1
|
Curukoglu A, Gungor GCA, Akan G, Kukner A, Ogutcu G, Kalayci M, Temizel M, Ozgencil FE. The effect of cold atmospheric plasma (NO) alone and in combination with NPH insulin on the full-thickness excisional wound healing in a diabetic rat model. VET MED-CZECH 2023; 68:152-163. [PMID: 37982089 PMCID: PMC10581533 DOI: 10.17221/109/2022-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 11/21/2023] Open
Abstract
This study was planned to investigate an alternative treatment modality in diabetic wound healing. In this experimental study, the efficacy of both cold atmospheric plasma/nitric oxide (NO) and NPH insulin ointment, recently known to have beneficial effects on wound healing, was investigated in diabetic wound healing. Twenty-four (24) diabetic rats were divided into four groups DC, DI, DNO and DINO (diabetic control, diabetic insulin, diabetic nitric oxide, diabetic insulin + nitric oxide groups). No treatment was applied to the DC group, NPH insulin was applied to the DI group, CAP/NO was applied to the DNO group, and CAP/NO + NPH insulin was applied to the DINO group once daily for 14 days. The wound area reduction and the wound contraction rate were calculated on the basis of the tissue sections taken, and histopathological and genetic analyses were carried out. Compared to the control group, exogenous NO gas was found to be a potent antibacterial agent in the diabetic wound healing, causing a reduction in the wound area (P = 0.034), an increased contraction rate (P = 0.021), epithelialisation (P = 0.02), collagen organisation (P = 0.006) and a reduction in the number of inflammatory cells (P = 0.002). A significant increase in the expression of IL-8 mRNA was observed (P = 0.026). It was concluded that NPH insulin alone contributes to wound healing, but it is not necessary to use it together with exogenous NO gas.
Collapse
Affiliation(s)
- Ali Curukoglu
- Surgery Department, Faculty of Veterinary Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Gul Ciray Akbas Gungor
- Surgery Department, Faculty of Veterinary Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Gokce Akan
- DESAM Institute, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Aysel Kukner
- Histology Department, Faculty of Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Gozde Ogutcu
- Histology Department, Faculty of Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Melis Kalayci
- DESAM Institute, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Meliha Temizel
- Experimental Animal Research Center, Faculty of Veterinary Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Fatma Eser Ozgencil
- Surgery Department, Faculty of Veterinary Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| |
Collapse
|
2
|
Xue Z, Sun X, Li H, Iqbal M, Hou Y, Jin Z, Li J. Response of cardiovascular environment to sulfonated hyaluronic acid with higher sulfur content. Colloids Surf B Biointerfaces 2023; 222:113046. [PMID: 36435030 DOI: 10.1016/j.colsurfb.2022.113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Sulfonated hyaluronic acid (S-HA) has been shown to promote endothelialization in the treatment of cardiovascular diseases according to amounts of investigations. In this study, two kinds of S-HA with higher sulfur content were obtained successfully. Through a series of cell experiments, it was found that the S-HA with higher sulfur content not only possessed stronger ability of promoting the growth and migration of endothelial cells, regulating the phenotype of smooth muscle cells, but also had stronger anti-inflammatory function. Furthermore, all the S-HA molecules are very compatible with blood.
Collapse
Affiliation(s)
- Zhonghua Xue
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Xiaojing Sun
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Hang Li
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Mujahid Iqbal
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Yachen Hou
- Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Zi Jin
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jingan Li
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Impact of Sulfated Hyaluronan on Bone Metabolism in Diabetic Charcot Neuroarthropathy and Degenerative Arthritis. Int J Mol Sci 2022; 23:ijms232315146. [PMID: 36499493 PMCID: PMC9737841 DOI: 10.3390/ijms232315146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Bone in diabetes mellitus is characterized by an altered microarchitecture caused by abnormal metabolism of bone cells. Together with diabetic neuropathy, this is associated with serious complications including impaired bone healing culminating in complicated fractures and dislocations, especially in the lower extremities, so-called Charcot neuroarthropathy (CN). The underlying mechanisms are not yet fully understood, and treatment of CN is challenging. Several in vitro and in vivo investigations have suggested positive effects on bone regeneration by modifying biomaterials with sulfated glycosaminoglycans (sGAG). Recent findings described a beneficial effect of sGAG for bone healing in diabetic animal models compared to healthy animals. We therefore aimed at studying the effects of low- and high-sulfated hyaluronan derivatives on osteoclast markers as well as gene expression patterns of osteoclasts and osteoblasts from patients with diabetic CN compared to non-diabetic patients with arthritis at the foot and ankle. Exposure to sulfated hyaluronan (sHA) derivatives reduced the exaggerated calcium phosphate resorption as well as the expression of genes associated with bone resorption in both groups, but more pronounced in patients with CN. Moreover, sHA derivatives reduced the release of pro-inflammatory cytokines in osteoclasts of patients with CN. The effects of sHA on osteoblasts differed only marginally between patients with CN and non-diabetic patients with arthritis. These results suggest balancing effects of sHA on osteoclastic bone resorption parameters in diabetes.
Collapse
|
4
|
Sivakumar PM, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydr Polym 2022; 283:119142. [DOI: 10.1016/j.carbpol.2022.119142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
|
5
|
Ahmed R, Augustine R, Chaudhry M, Akhtar UA, Zahid AA, Tariq M, Falahati M, Ahmad IS, Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Pharmacotherapy 2022; 149:112707. [PMID: 35303565 DOI: 10.1016/j.biopha.2022.112707] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar; Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Maryam Chaudhry
- Department of Continuing Education, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Usman A Akhtar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Mojtaba Falahati
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, IL, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Hintze V, Schnabelrauch M, Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front Chem 2022; 10:830671. [PMID: 35223772 PMCID: PMC8873528 DOI: 10.3389/fchem.2022.830671] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan, the extracellular matrix glycosaminoglycan, is an important structural component of many tissues playing a critical role in a variety of biological contexts. This makes hyaluronan, which can be biotechnologically produced in large scale, an attractive starting polymer for chemical modifications. This review provides a broad overview of different synthesis strategies used for modulating the biological as well as material properties of this polysaccharide. We discuss current advances and challenges of derivatization reactions targeting the primary and secondary hydroxyl groups or carboxylic acid groups and the N-acetyl groups after deamidation. In addition, we give examples for approaches using hyaluronan as biomedical polymer matrix and consequences of chemical modifications on the interaction of hyaluronan with cells via receptor-mediated signaling. Collectively, hyaluronan derivatives play a significant role in biomedical research and applications indicating the great promise for future innovative therapies.
Collapse
Affiliation(s)
- Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Sandra Rother
- School of Medicine, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
7
|
Krieghoff J, Kascholke C, Loth R, Starke A, Koenig A, Schulz-Siegmund M, Hacker MC. Composition-controlled degradation behavior of macroporous scaffolds from three-armed biodegradable macromers. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
|
8
|
Krieghoff J, Gronbach M, Schulz-Siegmund M, Hacker MC. Biodegradable macromers for implant bulk and surface engineering. Biol Chem 2021; 402:1357-1374. [PMID: 34433237 DOI: 10.1515/hsz-2021-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Macromers, polymeric molecules with at least two functional groups for cross-polymerization, are interesting materials to tailor mechanical, biochemical and degradative bulk and surface properties of implants for tissue regeneration. In this review we focus on macromers with at least one biodegradable building block. Manifold design options, such as choice of polymeric block(s), optional core molecule and reactive groups, as well as cross-co-polymerization with suitable anchor or linker molecules, allow the adaptation of macromer-based biomaterials towards specific application requirements in both hard and soft tissue regeneration. Implants can be manufactured from macromers using additive manufacturing as well as molding and templating approaches. This review summarizes and discusses the overall concept of biodegradable macromers and recent approaches for macromer processing into implants as well as techniques for surface modification directed towards bone regeneration. These aspects are reviewed including a focus on the authors' contributions to the field through research within the collaborative research project Transregio 67.
Collapse
Affiliation(s)
- Jan Krieghoff
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Mathis Gronbach
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Michaela Schulz-Siegmund
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Michael C Hacker
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany.,Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Großkopf H, Vogel S, Müller CD, Köhling S, Dürig JN, Möller S, Schnabelrauch M, Rademann J, Hempel U, von Bergen M, Schubert K. Identification of intracellular glycosaminoglycan-interacting proteins by affinity purification mass spectrometry. Biol Chem 2021; 402:1427-1440. [PMID: 34472763 DOI: 10.1515/hsz-2021-0167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.
Collapse
Affiliation(s)
- Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
| | - Sarah Vogel
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Claudia Damaris Müller
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Sebastian Köhling
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Jan-Niklas Dürig
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V. Technologieentwicklung Jena, Jena D-07745, Germany
| | - Matthias Schnabelrauch
- Biomaterials Department, INNOVENT e.V. Technologieentwicklung Jena, Jena D-07745, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig D-04103, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
| |
Collapse
|
10
|
Schnabelrauch M, Schiller J, Möller S, Scharnweber D, Hintze V. Chemically modified glycosaminoglycan derivatives as building blocks for biomaterial coatings and hydrogels. Biol Chem 2021; 402:1385-1395. [PMID: 34008374 DOI: 10.1515/hsz-2021-0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
Tissue regeneration is regulated by the cellular microenvironment, e.g. the extracellular matrix. Here, sulfated glycosaminoglycans (GAG), are of vital importance interacting with mediator proteins and influencing their biological activity. Hence, they are promising candidates for controlling tissue regeneration. This review addresses recent achievements regarding chemically modified GAG as well as collagen/GAG-based coatings and hydrogels including (i) chemical functionalization strategies for native GAG, (ii) GAG-based biomaterial strategies for controlling cellular responses, (iii) (bio)chemical methods for characterization and iv) protein interaction profiles and attained tissue regeneration in vitro and in vivo. The potential of GAG for bioinspired, functional biomaterials is highlighted.
Collapse
Affiliation(s)
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, Universität Leipzig, D-04107 Leipzig, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V., Prüssingstrasse 27B, D-07745Jena, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, D-01069Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, D-01069Dresden, Germany
| |
Collapse
|
11
|
Kuzmenka D, Sewohl C, König A, Flath T, Hahnel S, Schulze FP, Hacker MC, Schulz-Siegmund M. Sustained Calcium(II)-Release to Impart Bioactivity in Hybrid Glass Scaffolds for Bone Tissue Engineering. Pharmaceutics 2020; 12:E1192. [PMID: 33302527 PMCID: PMC7764395 DOI: 10.3390/pharmaceutics12121192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, we integrated different calcium sources into sol-gel hybrid glass scaffolds with the aim of producing implants with long-lasting calcium release while maintaining mechanical strength of the implant. Calcium(II)-release was used to introduce bioactivity to the material and eventually support implant integration into a bone tissue defect. Tetraethyl orthosilicate (TEOS) derived silica sols were cross-linked with an ethoxysilylated 4-armed macromer, pentaerythritol ethoxylate and processed into macroporous scaffolds with defined pore structure by indirect rapid prototyping. Triethyl phosphate (TEP) was shown to function as silica sol solvent. In a first approach, we investigated the integration of 1 to 10% CaCl2 in order to test the hypothesis that small CaCl2 amounts can be physically entrapped and slowly released from hybrid glass scaffolds. With 5 and 10% CaCl2 we observed an extensive burst release, whereas slightly improved release profiles were found for lower Calcium(II) contents. In contrast, introduction of melt-derived bioactive 45S5 glass microparticles (BG-MP) into the hybrid glass scaffolds as another Calcium(II) source led to an approximately linear release of Calcium(II) in Tris(hydroxymethyl)aminomethane (TRIS) buffer over 12 weeks. pH increase caused by BG-MP could be controlled by their amount integrated into the scaffolds. Compression strength remained unchanged compared to scaffolds without BG-MP. In cell culture medium as well as in simulated body fluid, we observed a rapid formation of a carbonated hydroxyapatite layer on BG-MP containing scaffolds. However, this mineral layer consumed the released Calcium(II) ions and prevented an additional increase in Calcium(II) concentration in the cell culture medium. Cell culture studies on the different scaffolds with osteoblast-like SaOS-2 cells as well as bone marrow derived mesenchymal stem cells (hMSC) did not show any advantages concerning osteogenic differentiation due to the integration of BG-MP into the scaffolds. Nonetheless, via the formation of a hydroxyapatite layer and the ability to control the pH increase, we speculate that implant integration in vivo and bone regeneration may benefit from this concept.
Collapse
Affiliation(s)
- Dzmitry Kuzmenka
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany; (D.K.); (C.S.); (M.C.H.)
| | - Claudia Sewohl
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany; (D.K.); (C.S.); (M.C.H.)
| | - Andreas König
- Department of Prosthetic Dentistry and Dental Materials Science, Leipzig University, 04103 Leipzig, Germany; (A.K.); (S.H.)
| | - Tobias Flath
- Department of Mechanical and Energy Engineering, University of Applied Sciences Leipzig, 04277 Leipzig, Germany; (T.F.); (F.P.S.)
| | - Sebastian Hahnel
- Department of Prosthetic Dentistry and Dental Materials Science, Leipzig University, 04103 Leipzig, Germany; (A.K.); (S.H.)
| | - Fritz Peter Schulze
- Department of Mechanical and Energy Engineering, University of Applied Sciences Leipzig, 04277 Leipzig, Germany; (T.F.); (F.P.S.)
| | - Michael C. Hacker
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany; (D.K.); (C.S.); (M.C.H.)
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany; (D.K.); (C.S.); (M.C.H.)
| |
Collapse
|
12
|
Gronbach M, Mitrach F, Möller S, Rother S, Friebe S, Mayr SG, Schnabelrauch M, Hintze V, Hacker MC, Schulz-Siegmund M. A Versatile Macromer-Based Glycosaminoglycan (sHA3) Decorated Biomaterial for Pro-Osteogenic Scavenging of Wnt Antagonists. Pharmaceutics 2020; 12:pharmaceutics12111037. [PMID: 33138172 PMCID: PMC7693161 DOI: 10.3390/pharmaceutics12111037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
High serum levels of Wnt antagonists are known to be involved in delayed bone defect healing. Pharmaceutically active implant materials that can modulate the micromilieu of bone defects with regard to Wnt antagonists are therefore considered promising to support defect regeneration. In this study, we show the versatility of a macromer based biomaterial platform to systematically optimize covalent surface decoration with high-sulfated glycosaminoglycans (sHA3) for efficient scavenging of Wnt antagonist sclerostin. Film surfaces representing scaffold implants were cross-copolymerized from three-armed biodegradable macromers and glycidylmethacrylate and covalently decorated with various polyetheramine linkers. The impact of linker properties (size, branching) and density on sHA3 functionalization efficiency and scavenging capacities for sclerostin was tested. The copolymerized 2D system allowed for finding an optimal, cytocompatible formulation for sHA3 functionalization. On these optimized sHA3 decorated films, we showed efficient scavenging of Wnt antagonists DKK1 and sclerostin, whereas Wnt agonist Wnt3a remained in the medium of differentiating SaOS-2 and hMSC. Consequently, qualitative and quantitative analysis of hydroxyapatite staining as a measure for osteogenic differentiation revealed superior mineralization on sHA3 materials. In conclusion, we showed how our versatile material platform enables us to efficiently scavenge and inactivate Wnt antagonists from the osteogenic micromilieu. We consider this a promising approach to reduce the negative effects of Wnt antagonists in regeneration of bone defects via sHA3 decorated macromer based macroporous implants.
Collapse
Affiliation(s)
- Mathis Gronbach
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Str. 15A, 04317 Leipzig, Germany; (M.G.); (F.M.); (M.C.H.)
| | - Franziska Mitrach
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Str. 15A, 04317 Leipzig, Germany; (M.G.); (F.M.); (M.C.H.)
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V., Pruessingstraße 27B, 07745 Jena, Germany; (S.M.); (M.S.)
| | - Sandra Rother
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01062 Dresden, Germany; (S.R.); (V.H.)
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Sabrina Friebe
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (S.F.); (S.G.M.)
- Division of Surface Physics, University of Leipzig, Linnéstraße. 5, 04103 Leipzig, Germany
| | - Stefan G. Mayr
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (S.F.); (S.G.M.)
- Division of Surface Physics, University of Leipzig, Linnéstraße. 5, 04103 Leipzig, Germany
| | - Matthias Schnabelrauch
- Biomaterials Department, INNOVENT e.V., Pruessingstraße 27B, 07745 Jena, Germany; (S.M.); (M.S.)
| | - Vera Hintze
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01062 Dresden, Germany; (S.R.); (V.H.)
| | - Michael C. Hacker
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Str. 15A, 04317 Leipzig, Germany; (M.G.); (F.M.); (M.C.H.)
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Str. 15A, 04317 Leipzig, Germany; (M.G.); (F.M.); (M.C.H.)
- Correspondence: ; Tel.: +49-341-9711900
| |
Collapse
|