1
|
Xiong Y, Mi BB, Shahbazi MA, Xia T, Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil Med Res 2024; 11:69. [PMID: 39434177 PMCID: PMC11492517 DOI: 10.1186/s40779-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024:e2400563. [PMID: 39319499 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Zhang Q, Chen D, Liu X, Deng Z, Li J, Zhu S, Ma B, Liu R, Zhu H. High Photocytotoxicity Iridium(III) Complex Photosensitizer for Photodynamic Therapy Induces Antitumor Effect Through GPX4-Dependent Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403165. [PMID: 39246173 DOI: 10.1002/smll.202403165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The development of small molecule photosensitizers based on iridium complex is limited by the mismatch between therapeutic effect and systemic toxicity, as well as the incomplete understanding of the molecular mechanism underlying cell death induction. Herein, a small molecule iridium complex IrC with high photocytotoxicity is synthesized, with half maximal inhibitory concentration as low as 91 nm, demonstrating excellent anti-tumor, relief of splenomegaly, and negligible side effects. Starting from the factors of effective photosensitizers, the in-depth theoretical analysis on photon absorption efficiency, energy transfer level matching, and properties of the triplet excited state of IrC is conducted. This also elucidates the feasibility of generating the high singlet oxygen quantum yield. In addition, the death mechanism induced by IrC is focused, innovatively utilizing GPX4-overexpression and GPX4-knockout cells via CRISPR/Cas9 technique to comprehensively verify ferroptosis and its further molecular mechanism. The generation of ROS mediated by IrC, along with the direct inhibition of GPX4 and glutathione, synergistically increased cellular oxidative stress and the level of lipid peroxidation. This study provides an effective approach for small molecule complexes to induce GPX4-dependent ferroptosis at low-dose photodynamic therapy.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dezhi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaomeng Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Senqiang Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Zhu L, Chen G, Wang Q, Du J, Wu S, Lu J, Liu B, Miao Y, Li Y. High-Z elements dominated bismuth-based heterojunction nano-semiconductor for radiotherapy-enhanced sonodynamic breast cancer therapy. J Colloid Interface Sci 2024; 662:914-927. [PMID: 38382375 DOI: 10.1016/j.jcis.2024.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Ultrasound and X-rays possess remarkable tissue penetration capabilities, making them promising candidates for cancer therapy. Sonodynamic therapy, which utilizes ultrasound excitation, offers a safer alternative to radiotherapy and can be combined with X-rays to mitigate the adverse effects on normal tissues. In this study, we developed a bismuth-based heterostructure semiconductor (BFIP) to enhance the efficacy of radiotherapy and sonodynamic therapy in treating breast cancer. The semiconductor is fabricated through a two-step process involving the synthesis of porous spherical bismuth fluoride and partially reduced to bismuth oxyiodide. Then, followed by surface modification with amphiphilic polyethylene glycol, BFIP is fabricated. Incorporating heavy atoms in the BFIP enhances radiosensitivity. The BFIP exhibits superior carrier separation efficiency compared to bismuth fluoride, generating a substantial quantity of reactive oxygen species upon ultrasound stimulation. Moreover, the BFIP effectively depletes glutathione through coordination and hole-mediated oxidation pathways, disrupting the tumor microenvironment and inducing oxidative stress. Encouraging results are acquired in both in vitro cell and in vivo tumor models. Our study provides a de-risking strategy by utilizing ultrasound as a partial substitute for X-rays in treating deep-seated tumors, offering a viable research direction for constructing a unified nanoplatform.
Collapse
Affiliation(s)
- Lejin Zhu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sijia Wu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiacheng Lu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baolin Liu
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| |
Collapse
|
5
|
He Z, Du J, Wang Q, Chen G, Li X, Zhang Z, Wang S, Jing W, Miao Q, Li Y, Miao Y, Wu J. Dye-augmented bandgap engineering of a degradable cascade nanoreactor for tumor immune microenvironment-enhanced dynamic phototherapy of breast cancer. Acta Biomater 2024; 176:390-404. [PMID: 38244657 DOI: 10.1016/j.actbio.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Non-invasive precision tumor dynamic phototherapy has broad application prospects. Traditional semiconductor materials have low photocatalytic activity and low reactive oxygen species (ROS) production rate due to their wide band gap, resulting in unsatisfactory phototherapy efficacy for tumor treatment. Employing the dye-sensitization mechanism can significantly enhance the catalytic activity of the materials. We develop a multifunctional nanoplatform (BZP) by leveraging the benefits of bismuth-based semiconductor nanomaterials. BZP possesses robust ROS generation and remarkable near-infrared photothermal conversion capabilities for improving tumor immune microenvironment and achieving superior phototherapy sensitization. BZP produces highly cytotoxic ROS species via the photocatalytic process and cascade reaction, amplifying the photocatalytic therapy effect. Moreover, the simultaneous photothermal effect during the photocatalytic process facilitates the improvement of therapeutic efficacy. Additionally, BZP-mediated phototherapy can trigger the programmed death of tumor cells, stimulate dendritic cell maturation and T cell activation, modulate the tumor immune microenvironment, and augment the therapeutic effect. Hence, this study demonstrates a promising research paradigm for tumor immune microenvironment-improved phototherapy. STATEMENT OF SIGNIFICANCE: Through the utilization of dye sensitization and rare earth doping techniques, we have successfully developed a biodegradable bismuth-based semiconductor nanocatalyst (BZP). Upon optical excitation, the near-infrared dye incorporated within BZP promptly generates free electrons, which, under the influence of the Fermi energy level, undergo transfer to BiF3 within BZP, thereby facilitating the effective separation of electron-hole pairs and augmenting the catalytic capability for reactive oxygen species (ROS) generation. Furthermore, a cascade reaction mechanism generates highly cytotoxic ROS, which synergistically depletes intracellular glutathione, thereby intensifying oxidative stress. Ultimately, this dual activation strategy, combining oxidative and thermal damage, holds significant potential for tumor immunotherapy.
Collapse
Affiliation(s)
- Zongyan He
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zheng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shanhou Wang
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenxuan Jing
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Miao
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yuhao Li
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuqing Miao
- Institute of Bismuth Science, School of Materials and Chemistry, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
6
|
Wang A, Yang X, Li R, Shao L, Zhao W, Hu X, Fang K, Chai K, Shi S, Dong C. Immunomodulator-Mediated Suppressive Tumor Immune Microenvironment Remodeling Nanoplatform for Enhanced Immuno/Chemo/Photothermal Combination Therapy of Triple Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53318-53332. [PMID: 37943829 DOI: 10.1021/acsami.3c14137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Despite immunotherapy having revolutionized cancer therapy, the efficacy of immunotherapy in triple-negative breast cancer (TNBC) is seriously restricted due to the insufficient infiltration of mature dendritic cells (DCs) and the highly diffusion of immunosuppressive cells in the tumor microenvironment. Herein, an immunomodulatory nanoplatform (HA/Lipo@MTO@IMQ), in which the DCs could be maximally activated, was engineered to remarkably eradicate the tumor via the combination of suppressive tumor immune microenvironment reversal immunotherapy, chemotherapy, and photothermal therapy. It was noticed that the immunotherapy efficacy could be significantly facilitated by this triple-assistance therapy: First, a robust immunogenic cell death (ICD) effect was induced by mitoxantrone hydrochloride (MTO) to boost DCs maturation and cytotoxic T lymphocytes infiltration. Second, the powerful promaturation property of the toll-like receptor 7/8 (TLR7/8) agonist on DCs simultaneously strengthened the ICD effect and restricted antitumor immunity to the tumor bed and lymph nodes. On this basis, tumor-associated macrophages were also dramatically repolarized toward the antitumor M1 phenotype in response to TLR7/8 agonist to intensify the phagocytosis and reverse the immunosuppressive microenvironment. Furthermore, the recruitment of immunocompetent cells and tumor growth inhibition were further promoted by the photothermal characteristic. The nanoplatform with no conspicuous untoward effects exhibited a splendid ability to activate the systemic immune system so as to increase the immunogenicity of the tumor microenvironment, thus enhancing the tumor killing effect. Taken together, HA/Lipo@MTO@IMQ might highlight an efficient combination of therapeutic modality for TNBC.
Collapse
Affiliation(s)
- Anqi Wang
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinda Yang
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ruihao Li
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lujing Shao
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenrong Zhao
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaochun Hu
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kang Fang
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Keke Chai
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Shi
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chunyan Dong
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
8
|
Liu ZY, Chen G, Wang X, Xu RC, Wang F, Qi ZR, Sun JL, Zhang GC, Miao Y, Shen XZ, Zhu JM, Weng SQ, Chen H, Li Y. Synergistic Photochemo Effects Based on Light-Activatable Dual Prodrug Nanoparticles for Effective Cancer Therapy. Adv Healthc Mater 2023; 12:e2301133. [PMID: 37311013 DOI: 10.1002/adhm.202301133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Indexed: 06/15/2023]
Abstract
Ferroptosis is identified as a novel type of cell death with distinct properties involved in physical conditions and various diseases, including cancers. It is considered that ferroptosis provides a promising therapeutic strategy for optimizing oncotherapy. Although erastin is an effective ferroptosis trigger, the potential of its clinical application is largely restricted by its poor water solubility and concomitant limitations. To address this issue, an innovative nanoplatform (PE@PTGA) that integrated protoporphyrin IX (PpIX) and erastin coated with amphiphilic polymers (PTGA) to evoke ferroptosis and apoptosis is constructed and exemplified using an orthotopic hepatocellular carcinoma (HCC) xenograft mouse model as a paradigm. The self-assembled nanoparticles can enter HCC cells and release PpIX and erastin. With light stimulation, PpIX exerts hyperthermia and reactive oxygen species to inhibit the proliferation of HCC cells. Besides, the accumulated reactive oxygen species (ROS) can further promote erastin-induced ferroptosis in HCC cells. In vitro and in vivo studies reveal that PE@PTGA synergistically inhibits tumor development by stimulating both ferroptosis- and apoptosis-related pathways. Moreover, PE@PTGA has low toxicity and satisfactory biocompatibility, suggesting its promising clinical benefit in cancer treatments.
Collapse
Affiliation(s)
- Zhi-Yong Liu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiang Wang
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhuo-Ran Qi
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
9
|
Yang Y, Ai C, Chen W, Zhen J, Kong X, Jiang Y. Recent Advances in Sources of Bio-Inspiration and Materials for Robotics and Actuators. SMALL METHODS 2023; 7:e2300338. [PMID: 37381685 DOI: 10.1002/smtd.202300338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Indexed: 06/30/2023]
Abstract
Bionic robotics and actuators have made dramatic advancements in structural design, material preparation, and application owing to the richness of nature and innovative material design. Appropriate and ingenious sources of bio-inspiration can stimulate a large number of different bionic systems. After millennia of survival and evolutionary exploration, the mere existence of life confirms that nature is constantly moving in an evolutionary direction of optimization and improvement. To this end, bio-inspired robots and actuators can be constructed for the completion of a variety of artificial design instructions and requirements. In this article, the advances in bio-inspired materials for robotics and actuators with the sources of bio-inspiration are reviewed. The specific sources of inspiration in bionic systems and corresponding bio-inspired applications are summarized first. Then the basic functions of materials in bio-inspired robots and actuators is discussed. Moreover, a principle of matching biomaterials is creatively suggested. Furthermore, the implementation of biological information extraction is discussed, and the preparation methods of bionic materials are reclassified. Finally, the challenges and potential opportunities involved in finding sources of bio-inspiration and materials for robotics and actuators in the future is discussed.
Collapse
Affiliation(s)
- Yue Yang
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Chao Ai
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, P.R. China
| | - Wenting Chen
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, P.R. China
| | - Jinpeng Zhen
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Xiangdong Kong
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, 066004, P.R. China
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, P.R. China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, P.R. China
| | - Yunhong Jiang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| |
Collapse
|
10
|
Han J, Ma Q, An Y, Wu F, Zhao Y, Wu G, Wang J. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology 2023; 21:277. [PMID: 37596638 PMCID: PMC10439657 DOI: 10.1186/s12951-023-02017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
With the continuous innovation and breakthrough of nanomedical technology, stimuli-responsive nanotechnology has been gradually applied to the surface modification of titanium implants to achieve brilliant antibacterial activity and promoted osteogenesis. Regarding to the different physiological and pathological microenvironment around implants before and after surgery, these surface nanomodifications are designed to respond to different stimuli and environmental changes in a timely, efficient, and specific way/manner. Here, we focus on the materials related to stimuli-responsive nanotechnology on titanium implant surface modification, including metals and their compounds, polymer materials and other materials. In addition, the mechanism of different response types is introduced according to different activation stimuli, including magnetic, electrical, photic, radio frequency and ultrasonic stimuli, pH and enzymatic stimuli (the internal stimuli). Meanwhile, the associated functions, potential applications and developing prospect were discussion.
Collapse
Affiliation(s)
- Jingyuan Han
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien, Oslo, 710455 Norway
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fan Wu
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Yuqing Zhao
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Jing Wang
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
11
|
Chen G, Wang X, He Z, Li X, Yang Z, Zhang Y, Li Y, Zheng L, Miao Y, Zhang D. Light-Elicited and Oxygen-Saved Iridium Nanocapsule for Oxidative Damage Intensified Oncotherapy. Molecules 2023; 28:molecules28114397. [PMID: 37298873 DOI: 10.3390/molecules28114397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Regulating redox homeostasis in tumor cells and exploiting oxidative stress to damage tumors is an efficacious strategy for cancer therapy. However, the strengths of organic nanomaterials within this strategy are often ignored. In this work, a light-triggered reactive oxygen species (ROS) damaging nanoamplifier (IrP-T) was developed for enhanced photodynamic therapy (PDT). The IrP-T was fabricated with an amphiphilic iridium complex and a MTH1 inhibitor (TH287). Under green light stimulation, IrP-T catalyzed the oxygen in cells to generate ROS for realizing oxidative damage; meanwhile, TH287 increased the accumulation of 8-oxo-dGTP, further strengthening oxidative stress and inducing cell death. IrP-T could maximize the use of a small amount of oxygen, thus further boosting the efficacy of PDT in hypoxic tumors. The construction of nanocapsules provided a valuable therapeutic strategy for oxidative damage and synergizing PDT.
Collapse
Affiliation(s)
- Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zongyan He
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhijin Yang
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, Engineering Research Center of Optical Instrument and System, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yule Zhang
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, Engineering Research Center of Optical Instrument and System, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lulu Zheng
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, Engineering Research Center of Optical Instrument and System, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, Engineering Research Center of Optical Instrument and System, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
12
|
Wang J, Jiang Z, Huang C, Zhao S, Zhu S, Liu R, Zhu H. Self-Assembled BODIPY Nanoparticles for Near-Infrared Fluorescence Bioimaging. Molecules 2023; 28:molecules28072997. [PMID: 37049760 PMCID: PMC10096313 DOI: 10.3390/molecules28072997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
In vivo optical imaging is an important application value in disease diagnosis. However, near-infrared nanoprobes with excellent luminescent properties are still scarce. Herein, two boron–dipyrromethene (BODIPY) molecules (BDP-A and BDP-B) were designed and synthesized. The BODIPY emission was tuned to the near-infrared (NIR) region by regulating the electron-donating ability of the substituents on its core structure. In addition, the introduction of polyethylene glycol (PEG) chains on BODIPY enabled the formation of self-assembled nanoparticles (NPs) to form optical nanoprobes. The self-assembled BODIPY NPs present several advantages, including NIR emission, large Stokes shifts, and high fluorescence quantum efficiency, which can increase water dispersibility and signal-to-noise ratio to decrease the interference by the biological background fluorescence. The in vitro studies revealed that these NPs can enter tumor cells and illuminate the cytoplasm through fluorescence imaging. Then, BDP-B NPs were selected for use in vivo imaging due to their unique NIR emission. BDP-B was enriched in the tumor and effectively illuminated it via an enhanced penetrability and retention effect (EPR) after being injected into the tail vein of mice. The organic nanoparticles were metabolized through the liver and kidney. Thus, the BODIPY-based nanomicelles with NIR fluorescence emission provide an effective research basis for the development of optical nanoprobes in vivo.
Collapse
|
13
|
Qi Q, Wang Q, Li Y, Silva DZ, Ruiz MEL, Ouyang R, Liu B, Miao Y. Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy. Molecules 2023; 28:molecules28062733. [PMID: 36985704 PMCID: PMC10051626 DOI: 10.3390/molecules28062733] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Rhenium (Re) is widely used in the diagnosis and treatment of cancer due to its unique physical and chemical properties. Re has more valence electrons in its outer shell, allowing it to exist in a variety of oxidation states and to form different geometric configurations with many different ligands. The luminescence properties, lipophilicity, and cytotoxicity of complexes can be adjusted by changing the ligand of Re. This article mainly reviews the development of radionuclide 188Re in radiotherapy and some innovative applications of Re as well as the different therapeutic approaches and imaging techniques used in cancer therapy. In addition, the current application and future challenges and opportunities of Re are also discussed.
Collapse
Affiliation(s)
- Qingwen Qi
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Dionisio Zaldivar Silva
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Maria Eliana Lanio Ruiz
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Ruizhuo Ouyang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
| | - Baolin Liu
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| |
Collapse
|
14
|
Qu S, Zhu K. Endocytosis-mediated redistribution of antibiotics targets intracellular bacteria. NANOSCALE 2023; 15:4781-4794. [PMID: 36779877 DOI: 10.1039/d2nr05421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing emergence and dissemination of antibiotic resistance pose a severe threat to overwhelming healthcare practices worldwide. The lack of new antibacterial drugs urgently calls for alternative therapeutic strategies to combat multidrug-resistant (MDR) bacterial pathogens, especially those that survive and replicate in host cells, causing relapse and recurrence of infections. Intracellular drug delivery is a direct efficient strategy to combat invasive pathogens by increasing the accumulation of antibiotics. However, the increased accumulation of antibiotics in the infected host cells does not mean high efficacy. The difficulty of treatment lies in the efficient intracellular delivery of antibiotics to the pathogen-containing compartments. Here, we first briefly review the survival mechanisms of intracellular bacteria to facilitate the exploration of potential antibacterial targets for precise delivery. Furthermore, we provide an overview of endocytosis-mediated drug delivery systems, including the biomedical and physicochemical properties modulating the endocytosis and intracellular redistribution of antibiotics. Lastly, we summarize the targets and payloads of recently described intracellular delivery systems and their modes of action against diverse pathogenic bacteria-associated infections. This overview of endocytosis-mediated redistribution of antibiotics sheds light on the development of novel delivery platforms and alternative strategies to combat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kui Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
- Engineering Research Center of Animal Innovative drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Wang X, Wang Y, Yu J, Qiu Q, Liao R, Zhang S, Luo C. Reduction-Hypersensitive Podophyllotoxin Prodrug Self-Assembled Nanoparticles for Cancer Treatment. Pharmaceutics 2023; 15:784. [PMID: 36986645 PMCID: PMC10058384 DOI: 10.3390/pharmaceutics15030784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Podophyllotoxin (PPT) has shown strong antitumor effects on various types of cancers. However, the non-specific toxicity and poor solubility severely limits its clinical transformation. In order to overcome the adverse properties of PPT and explore its clinical potential, three novel PTT-fluorene methanol prodrugs linked by different lengths of disulfide bonds were designed and synthesized. Interestingly, the lengths of the disulfide bond affected the drug release, cytotoxicity, pharmacokinetic characteristics, in vivo biodistribution and antitumor efficacy of prodrug NPs. To be more specific, all three PPT prodrugs could self-assemble into uniform nanoparticles (NPs) with high drug loading (>40%) via the one-step nano precipitation method, which not only avoids the use of surfactants and cosurfactants, but also reduces the systemic toxicity of PPT and increases the tolerated dose. Among the three prodrug NPs, FAP NPs containing α-disulfide bond showed the most sensitive tumor-specific response and fastest drug release rate, thus demonstrating the strongest in vitro cytotoxicity. In addition, three prodrug NPs showed prolonged blood circulation and higher tumor accumulation. Finally, FAP NPs demonstrated the strongest in vivo antitumor activity. Our work will advance the pace of podophyllotoxin towards clinical cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
16
|
Abuduwaili W, Wang X, Huang AT, Sun JL, Xu RC, Zhang GC, Liu ZY, Wang F, Zhu CF, Liu TT, Dong L, Zhu JM, Weng SQ, Li Y, Shen XZ. Iridium Complex-Loaded Sorafenib Nanocomposites for Synergistic Chemo-photodynamic Therapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37356-37368. [PMID: 35951459 DOI: 10.1021/acsami.2c07247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although sorafenib, a multi-kinase inhibitor, has provided noteworthy benefits in patients with hepatocellular carcinoma (HCC), the inevitable side effects, narrow therapeutic window, and low bioavailability seriously affect its clinical application. To be clinically distinctive, innovative drugs must meet the needs of reaching tumor tissues and cause limited side effects to normal organs and tissues. Recently, photodynamic therapy, utilizing a combination of a photosensitizer and light irradiation, was selectively accumulated at the tumor site and taken up effectively via inducing apoptosis or necrosis of cancer cells. In this study, a nano-chemo-phototherapy drug was fabricated to compose an iridium-based photosensitizer combined with sorafenib (IPS) via a self-assembly process. Compared to the free iridium photosensitizer or sorafenib, the IPS exhibited significantly improved therapeutic efficacy against tumor cells because of the increased cellular uptake and the subsequent simultaneous release of sorafenib and generation of reactive oxygen species production upon 532 nm laser irradiation. To evaluate the effect of synergistic treatment, cytotoxicity detection, live/dead staining, cell proliferative and apoptotic assay, and Western blot were performed. The IPS exhibited sufficient biocompatibility by hemolysis and serum biochemical tests. Also, the results suggested that IPS significantly inhibited HCC cell proliferation and promoted cell apoptosis. More importantly, marked anti-tumor growth effects via inhibiting cell proliferation and promoting tumor cell death were observed in an orthotopic xenograft HCC model. Therefore, our newly proposed nanotheranostic agent for combined chemotherapeutic and photodynamic therapy notably improves the therapeutic effect of sorafenib and has the potential to be a new alternative option for HCC treatment.
Collapse
Affiliation(s)
- Weinire Abuduwaili
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Xiang Wang
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - An-Tian Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Chang-Feng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Yuhao Li
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| |
Collapse
|
17
|
Song K, Du J, Wang X, Zheng L, Ouyang R, Li Y, Miao Y, Zhang D. Biodegradable Bismuth-Based Nano-Heterojunction for Enhanced Sonodynamic Oncotherapy through Charge Separation Engineering. Adv Healthc Mater 2022; 11:e2102503. [PMID: 35114073 DOI: 10.1002/adhm.202102503] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Sonodynamic therapy is a noninvasive treatment method that generates reactive oxygen species (ROS) triggered by ultrasound, to achieve oxidative damage to tumors. However, methods are required to improve the efficiency of ROS generation and achieve continuous oxidative damage. A ternary heterojunction sonosensitizer composed of Bi@BiO2- x @Bi2 S3 -PEG (BOS) to achieve thermal injury-assisted continuous sonodynamic therapy for tumors is prepared. The oxygen vacancy in BOS can capture hot electrons and promotes the separation of hot carriers on the bismuth surface. The local electric field induced by localized surface plasmon resonance also contributes to the rapid transfer of electrons. Therefore, BOS not only possesses the functions of each component but also exhibits higher catalytic activity to generate ROS. Meanwhile, BOS continuously consumes glutathione, which is conducive to its biodegradation and achieves continuous oxidative stress injury. In addition, the photothermal conversion of BOS under near-infrared irradiation helps to achieve thermal tumor damage and further relieves tumor hypoxia, thus amplifying the sonodynamic therapeutic efficacy. This process not only provides a strategy for thermal damage to amplify the efficacy of sonodynamic therapy, but also expands the application of bismuth-based heterojunction nanomaterials as sonosensitizers in sonodynamic therapy.
Collapse
Affiliation(s)
- Kang Song
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Du
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiang Wang
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai 200093 China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuhao Li
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
18
|
Niculescu AG, Grumezescu AM. Novel Tumor-Targeting Nanoparticles for Cancer Treatment-A Review. Int J Mol Sci 2022; 23:5253. [PMID: 35563645 PMCID: PMC9101878 DOI: 10.3390/ijms23095253] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Being one of the leading causes of death and disability worldwide, cancer represents an ongoing interdisciplinary challenge for the scientific community. As currently used treatments may face limitations in terms of both efficiency and adverse effects, continuous research has been directed towards overcoming existing challenges and finding safer specific alternatives. In particular, increasing interest has been gathered around integrating nanotechnology in cancer management and subsequentially developing various tumor-targeting nanoparticles for cancer applications. In this respect, the present paper briefly describes the most used cancer treatments in clinical practice to set a reference framework for recent research findings, further focusing on the novel developments in the field. More specifically, this review elaborates on the top recent studies concerning various nanomaterials (i.e., carbon-based, metal-based, liposomes, cubosomes, lipid-based, polymer-based, micelles, virus-based, exosomes, and cell membrane-coated nanomaterials) that show promising potential in different cancer applications.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
19
|
Wang X, Song K, Deng Y, Liu J, Peng Q, Lao X, Xu J, Wang D, Shi T, Li Y, Deng D, Miao Y. Benzothiazole-decorated iridium-based nanophotosensitizers for photodynamic therapy of cancer cells. Dalton Trans 2022; 51:3666-3675. [PMID: 35165680 DOI: 10.1039/d1dt04315c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) is an effective non-invasive treatment for tumors. The structure of a photosensitizer has an important influence on light utilization and efficiency of singlet-oxygen generation. In this study, we synthesized three π-type iridium(III) complexes and modified the C^N and N^N ligands with benzothiazole (BTZ) to regulate their light-absorption capacity and efficiency of singlet-oxygen generation. We assembled the nano-photosensitizers by wrapping them with an amphiphilic polyethylene glycol polymer with folic acid-targeting function to improve their targeting ability and biocompatibility. Modification of the BTZ group on the C^N ligand enhanced the ability of the photosensitizer to generate singlet oxygen and improved the cell uptake and PDT efficacy of the corresponding nanophotosensitizer. We believe that this type of photosensitizer provides the basis for the design of new photosensitizers based on the structure of iridium(III) complexes.
Collapse
Affiliation(s)
- Xiang Wang
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Kang Song
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yong Deng
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jie Liu
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qin Peng
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiao Lao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jiayu Xu
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Dong Wang
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Turong Shi
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dan Deng
- Dermatology Department, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 200092, China.
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
20
|
Esmaeili Y, Khavani M, Bigham A, Sanati A, Bidram E, Shariati L, Zarrabi A, Jolfaie NA, Rafienia M. Mesoporous silica@chitosan@gold nanoparticles as "on/off" optical biosensor and pH-sensitive theranostic platform against cancer. Int J Biol Macromol 2022; 202:241-255. [PMID: 35041881 DOI: 10.1016/j.ijbiomac.2022.01.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/26/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023]
Abstract
A cancer nanotheranostic system was fabricated based on mesoporous silica@chitosan@gold (MCM@CS@Au) nanosystem targeted by aptamer toward the MUC-1 positive tumor cells. Subsequently, curcumin as an efficient herbal anticancer drug was first encapsulated into chitosan-triphosphate nanoparticles and then the resulted nanoparticle was loaded into the nanosystem (MCM@CS@Au-Apt). The nanosystem successful fabrication was approved at each synthesis step through FTIR, XRD, BET, DLS, FE-SEM, HRTEM, and fluorescence spectroscopy. Besides, the interaction between aptamer and curcumin was evaluated using full atomistic molecular dynamics simulations. The mechanism of curcumin release was likewise investigated through different kinetic models. Afterwards, the potential of the designed nanosystem in targeted imaging, and drug delivery was evaluated using fluorescence microscopy and flow cytometry. It was found that the energy transfer between the base pairs in the hairpin of double strands of DNA aptamer acts as a quencher for MCM@CS@Au fluorescence culminating in an "on/off" optical biosensor. On the other hand, the presence of pH-sensitive chitosan nanoparticles creates smart nanosystem to deliver more curcumin into the desired cells. Indeed, when the aptamer specifically binds to the MUC-1 receptor, its double strands separate under the low pH condition, leading to the drug release and the recovery of the fluorescence ("On" state). Based on the toxicity results, this nanosystem had more toxicity toward the MUC-1-positive tumor cells than MUC-1-negative cells, representing its selective targeting. Therefore, this nanosystem could be introduced as a smart anticancer nanotheranostic system for tracing particular biomarkers (MUC-1), non-invasive fluorescence imaging, and targeted curcumin delivery.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Khavani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Alireza Sanati
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, 8174673461 Isfahan, Iran; Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Nafise Arbab Jolfaie
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
Li H, Li F, Sun Y, Li Y. A feasible strategy of fabricating hybrid drugs encapsulated polymeric nanoparticles for the treatment of gastric cancer therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
23
|
Liu Y, Zhang J, Du J, Song K, Liu J, Wang X, Li B, Ouyang R, Miao Y, Sun Y, Li Y. Biodegradable BiOCl platform for oxidative stress injury-enhanced chemodynamic/radiation therapy of hypoxic tumors. Acta Biomater 2021; 129:280-292. [PMID: 34033970 DOI: 10.1016/j.actbio.2021.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Various physiological characteristics of the tumor microenvironment (TME), such as hypoxia, overexpression of glutathione (GSH) and hydrogen peroxide (H2O2), and mild acidity, can severely reduce the efficacy of many cancer therapies. Altering the redox balance of the TME and increasing oxidative stress can accordingly enhance the efficacy of tumor therapy. Herein, we developed a bismuth-based Cu2+-doped BiOCl nanotherapeutic platform, BCHN, able to self-supply H2O2 for TME-regulated chemodynamic therapy (CDT) combined with sensitized radiotherapy (RT). BCHN released H2O2 and consumed GSH to degrade the composite in the slightly acidic TME, and generated hydroxyl radicals (•OH) via a Fenton-like reaction catalyzed by copper ions, to achieve oxidative stress-enhanced CDT. The Fenton-like reaction also catalyzed H2O2 to produce O2 to relieve tumor hypoxia, and combined with the X-ray-blocking property of bismuth to realize TME-enhanced radiotherapy. Synergistic CDT/RT has previously been shown to effectively inhibit tumor cell proliferation and achieve effective tumor control. The current results demonstrated a highly efficient multifunctional bio-degradable nanoplatform for oncotherapy. STATEMENT OF SIGNIFICANCE: Tumor microenvironment-modulated synergy of radiotherapy and chemodynamic therapy is conducive to rapid tumor ablation. Based on this principle, we fabricated a biodegradable BiOCl-based nanocomposite, BCHN. By supplying H2O2, a Fenton-like reaction generated •OH and O2 catalyzed by copper ions, and consumed glutathione to biodegrade the composite. Overall, these actions increased tumor oxidative stress and realized the synergistic anti-tumor actions of chemodynamic therapy combined with bismuth-based sensitization radiotherapy. This strategy thus provides a unique approach to oncology therapy.
Collapse
|
24
|
Xu Y, Wang X, Song K, Du J, Liu J, Miao Y, Li Y. BSA-encapsulated cyclometalated iridium complexes as nano-photosensitizers for photodynamic therapy of tumor cells. RSC Adv 2021; 11:15323-15331. [PMID: 35424038 PMCID: PMC8698255 DOI: 10.1039/d1ra01740c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy is a promising treatment method. The development of suitable photosensitizers can improve therapeutic efficacy. Herein, we report three iridium complexes (Ir1, Ir2, and Ir3), and encapsulate them within bovine serum albumin (BSA) to form nano-photosensitizers (Ir1@BSA, Ir2@BSA, and Ir3@BSA) for photodynamic therapy (PDT) of tumor cells. In the structures of Ir(iii) complexes, we use the pyrazine heterocycle as part of the C^N ligands and explore the effect of different ligands on the ability to generate singlet oxygen (1O2) by changing the conjugation length of the ligand and increasing the coplanarity of the ligand. Besides, the fabricated nano-photosensitizers are beneficial to improve water dispersibility and increase cellular uptake ability. Through studying photophysical properties, 1O2 generation capacity, and cellular uptake performance, the results show that Ir1@BSA has the best photodynamic therapeutic effect on 4T1 tumor cells. This study provides an effective research basis for the further design of new nano-photosensitizers. Three new iridium complexes were synthesized and fabricated with BSA to form nano-photosensitizers, which can catalyze oxygen to produce singlet oxygen to achieve photodynamic therapy of tumor cells.![]()
Collapse
Affiliation(s)
- Yao Xu
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiang Wang
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Kang Song
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Du
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jinliang Liu
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuhao Li
- Institute of Bismuth Science, College of Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|