth, and radiation sickness caused by high doses of X-rays. Here, the authors report a biomimetic coronavirus-inspired hollow mesoporous gadolinium/bismuth nanocarrier loaded with a new NIR photosensitizer HB (termed as HB@VHMBi-Gd) for magnetic resonance imaging (MRI)-guided synergistic photodynamic-RT. HB@VHMBi-Gd displayed a faster cellular uptake rate than the conventional spherical HMBi-Gd loaded with HB (HB@SHMBi-Gd) because of rough surface-enhanced adhesion. After intravenous injection, HB@VHMBi-Gd is efficiently delivered to the tumor and rapidly invades the tumor cells by surface spikes. Interestingly, lysosomal acidity can trigger the degradation of VHMBi-Gd to produce ultrasmall nanoparticles to amplify the X-ray attenuation ability and enhance MRI contrast and radiosensitization. Under laser and X-ray irradiation, HB@VHMBi-Gd significantly enhances 1 O2 generation from HB to induce activation of caspase 9/3 and inhibition of C-myc, while enhancing hydroxyl radical generation from Bi2 O3 to induce intense DNA breakage. By synergistically inducing cell apoptosis by distinct reactive oxygen species (ROS), HB@VHMBi-Gd exhibits superior anticancer efficacy with ≈90% tumor inhibition. They envision that biomimetic virus-inspired hollow hybrid metal nanoparticles can provide a promising strategy for imaging-guided synergistic photodynamic-RT.
Collapse
Affiliation(s)
- Zongjunlin Liu
- Cancer Research Center School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350007 P. R. China
- Xiamen Institute of Rare Earth Materials Institute of Haixi Chinese Academy of Sciences Xiamen 361000 P. R. China
| | - Fang Xie
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Jianhao Chen
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Meimei Cai
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350007 P. R. China
- Xiamen Institute of Rare Earth Materials Institute of Haixi Chinese Academy of Sciences Xiamen 361000 P. R. China
| | - Jianghua Yan
- Cancer Research Center School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Qin Lin
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Fanghong Luo
- Cancer Research Center School of Medicine Xiamen University Xiamen 361000 P. R. China
| |
Collapse
|
19
|
Phua VJX, Yang CT, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial Probes for Nuclear Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:582. [PMID: 35214911 PMCID: PMC8875160 DOI: 10.3390/nano12040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Nuclear imaging is a powerful non-invasive imaging technique that is rapidly developing in medical theranostics. Nuclear imaging requires radiolabeling isotopes for non-invasive imaging through the radioactive decay emission of the radionuclide. Nuclear imaging probes, commonly known as radiotracers, are radioisotope-labeled small molecules. Nanomaterials have shown potential as nuclear imaging probes for theranostic applications. By modifying the surface of nanomaterials, multifunctional radio-labeled nanomaterials can be obtained for in vivo biodistribution and targeting in initial animal imaging studies. Various surface modification strategies have been developed, and targeting moieties have been attached to the nanomaterials to render biocompatibility and enable specific targeting. Through integration of complementary imaging probes to a single nanoparticulate, multimodal molecular imaging can be performed as images with high sensitivity, resolution, and specificity. In this review, nanomaterial nuclear imaging probes including inorganic nanomaterials such as quantum dots (QDs), organic nanomaterials such as liposomes, and exosomes are summarized. These new developments in nanomaterials are expected to introduce a paradigm shift in nuclear imaging, thereby creating new opportunities for theranostic medical imaging tools.
Collapse
Affiliation(s)
- Vanessa Jing Xin Phua
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
20
|
Xie R, Wu C, Yang L, Mi P, Kim DH, Wu M. Editorial: Bottom-Up Approach: A Route for Effective Multi-Modal Imaging of Tumors. Front Oncol 2022; 11:812472. [PMID: 35096618 PMCID: PMC8795504 DOI: 10.3389/fonc.2021.812472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ruoxi Xie
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lu Yang
- The Department of Urology, The Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Min Wu
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Nanosized T1 MRI Contrast Agent Based on a Polyamidoamine as Multidentate Gd Ligand. Molecules 2021; 27:molecules27010174. [PMID: 35011405 PMCID: PMC8746954 DOI: 10.3390/molecules27010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
A linear polyamidoamine (PAA) named BAC-EDDS, containing metal chelating repeat units composed of two tert-amines and four carboxylic groups, has been prepared by the aza-Michael polyaddition of ethylendiaminodisuccinic (EDDS) with 2,2-bis(acrylamido)acetic acid (BAC). It was characterized by size exclusion chromatography (SEC), FTIR, UV–Vis and NMR spectroscopies. The pKa values of the ionizable groups of the repeat unit were estimated by potentiometric titration, using a purposely synthesized molecular ligand (Agly-EDDS) mimicking the structure of the BAC-EDDS repeat unit. Dynamic light scattering (DLS) and ζ-potential analyses revealed the propensity of BAC-EDDS to form stable nanoaggregates with a diameter of approximately 150 nm at pH 5 and a net negative charge at physiological pH, in line with an isoelectric point <2. BAC-EDDS stably chelated Gd (III) ions with a molar ratio of 0.5:1 Gd (III)/repeat unit. The stability constant of the molecular model Gd-Agly-EDDS (log K = 17.43) was determined as well, by simulating the potentiometric titration through the use of Hyperquad software. In order to comprehend the efficiency of Gd-BAC-EDDS in contrasting magnetic resonance images, the nuclear longitudinal (r1) and transverse (r2) relaxivities as a function of the externally applied static magnetic field were investigated and compared to the ones of commercial contrast agents. Furthermore, a model derived from the Solomon–Bloembergen–Morgan theory for the field dependence of the NMR relaxivity curves was applied and allowed us to evaluate the rotational correlation time of the complex (τ = 0.66 ns). This relatively high value is due to the dimensions of Gd-BAC-EDDS, and the associated rotational motion causes a peak in the longitudinal relaxivity at ca. 75 MHz, which is close to the frequencies used in clinics. The good performances of Gd-BAC-EDDS as a contrast agent were also confirmed through in vitro magnetic resonance imaging experiments with a 0.2 T magnetic field.
Collapse
|
22
|
Zhou J, Hou J, Liu S, Xu J, Luo Y, Zheng J, Li X, Wang Z, Ran H, Guo D. Theranostic Nanoplatform with Sequential SDT and ADV Effects in Response to Well-Programmed LIFU Irradiation for Cervical Cancer. Int J Nanomedicine 2021; 16:7995-8012. [PMID: 34916791 PMCID: PMC8669754 DOI: 10.2147/ijn.s339257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Some patients with cervical cancer have the need to preserve fertility; therefore, a minimally invasive treatment option that can effectively inactivate tumors in these patients is necessary. Methods In this paper, we designed and prepared nanoparticles (NPs) carrying IR780 and perfluorohexane (PFH) and characterized their properties. We focused on the promotion of programmed low-intensity focused ultrasound (LIFU) irradiation on the penetration and treatment of cervical cancer. First we used penetration-enhancing LIFU irradiation to promote the penetration of the NPs into 3D multicellular tumor spheroids (MCTSs) and tumors in tumor-bearing nude mice. Then we used re-therapeutic LIFU irradiation to achieve antitumor effects in vitro and in vivo. Photoacoustic (PA) and magnetic resonance (MR) imaging were used to monitor and evaluate the targeting and therapeutic effects of these NPs on tumor tissues. Results The NPs prepared in this paper exhibited high affinity for HeLa cells, and can selectively achieve mitochondrial localization in the cell due to IR780 assistance. The penetration-enhancing LIFU irradiation have the ability to promote the penetration of the NPs into cervical cancer models in vivo and in vitro. Under LIFU irradiation, the cytotoxic reactive oxygen species (ROS) produced by IR780 during the first half of the re-therapeutic LIFU irradiation and the physical acoustic droplet vaporization (ADV) effect after PFH phase transition during the second half of the re-therapeutic LIFU irradiation can achieve synergistic minimally invasive treatment of tumors, which can be visualized and evaluated by PA and MR imaging in vivo. Conclusion Well-programmed LIFU irradiation can promote NP penetration into deep tumor tissue and achieve antitumor effects simultaneously. Linking ROS + ADV effects can induce cell coagulation necrosis and lead to a comprehensive, long-term impact on tumor tissue, providing a conceptual theranostic nanoplatform for cervical cancer.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jingxin Hou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Shuling Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ying Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jun Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xin Li
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| |
Collapse
|
23
|
Yu F, Zhang F. A feasible strategy of fabricating hybrid drugs co-loaded polymer-lipid nanoparticles for the treatment of nasopharyngeal cancer therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Musielak M, Potoczny J, Boś-Liedke A, Kozak M. The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging-A Review. Int J Mol Sci 2021; 22:6229. [PMID: 34207682 PMCID: PMC8229649 DOI: 10.3390/ijms22126229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology has introduced a new quality and has definitely developed the possibilities of treating and diagnosing various diseases. One of the scientists' interests is liposomes and metallic nanoparticles (LipoMNPs)-the combination of which has introduced new properties and applications. However, the field of creating hybrid nanostructures consisting of liposomes and metallic nanoparticles is relatively little understood. The purpose of this review was to compile the latest reports in the field of treatment and medical imaging using of LipoMNPs. The authors focused on presenting this issue in the direction of improving the used conventional treatment and imaging methods. Most of all, the nature of bio-interactions between nanostructures and cells is not sufficiently taken into account. As a result, overcoming the existing limitations in the implementation of such solutions in the clinic is difficult. We concluded that hybrid nanostructures are used in a very wide range, especially in the treatment of cancer and magnetic resonance imaging. There were also solutions that combine treatments with simultaneous imaging, creating a theragnostic approach. In the future, researchers should focus on the description of the biological interactions and the long-term effects of the nanostructures to use LipoMNPs in the treatment of patients.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Jakub Potoczny
- Heliodor Swiecicki Clinical Hospital in Poznan, 60-355 Poznań, Poland;
| | - Agnieszka Boś-Liedke
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| |
Collapse
|
25
|
Zhao C, Xing Z, Zhang C, Fan Y, Liu H. Nanopharmaceutical-based regenerative medicine: a promising therapeutic strategy for spinal cord injury. J Mater Chem B 2021; 9:2367-2383. [PMID: 33662083 DOI: 10.1039/d0tb02740e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder that can lead to loss of perceptive and athletic function due to the severe nerve damage. To date, pieces of evidence detailing the precise pathological mechanisms in SCI are still unclear. Therefore, drug therapy cannot effectively alleviate the SCI symptoms and faces the limitations of systemic administration with large side effects. Thus, the development of SCI treatment strategies is urgent and valuable. Due to the application of nanotechnology in pharmaceutical research, nanopharmaceutical-based regenerative medicine will bring colossal development space for clinical medicine. These nanopharmaceuticals (i.e. nanocrystalline drugs and nanocarrier drugs) are designed using different types of materials or bioactive molecules, so as to improve the therapeutic effects, reduce side effects, and subtly deliver drugs, etc. Currently, an increasing number of nanopharmaceutical products have been approved by drug regulatory agencies, which has also prompted more researchers to focus on the potential treatment strategies of SCI. Therefore, the purpose of this review is to summarize and elaborate the research progress as well as the challenges and future of nanopharmaceuticals in the treatment of SCI, aiming to promote further research of nanopharmaceuticals in SCI.
Collapse
Affiliation(s)
- Chen Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China. and School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, P. R. China and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| |
Collapse
|
26
|
Tamil Selvan S, Ravichandar R, Kanta Ghosh K, Mohan A, Mahalakshmi P, Gulyás B, Padmanabhan P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|