1
|
Banazadeh M, Ilaghi M, Abadi B, Joushi S, Pishbin E, Dabiri S, Ramezani Farani M, Rahi A, Mostafavi E, Zare I. Chitosan nanoparticles-hydrogel composites for biomedical applications. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:633-678. [DOI: 10.1016/b978-0-443-14088-4.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Naghib SM, Matini A, Amiri S, Ahmadi B, Mozafari MR. Exploring the potential of polysaccharides-based injectable self-healing hydrogels for wound healing applications: A review. Int J Biol Macromol 2024; 282:137209. [PMID: 39505164 DOI: 10.1016/j.ijbiomac.2024.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In recent decades, significant advancements have been made in wound healing treatments, mainly due to the development of biopolymer-based hydrogels. These injectable self-healing hydrogels have attracted considerable interest because of their unique attributes, including reversible chemistry, injectability, and printability. Unlike traditional hydrogels, injectable polysaccharide-based self-healing hydrogels offer numerous benefits. They can be tailored to fit individual patients, significantly advancing personalized medicine. Upon injection, these hydrogels transform in situ into a substance that effectively covers the entire lesion in all three dimensions, reaching irregular and deep lesions. Injectable self-healing hydrogels also play a pivotal role in promoting tissue regeneration. Their diffusive and viscoelastic properties allow for the controlled delivery of cells or therapeutics in a spatiotemporal manner, provide mechanical support, and facilitate the local recruitment and modulation of host cells. Consequently, these hydrogels have revolutionized innovative approaches to tissue regeneration and are ideally suited for managing chronic wounds. This review paper presents a comprehensive classification of injectable self-healing hydrogels commonly used in chronic wound repair and provides a detailed analysis of the various applications of injectable self-healing hydrogels in treating chronic wounds, thereby illuminating this rapidly evolving field.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Amir Matini
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saba Amiri
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Bahar Ahmadi
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Yadav S, Singh A, Palei NN, Pathak P, Verma A, Yadav JP. Chitosan-Based Nanoformulations: Preclinical Investigations, Theranostic Advancements, and Clinical Trial Prospects for Targeting Diverse Pathologies. AAPS PharmSciTech 2024; 25:263. [PMID: 39500815 DOI: 10.1208/s12249-024-02948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Chitosan, a biocompatible and biodegradable polymer, has attracted significant interest in the development of nanoformulations for targeted drug delivery and therapeutic applications. The versatility of chitosan lies in its modifiable functional groups, which can be tailored to diverse applications. Nanoparticles derived from chitosan and its derivatives typically exhibit a positive surface charge and mucoadhesive properties, enabling them to adhere to negatively charged biological membranes and gradually release therapeutic agents. This comprehensive review investigates the manifold roles of chitosan-based nanocarriers, ranging from preclinical research to theranostic applications and clinical trials, across a spectrum of diseases, including neurological disorders, cardiovascular diseases, cancer, wound healing, gastrointestinal disorders, and pulmonary diseases. The exploration starts with an overview of preclinical studies, emphasizing the potential of chitosan-based nanoformulations in optimizing drug delivery, improving therapeutic outcomes, and mitigating adverse effects in various disease categories. Advancements in theranostic applications of chitosan-based nanoformulations highlight their adaptability to diverse diseases. As these nanoformulations progress toward clinical translation, this review also addresses the regulatory challenges associated with their development and proposes potential solutions.
Collapse
Affiliation(s)
- Seema Yadav
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Singh
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India.
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to Be University), Hyderabad Campus, Visakhapatnam, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
4
|
Domengé O, Deloux R, Revet G, Mazière L, Pillet-Michelland E, Commin L, Bonnefont-Rebeix C, Simon A, Mougenot N, Cavagnino A, Baraibar M, Saulnier N, Crépet A, Delair T, Agbulut O, Montembault A. Bio-functionalized hydrogel patches of chitosan for the functional recovery of infarcted myocardial tissue. Int J Biol Macromol 2024; 281:136400. [PMID: 39389478 DOI: 10.1016/j.ijbiomac.2024.136400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The aim of this work was to assess the potential benefits of the enrichment of a chitosan hydrogel patch with secretome and its epicardial implantation in a murine model of chronic ischemia, focusing on the potential to restore the functional capacity of the heart. Thus, a hydrogel with a final polymer concentration of 3 % was prepared from chitosan with an acetylation degree of 24 % and then bio-functionalized with a secretome produced by mesenchymal stromal cells. The identification of proteins in the secretomes showed the presence of several proteins known to have beneficial effects on cardiac muscle repair. Then chitosan hydrogels were immersed in secretome. The protein incorporation in the hydrogel and their release over time were studied, demonstrating the ability of the gel to retain and then deliver proteins (around 40 % was released in the first 6 h, and then a plateau was reached). Moreover, mechanical analysis exhibited that the patches remained suturable after enrichment. Finally, bio-functionalized hydrogel patches were sutured onto the surface of the infarcted myocardium in rat. Thirty days after, the presence of enriched hydrogels induced a reversion of cardiac function which seems to come mainly from an improvement of left ventricle systolic performance and contractility.
Collapse
Affiliation(s)
- O Domengé
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - R Deloux
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - G Revet
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - L Mazière
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - E Pillet-Michelland
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - L Commin
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - C Bonnefont-Rebeix
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - A Simon
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - N Mougenot
- Sorbonne Universite, UMS28 Plateforme d'Expérimentation Cœur, Muscles, Vaisseaux, 91 Bd de l'Hôpital, F-75013 Paris, France
| | - A Cavagnino
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - M Baraibar
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - N Saulnier
- Vetbiobank, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France
| | - A Crépet
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - T Delair
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - O Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France.
| | - A Montembault
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France.
| |
Collapse
|
5
|
Yarahmadi A, Dousti B, Karami-Khorramabadi M, Afkhami H. Materials based on biodegradable polymers chitosan/gelatin: a review of potential applications. Front Bioeng Biotechnol 2024; 12:1397668. [PMID: 39157438 PMCID: PMC11327468 DOI: 10.3389/fbioe.2024.1397668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Increased mass manufacturing and the pervasive use of plastics in many facets of daily life have had detrimental effects on the environment. As a result, these worries heighten the possibility of climate change due to the carbon dioxide emissions from burning conventional, non-biodegradable polymers. Accordingly, biodegradable gelatin and chitosan polymers are being created as a sustainable substitute for non-biodegradable polymeric materials in various applications. Chitosan is the only naturally occurring cationic alkaline polysaccharide, a well-known edible polymer derived from chitin. The biological activities of chitosan, such as its antioxidant, anticancer, and antimicrobial qualities, have recently piqued the interest of researchers. Similarly, gelatin is a naturally occurring polymer derived from the hydrolytic breakdown of collagen protein and offers various medicinal advantages owing to its unique amino acid composition. In this review, we present an overview of recent studies focusing on applying chitosan and gelatin polymers in various fields. These include using gelatin and chitosan as food packaging, antioxidants and antimicrobial properties, properties encapsulating biologically active substances, tissue engineering, microencapsulation technology, water treatment, and drug delivery. This review emphasizes the significance of investigating sustainable options for non-biodegradable plastics. It showcases the diverse uses of gelatin and chitosan polymers in tackling environmental issues and driving progress across different industries.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Behrooz Dousti
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mahdi Karami-Khorramabadi
- Department of Mechanical Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Alborz, Iran
| |
Collapse
|
6
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
7
|
Guo W, Ding X, Zhang H, Liu Z, Han Y, Wei Q, Okoro OV, Shavandi A, Nie L. Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels 2024; 10:175. [PMID: 38534593 DOI: 10.3390/gels10030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The management of wound healing represents a significant clinical challenge due to the complicated processes involved. Chitosan has remarkable properties that effectively prevent certain microorganisms from entering the body and positively influence both red blood cell aggregation and platelet adhesion and aggregation in the bloodstream, resulting in a favorable hemostatic outcome. In recent years, chitosan-based hydrogels have been widely used as wound dressings due to their biodegradability, biocompatibility, safety, non-toxicity, bioadhesiveness, and soft texture resembling the extracellular matrix. This article first summarizes an overview of the main chemical modifications of chitosan for wound dressings and then reviews the desired properties of chitosan-based hydrogel dressings. The applications of chitosan-based hydrogels in wound healing, including burn wounds, surgical wounds, infected wounds, and diabetic wounds are then discussed. Finally, future prospects for chitosan-based hydrogels as wound dressings are discussed. It is anticipated that this review will form a basis for the development of a range of chitosan-based hydrogel dressings for clinical treatment.
Collapse
Affiliation(s)
- Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Han Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Yanting Han
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Qianqian Wei
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
8
|
Târtea G, Popa-Wagner A, Sfredel V, Mitran SI, Dan AO, Țucă AM, Preda AN, Raicea V, Țieranu E, Cozma D, Vătășescu R. Chitosan Versus Dapagliflozin in a Diabetic Cardiomyopathy Mouse Model. Int J Mol Sci 2024; 25:2118. [PMID: 38396795 PMCID: PMC10888683 DOI: 10.3390/ijms25042118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with global economic implications that can lead to complications such as diabetic cardiomyopathy. The aim of this study was to compare the effects of chitosan versus dapagliflozin in mouse diabetic cardiomyopathy. We used 32 C57Bl/6 male mice aged between 8 and 10 weeks, which were randomly divided into Control-without diabetes mellitus (DM), type 1 DM (T1DM), T1DM + Chitosan, and T1DM + Dapapgliflozin groups. We induced diabetes with streptozotocin and treated the animals for 12 weeks. The analysis showed a reduction in intramyocardial fibrosis in the T1DM + Dapapgliflozin compared to T1DM animals. In T1DM + CHIT, a reduction in intramyocardial fibrosis was observed although, accordingly, there was also no significant decrease in blood glucose. The level of oxidative stress was reduced in the groups of treated animals compared to T1DM. All these observed changes in the structure and function of hearts were highlighted in the echocardiographic examination. In the treated groups, there was delayed appearance of left ventricular (LV) hypertrophy, a slight decrease in the ejection fraction of the LV, and an improved diastolic profile. The results demonstrate that chitosan has promising effects on diabetic cardiomyopathy that are comparable to the beneficial effects of dapagliflozin.
Collapse
Affiliation(s)
- Georgică Târtea
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (G.T.); (V.S.); (S.I.M.); (A.O.D.); (A.-M.Ț.)
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Veronica Sfredel
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (G.T.); (V.S.); (S.I.M.); (A.O.D.); (A.-M.Ț.)
| | - Smaranda Ioana Mitran
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (G.T.); (V.S.); (S.I.M.); (A.O.D.); (A.-M.Ț.)
| | - Alexandra Oltea Dan
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (G.T.); (V.S.); (S.I.M.); (A.O.D.); (A.-M.Ț.)
| | - Anca-Maria Țucă
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (G.T.); (V.S.); (S.I.M.); (A.O.D.); (A.-M.Ț.)
| | - Alexandra Nicoleta Preda
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (G.T.); (V.S.); (S.I.M.); (A.O.D.); (A.-M.Ț.)
| | - Victor Raicea
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.R.); (E.Ț.)
| | - Eugen Țieranu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.R.); (E.Ț.)
| | - Dragoș Cozma
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Radu Vătășescu
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
9
|
Taokaew S, Kaewkong W, Kriangkrai W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023; 9:277. [PMID: 37102889 PMCID: PMC10138304 DOI: 10.3390/gels9040277] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chitosan is a promising naturally derived polysaccharide to be used in hydrogel forms for pharmaceutical and biomedical applications. The multifunctional chitosan-based hydrogels have attractive properties such as the ability to encapsulate, carry, and release the drug, biocompatibility, biodegradability, and non-immunogenicity. In this review, the advanced functions of the chitosan-based hydrogels are summarized, with emphasis on fabrications and resultant properties reported in literature from the recent decade. The recent progress in the applications of drug delivery, tissue engineering, disease treatments, and biosensors are reviewed. Current challenges and future development direction of the chitosan-based hydrogels for pharmaceutical and biomedical applications are prospected.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
10
|
Poerio A, Guibert B, Leroux MM, Mano JF, Cleymand F, Jehl JP. Mechanical Characterization of 3D-Printed Patterned Membranes for Cardiac Tissue Engineering: An Experimental and Numerical Study. Biomedicines 2023; 11:biomedicines11030963. [PMID: 36979942 PMCID: PMC10046740 DOI: 10.3390/biomedicines11030963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
A myocardial infarction can cause irreversible damage to the heart muscle. A promising approach for the treatment of myocardial infarction and prevention of severe complications is the application of cardiac patches or epicardial restraint devices. The challenge for the fabrication of cardiac patches is the replication of the fibrillar structure of the myocardium, in particular its anisotropy and local elasticity. In this study, we developed a chitosan-gelatin-guar gum-based biomaterial ink that was fabricated using 3D printing to create patterned anisotropic membranes. The experimental results were then used to develop a numerical model able to predict the elastic properties of additional geometries with tunable elasticity that could easily match the mechanical properties of the heart tissue (particularly the myocardium).
Collapse
Affiliation(s)
- Aurelia Poerio
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, 54011 Nancy, France
| | - Bertrand Guibert
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, 54011 Nancy, France
| | - Mélanie M Leroux
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, 54011 Nancy, France
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Franck Cleymand
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, 54011 Nancy, France
| | - Jean-Philippe Jehl
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, 54011 Nancy, France
| |
Collapse
|
11
|
Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, Temirkhanova K, Saparov A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030807. [PMID: 36986668 PMCID: PMC10055885 DOI: 10.3390/pharmaceutics15030807] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan is a chitin-derived biopolymer that has shown great potential for tissue regeneration and controlled drug delivery. It has numerous qualities that make it attractive for biomedical applications such as biocompatibility, low toxicity, broad-spectrum antimicrobial activity, and many others. Importantly, chitosan can be fabricated into a variety of structures including nanoparticles, scaffolds, hydrogels, and membranes, which can be tailored to deliver a desirable outcome. Composite chitosan-based biomaterials have been demonstrated to stimulate in vivo regeneration and the repair of various tissues and organs, including but not limited to, bone, cartilage, dental, skin, nerve, cardiac, and other tissues. Specifically, de novo tissue formation, resident stem cell differentiation, and extracellular matrix reconstruction were observed in multiple preclinical models of different tissue injuries upon treatment with chitosan-based formulations. Moreover, chitosan structures have been proven to be efficient carriers for medications, genes, and bioactive compounds since they can maintain the sustained release of these therapeutics. In this review, we discuss the most recently published applications of chitosan-based biomaterials for different tissue and organ regeneration as well as the delivery of various therapeutics.
Collapse
|
12
|
Socci MC, Rodríguez G, Oliva E, Fushimi S, Takabatake K, Nagatsuka H, Felice CJ, Rodríguez AP. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering (Basel) 2023; 10:bioengineering10020218. [PMID: 36829712 PMCID: PMC9952269 DOI: 10.3390/bioengineering10020218] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Tissue Engineering (TE) is an interdisciplinary field that encompasses materials science in combination with biological and engineering sciences. In recent years, an increase in the demand for therapeutic strategies for improving quality of life has necessitated innovative approaches to designing intelligent biomaterials aimed at the regeneration of tissues and organs. Polymeric porous scaffolds play a critical role in TE strategies for providing a favorable environment for tissue restoration and establishing the interaction of the biomaterial with cells and inducing substances. This article reviewed the various polymeric scaffold materials and their production techniques, as well as the basic elements and principles of TE. Several interesting strategies in eight main TE application areas of epithelial, bone, uterine, vascular, nerve, cartilaginous, cardiac, and urinary tissue were included with the aim of learning about current approaches in TE. Different polymer-based medical devices approved for use in clinical trials and a wide variety of polymeric biomaterials are currently available as commercial products. However, there still are obstacles that limit the clinical translation of TE implants for use wide in humans, and much research work is still needed in the field of regenerative medicine.
Collapse
Affiliation(s)
- María Cecilia Socci
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| | - Gabriela Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Emilia Oliva
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral Pathology and Medicine, Okayama University Dental School, Okayama 700-8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Andrea Paola Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| |
Collapse
|
13
|
Kłosiński KK, Wach RA, Girek-Bąk MK, Rokita B, Kołat D, Kałuzińska-Kołat Ż, Kłosińska B, Duda Ł, Pasieka ZW. Biocompatibility and Mechanical Properties of Carboxymethyl Chitosan Hydrogels. Polymers (Basel) 2022; 15:polym15010144. [PMID: 36616494 PMCID: PMC9823898 DOI: 10.3390/polym15010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogels have the properties of solid substances and are useful for medicine, e.g., in systems for the controlled release of drugs or as wound dressings. They isolate the wound from the external environment and constitute a barrier to microorganisms while still being permeable to oxygen. In the current study, hydrogels were formed from concentrated aqueous solutions of carboxymethyl chitosan (CMCS) via electron beam irradiation, with the presence of a crosslinking agent: poly(ethylene glycol)diacrylate. The aim of the study was to compare the properties and action of biopolymer CMCS hydrogels with commercial ones and to select the best compositions for future research towards wound-dressing applications. The elasticity of the gel depended on the component concentrations and the irradiation dose employed to form the hydrogel. Young's modulus for the tested hydrogels was higher than for the control material. The Live/Dead test performed on human fibroblasts confirmed that the analyzed hydrogels are not cytotoxic, and for some concentrations, they cause a slight increase in the number of cells compared to the control. The biocompatibility studies carried out on laboratory rats showed no adverse effect of hydrogels on animal tissues, confirming their biocompatibility and suggesting that CMCS hydrogels could be considered as wound-healing dressings in the future. Ionizing radiation was proven to be a suitable tool for CMCS hydrogel synthesis and could be of use in wound-healing therapy, as it may simultaneously sterilize the product.
Collapse
Affiliation(s)
- Karol K. Kłosiński
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
- Correspondence: (K.K.K.); (R.A.W.); (Ż.K.-K.)
| | - Radosław A. Wach
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wróblewskiego 15, 93-590 Lodz, Poland
- Correspondence: (K.K.K.); (R.A.W.); (Ż.K.-K.)
| | - Małgorzata K. Girek-Bąk
- Animal House, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Bożena Rokita
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wróblewskiego 15, 93-590 Lodz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
- Correspondence: (K.K.K.); (R.A.W.); (Ż.K.-K.)
| | - Barbara Kłosińska
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Łukasz Duda
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Zbigniew W. Pasieka
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
14
|
Ma F, Zhu Y, Chang L, Gong J, Luo Y, Dai J, Lu H. Hydrogen sulfide protects against ischemic heart failure by inhibiting RIP1/RIP3/MLKL-mediated necroptosis. Physiol Res 2022. [DOI: 10.33549/physiolres.934905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to explore whether hydrogen sulfide (H2S) protects against ischemic heart failure (HF) by inhibiting the necroptosis pathway. Mice were randomized into Sham, myocardial infarction (MI), MI + propargylglycine (PAG) and MI + sodium hydrosulfide (NaHS) group, respectively. The MI model was induced by ligating the left anterior descending coronary artery. PAG was intraperitoneally administered at a dose of 50 mg/kg/day for 4 weeks, and NaHS at a dose of 4mg/kg/day for the same period. At 4 weeks after MI, the following were observed: A significant decrease in the cardiac function, as evidenced by a decline in ejection fraction (EF) and fractional shortening (FS); an increase in plasma myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTNI); an increase in myocardial collagen content in the heart tissues; and a decrease of H2S level in plasma and heart tissues. Furthermore, the expression levels of necroptosis-related markers such as receptor interacting protein kinase 1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL) were upregulated after MI. NaHS treatment increased H2S levels in plasma and heart tissues, preserving the cardiac function by increasing EF and FS, decreasing plasma CK-MB and cTNI and reducing collagen content. Additionally, NaHS treatment significantly downregulated the RIP1/RIP3/MLKL pathway. While, PAG treatment aggravated cardiac function by activated the RIP1/RIP3/MLKL pathway. Overall, the present study concluded that H2S protected against ischemic HF by inhibiting RIP1/RIP3/MLKL-mediated necroptosis which could be a potential target treatment for ischemic HF.
Collapse
Affiliation(s)
| | | | | | | | | | - J Dai
- Department of Clinical Diagnostics, Hebei Medical University, 361 Zhongshan Road, Shijiazhuang, Hebei, China.
| | - H Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P.R. China.
| |
Collapse
|
15
|
Kitsara M, Revet G, Vartanian-Grimaldi JS, Simon A, Minguy M, Miche A, Humblot V, Dufour T, Agbulut O. Cyto- and bio-compatibility assessment of plasma-treated polyvinylidene fluoride scaffolds for cardiac tissue engineering. Front Bioeng Biotechnol 2022; 10:1008436. [PMID: 36406217 PMCID: PMC9672675 DOI: 10.3389/fbioe.2022.1008436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
As part of applications dealing with cardiovascular tissue engineering, drop-cast polyvinylidene fluoride (PVDF) scaffolds have been treated by cold plasma to enhance their adherence to cardiac cells. The scaffolds were treated in a dielectric barrier device where cold plasma was generated in a gaseous environment combining a carrier gas (helium or argon) with/without a reactive gas (molecular nitrogen). We show that an Ar-N2 plasma treatment of 10 min results in significant hydrophilization of the scaffolds, with contact angles as low as 52.4° instead of 132.2° for native PVDF scaffolds. Correlation between optical emission spectroscopy and X-ray photoelectron spectroscopy shows that OH radicals from the plasma phase can functionalize the surface scaffolds, resulting in improved wettability. For all plasma-treated PVDF scaffolds, the adhesion and maturation of primary cardiomyocytes is increased, showing a well-organized sarcomeric structure (α-actinin immunostaining). The efficacy of plasma treatment was also supported by real-time PCR analysis to demonstrate an increased expression of the genes related to adhesion and cardiomyocyte function. Finally, the biocompatibility of the PVDF scaffolds was studied in a cardiac environment, after implantation of acellular scaffolds on the surface of the heart of healthy mice. Seven and 28 days after implantation, no exuberant fibrosis and no multinucleated giant cells were visible in the grafted area, hence demonstrating the absence of foreign body reaction and the biocompatibility of these scaffolds.
Collapse
Affiliation(s)
- Maria Kitsara
- UMR CNRS 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
- *Correspondence: Maria Kitsara, ; Thierry Dufour, ; Onnik Agbulut,
| | - Gaëlle Revet
- UMR CNRS 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Jean-Sébastien Vartanian-Grimaldi
- UMR CNRS 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Alexandre Simon
- UMR CNRS 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Mathilde Minguy
- UMR CNRS 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Antoine Miche
- UMR CNRS 7197, Laboratoire de Réactivité de Surface, Sorbonne Université, Paris, France
| | - Vincent Humblot
- UMR CNRS 7197, Laboratoire de Réactivité de Surface, Sorbonne Université, Paris, France
- UMR 6174 CNRS, FEMTO-ST Institute, Université Bourgogne Franche-Comté, Besançon, France
| | - Thierry Dufour
- UMR CNRS 7648, Laboratoire de Physique des Plasmas, Sorbonne Université, Paris, France
- *Correspondence: Maria Kitsara, ; Thierry Dufour, ; Onnik Agbulut,
| | - Onnik Agbulut
- UMR CNRS 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
- *Correspondence: Maria Kitsara, ; Thierry Dufour, ; Onnik Agbulut,
| |
Collapse
|
16
|
Precise Construction of Injectable Bioactive Glass/Polyvinyl Alcohol Nanocomposite Hydrogels Promising to Repair the Shoulder Joint Head for Hemiarthroplasty. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Yue T, Xiong S, Zheng D, Wang Y, Long P, Yang J, Danzeng D, Gao H, Wen X, Li X, Hou J. Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Front Bioeng Biotechnol 2022; 10:988683. [PMID: 36185428 PMCID: PMC9520723 DOI: 10.3389/fbioe.2022.988683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Myocardial fibrosis is the result of abnormal healing after acute and chronic myocardial damage and is a direct cause of heart failure and cardiac insufficiency. The clinical approach is to preserve cardiac function and inhibit fibrosis through surgery aimed at dredging blood vessels. However, this strategy does not adequately address the deterioration of fibrosis and cardiac function recovery. Therefore, numerous biomaterial platforms have been developed to address the above issues. In this review, we summarize the existing biomaterial delivery and restoring platforms, In addition, we also clarify the therapeutic strategies based on biomaterial platforms, including general strategies to block the fibrosis process and new strategies to promote cellular restoring effects. The development of structures with the ability to block further fibrosis progression as well as to promote cardiomyocytes viability should be the main research interests in myocardial fibrosis, and the reestablishment of structures necessary for normal cardiac function is central to the treatment of myocardial fibrosis. Finally, the future application of biomaterials for myocardial fibrosis is also highlighted.
Collapse
Affiliation(s)
- Tian Yue
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Dezhi Zheng
- Department of Cardiovascular Surgery, The 960th Hospital of the PLA Joint Logistic Support Force, Jinan, China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dunzhu Danzeng
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Han Gao
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Xin Li
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Jun Hou
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| |
Collapse
|
18
|
Jiang YL, Niu S, Lin Z, Li L, Yang P, Rao P, Yang L, Jiang L, Sun L. Injectable hydrogel with dual-sensitive behavior for targeted delivery of oncostatin M to improve cardiac restoration after myocardial infarction. J Mater Chem B 2022; 10:6514-6531. [PMID: 35997155 DOI: 10.1039/d2tb00623e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Myocardial infarction (MI) is a common cardiovascular disease that seriously endangers human health and complex pathophysiology (e.g., coronary artery obstruction, myocardial apoptosis, necrosis, inflammation, fibrosis, etc.) is involved. Therein, the loss of cardiomyocytes after MI in adults leads to gradual heart failure, which probably brings irreparable damage to the patient. Unfortunately, due to a cluster of limitations, currently used MI repair approaches always exhibit simple functions, low efficiency, and can hardly match the myocardial ischemia environment and clinical needs. In this study, we selected oncostatin M (OSM), a pleiotropic cytokine belonging to the interleukin-6 family that possesses an important role in cardiomyocyte dedifferentiation, cell proliferation, and regulation of inflammatory processes. Moreover, an injectable hydrogel with pH- and temperature-responsive behavior that can react with the acidic microenvironment of the ischemic myocardium was developed to deliver OSM locally. The functional hydrogel (poly (chitosan-co-citric acid-co-N-isopropyl acrylamide), P(CS-CA-NIPAM)) was fabricated by the facile reversible addition-fragmentation chain transfer polymerization and can be injected into the lesion site directly. After the gelation in situ, the OSM-loaded hydrogel exhibited continuous and localized release of OSM in response to specific pH and changes in MI rats, thereby accelerating angiogenesis and proliferation of cardiomyocytes, inhibiting myocardial fibrosis and improving cardiac function effectively. This study may provide a new perspective for the application of dual-sensitive hydrogels clinically, especially in tissue engineering for MI repair and drug delivery.
Collapse
Affiliation(s)
- Yong-Liang Jiang
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, P. R. China
| | - Zhi Lin
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, P. R. China
| | - Ping Yang
- Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, P. R. China
| | - Peng Rao
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Lin Yang
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Lihong Jiang
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650100, P. R. China.
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| |
Collapse
|
19
|
Perveen S, Rossin D, Vitale E, Rosso R, Vanni R, Cristallini C, Rastaldo R, Giachino C. Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. Int J Mol Sci 2021; 22:ijms222313054. [PMID: 34884856 PMCID: PMC8658014 DOI: 10.3390/ijms222313054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of heart-related deaths worldwide. Following MI, the hypoxic microenvironment triggers apoptosis, disrupts the extracellular matrix and forms a non-functional scar that leads towards adverse left ventricular (LV) remodelling. If left untreated this eventually leads to heart failure. Besides extensive advancement in medical therapy, complete functional recovery is never accomplished, as the heart possesses limited regenerative ability. In recent decades, the focus has shifted towards tissue engineering and regenerative strategies that provide an attractive option to improve cardiac regeneration, limit adverse LV remodelling and restore function in an infarcted heart. Acellular scaffolds possess attractive features that have made them a promising therapeutic candidate. Their application in infarcted areas has been shown to improve LV remodelling and enhance functional recovery in post-MI hearts. This review will summarise the updates on acellular scaffolds developed and tested in pre-clinical and clinical scenarios in the past five years with a focus on their ability to overcome damage caused by MI. It will also describe how acellular scaffolds alone or in combination with biomolecules have been employed for MI treatment. A better understanding of acellular scaffolds potentialities may guide the development of customised and optimised therapeutic strategies for MI treatment.
Collapse
Affiliation(s)
- Sadia Perveen
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
- Correspondence:
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| |
Collapse
|
20
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Dwyer KD, Coulombe KL. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021; 6:2198-2220. [PMID: 33553810 PMCID: PMC7822956 DOI: 10.1016/j.bioactmat.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
22
|
Long G, Wang Q, Li S, Tao J, Li B, Zhang X, Zhao X. Engineering of injectable hydrogels associate with Adipose-Derived stem cells delivery for anti-cardiac hypertrophy agents. Drug Deliv 2021; 28:1334-1341. [PMID: 34180762 PMCID: PMC8245104 DOI: 10.1080/10717544.2021.1943060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) treatment offers support to new methods of transporting baseline cell protein endothelial cells in alginate (A)/silk sericin (SS) lamellar-coated antioxidant system (ASS@L) to promote acute myocardial infarction. In the synthesized frames of ASS, the ratio of fixity modules, pores, the absorption and inflammation was detected at ka (65ka), 151 ± 40.12 μm, 92.8%, 43.2 ± 2.58 and 30.10 ± 2.1. In this context, ADSC-ASS@L was developed and the corresponding material was stable and physically chemical for the development of cardiac regenerative applications. ADSC-ASS@L injectable hydrogels in vitro examination demonstrated higher cell survival rates and pro-angiogenic and pro-Inflammatory expression factors, demonstrating the favorable effect of fractional ejections, fibre-areas, and low infracture vessel densities. In successful cardiac damage therapy in acute myocardial infarction the innovative ADSC injection hydrogel approach may be helpful. The approach could also be effective during coronary artery hypertrophy for successful heart damage treatment.
Collapse
Affiliation(s)
- Guangyu Long
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Quanhe Wang
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shaolin Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junzhong Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boyan Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangxiang Zhang
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xi Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|