1
|
Zhang W, Jadidi M, Razian SA, Holzapfel GA, Kamenskiy A, Nordsletten DA. A viscoelastic constitutive framework for aging muscular and elastic arteries. Acta Biomater 2024; 188:223-241. [PMID: 39303831 DOI: 10.1016/j.actbio.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The evolution of arterial biomechanics and microstructure with age and disease plays a critical role in understanding the health and function of the cardiovascular system. Accurately capturing these adaptative processes and their effects on the mechanical environment is critical for predicting arterial responses. This challenge is exacerbated by the significant differences between elastic and muscular arteries, which have different structural organizations and functional demands. In this study, we aim to shed light to these adaptive processes by comparing the viscoelastic mechanics of autologous thoracic aortas (TA) and femoropopliteal arteries (FPA) in different age groups. We have extended our fractional viscoelastic framework, originally developed for FPA, to both types of arteries. To evaluate this framework, we analyzed experimental mechanical data from TA and FPA specimens from 21 individuals aged 13 to 73 years. Each specimen was subjected to a multi-ratio biaxial mechanical extension and relaxation test complemented by bidirectional histology to quantify the structural density and microstructural orientations. Our new constitutive model accurately captured the mechanical responses and microstructural differences of the tissues and closely matched the experimentally measured densities. It was found that the viscoelastic properties of collagen and smooth muscle cells (SMCs) in both the FPA and TA remained consistent with age, but the viscoelasticity of the SMCs in the FPA was twice that of the TA. Additionally, changes in collagen nonlinearity with age were similar in both TA and FPA. This model provides valuable insights into arterial mechanophysiology and the effects of pathological conditions on vascular biomechanics. STATEMENT OF SIGNIFICANCE: Developing durable treatments for arterial diseases necessitates a deeper understanding of how mechanical properties evolve with age in response to mechanical environments. In this work, we developed a generalized viscoelastic constitutive model for both elastic and muscular arteries and analyzed both the thoracic aorta (TA) and the femoropopliteal artery (FPA) from 21 donors aged 13 to 73. The derived parameters correlate well with histology, allowing further examination of how viscoelasticity evolves with age. Correlation between the TA and FPA of the same donors suggest that the viscoelasticity of the FPA may be influenced by the TA, necessitating more detailed analysis. In summary, our new model proves to be a valuable tool for studying arterial mechanophysiology and exploring pathological impacts.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, NE, USA.
| | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, NE, USA.
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK.
| |
Collapse
|
2
|
Valente R, Mourato A, Xavier J, Sousa P, Domingues T, Tavares P, Avril S, Tomás A, Fragata J. Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review. Bioengineering (Basel) 2024; 11:745. [PMID: 39199703 PMCID: PMC11351783 DOI: 10.3390/bioengineering11080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Experimental protocols are fundamental for quantifying the mechanical behaviour of soft tissue. These data are crucial for advancing the understanding of soft tissue mechanics, developing and calibrating constitutive models, and informing the development of more accurate and predictive computational simulations and artificial intelligence tools. This paper offers a comprehensive review of experimental tests conducted on soft aortic tissues, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, based on the Scopus, Web of Science, IEEE, Google Scholar and PubMed databases. This study includes a detailed overview of the test method protocols, providing insights into practical methodologies, specimen preparation and full-field measurements. The review also briefly discusses the post-processing methods applied to extract material parameters from experimental data. In particular, the results are analysed and discussed providing representative domains of stress-strain curves for both uniaxial and biaxial tests on human aortic tissue.
Collapse
Affiliation(s)
- Rodrigo Valente
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - André Mourato
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
- Intelligent Systems Associate Laboratory, LASI, 4800-058 Guimarães, Portugal
| | - Pedro Sousa
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Tiago Domingues
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Paulo Tavares
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, Inserm, Sainbiose U1059, Campus Santé Innovation, 10, rue de la Marandière, 42270 Saint-Priest-en-Jarez, France;
| | - António Tomás
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
| | - José Fragata
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
- Department of Surgery and Human Morphology, NOVA Medical School, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisboa, Portugal
| |
Collapse
|
3
|
Buti G, Ajdari A, Chen YL, Bridge CP, Sharp GC, Bortfeld T. Integrating muscle fiber orientation from visible human data into radiotherapy target volumes. Phys Med Biol 2024; 69:10.1088/1361-6560/ad5d50. [PMID: 38942035 PMCID: PMC11308482 DOI: 10.1088/1361-6560/ad5d50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Objective.A major challenge in treatment of tumors near skeletal muscle is defining the target volume for suspected tumor invasion into the muscle. This study develops a framework that generates radiation target volumes with muscle fiber orientation directly integrated into their definition. The framework is applied to nineteen sacral tumor patients with suspected infiltration into surrounding muscles.Approach.To compensate for the poor soft-tissue contrast of CT images, muscle fiber orientation is derived from cryo-images of two cadavers from the human visible project (VHP). The approach consists of (a) detecting image gradients in the cadaver images representative of muscle fibers, (b) mapping this information onto the patient image, and (c) embedding the muscle fiber orientation into an expansion method to generate patient-specific clinical target volumes (CTV). The validation tested the consistency of image gradient orientation across VHP subjects for the piriformis, gluteus maximus, paraspinal, gluteus medius, and gluteus minimus muscles. The model robustness was analyzed by comparing CTVs generated using different VHP subjects. The difference in shape between the new CTVs and standard CTV was analyzed for clinical impact.Main results.Good agreement was found between the image gradient orientation across VHP subjects, as the voxel-wise median cosine similarity was at least 0.86 (for the gluteus minimus) and up to 0.98 for the piriformis. The volume and surface similarity between the CTVs generating from different VHP subjects was on average at least 0.95 and 5.13 mm for the Dice Similarity Coefficient and the Hausdorff 95% Percentile Index, showing excellent robustness. Finally, compared to the standard CTV with different margins in muscle and non-muscle tissue, the new CTV margins are reduced in muscle tissue depending on the chosen clinical margins.Significance.This study implements a method to integrate muscle fiber orientation into the target volume without the need for additional imaging.
Collapse
Affiliation(s)
- Gregory Buti
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 100 Blossom St, Boston, MA 02114, United States of America
| | - Ali Ajdari
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 100 Blossom St, Boston, MA 02114, United States of America
| | - Yen-Lin Chen
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 100 Blossom St, Boston, MA 02114, United States of America
| | - Christopher P Bridge
- Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth St, Charlestown, MA 02129, United States of America
| | - Gregory C Sharp
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 100 Blossom St, Boston, MA 02114, United States of America
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 100 Blossom St, Boston, MA 02114, United States of America
| |
Collapse
|
4
|
Kazim M, Razian SA, Zamani E, Varandani D, Shahbad R, Zolfaghari Sichani A, Desyatova A, Jadidi M. Mechanical, structural, and morphological differences in the iliac arteries. J Mech Behav Biomed Mater 2024; 155:106535. [PMID: 38613875 DOI: 10.1016/j.jmbbm.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
Iliac arteries play a crucial role in peripheral blood circulation. They are susceptible to various diseases, including aneurysms and atherosclerosis. Structure, material properties, and biomechanical forces acting on different regions of the iliac vasculature may contribute to the localization and progression of these pathologies. We examined 33 arterial specimens from common iliac (CI), external iliac (EI), and internal iliac (II) arteries obtained from 11 human donors (62 ± 12 years). We conducted morphometric, mechanical, and structural analyses using planar biaxial tests, constitutive modeling, and bi-directional histology on transverse and axial sections. The iliac arteries exhibited increased tortuosity and varying disease distribution with age. CI and II arteries displayed non-uniform age-related disease progression around their circumference, while EI remained healthy even in older individuals. Trends in load-free and stress-free thickness varied along the iliac vasculature. Longitudinally, EI exhibited the highest compliance compared to other iliac vessels. In contrast, CI was stiffest longitudinally, and EI was the stiffest circumferentially. Material parameters for all iliac vessels are reported for four common constitutive relations. Elastin near the internal elastic lamina displayed greater waviness in EI and II compared to CI. Also, EI had the least glycosaminoglycans (GAGs) and the highest elastin content. Our findings highlight variations in the morphological, mechanical, and structural properties of iliac arteries along their length. This data can inform vascular disease development and computational studies, and guide the development of biomimetic repair materials and devices tailored to specific iliac locations, improving vascular repair strategies.
Collapse
Affiliation(s)
- Madihah Kazim
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | - Elham Zamani
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Dheeraj Varandani
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE, USA
| | - Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
5
|
Bose S, Akbarzadeh Khorshidi M, Johnston RD, Watschke B, Mareena E, Lally C. Experimental testing combined with inverse-FE for mechanical characterisation of penile tissues. Acta Biomater 2024; 179:180-191. [PMID: 38494081 DOI: 10.1016/j.actbio.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Erectile dysfunction (ED) predominantly affects men in their 40-70s and can lead to poor quality of life. One option for ED treatment is surgical implantation of an inflatable penile prosthesis (IPP). However, they can be associated with negative outcomes including infection, migration or fibrosis. To improve outcomes, the interaction between the IPP device and surrounding tissues needs further investigation and this could be achieved using pre-clinical testbeds, but they need to be informed by extensive tissue testing. In this study, an experimental approach is adopted to characterise the mechanics of horse penile tissue and establish a testing protocol for penile tissue. The whole penis segments were tested in plate compression tests to obtain whole penis behaviour which is necessary for validation of a pre-clinical testbed, whilst tensile and compression tests were performed on individual penile tissues, namely corpus cavernosa and tunica albuginea. The second part of the paper deals with the development of a computational model employing an inverse finite element approach to estimate the material parameters of each tissue layer. These material parameters are in good agreement with the experimental results obtained from the individual tissue layers and whole organ tissue tests. This paper presents the first study proposing realistic nonlinear elastic material parameters for penile tissues and offers a validated testbed for IPPs. STATEMENT OF SIGNIFICANCE: Erectile Dysfunction (ED) affects over half the male population aged 40-70 potentially leading to poor quality of life. Patients not responding to conventional treatments of ED, are advised to use penile prostheses which can create an erection using implanted inflatable cylinders. A significant drawback of such prostheses, however, is the substantial tissue damage they can induce during their usage. Preclinical testbeds, including computational and bench-top models, could offer an efficient means of improving device designs to mitigate this damage but such testbeds require extensive knowledge of penile tissue properties. In this study, the authors determine penile tissue mechanics and apply an inverse FE approach to characterise the penile material properties required to validate preclinical models of the penis.
Collapse
Affiliation(s)
- Shirsha Bose
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Majid Akbarzadeh Khorshidi
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Robert D Johnston
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Brian Watschke
- Urology, Boston Scientific Corp, Inc, Minnetonka, MN, USA
| | - Evania Mareena
- Urology, Boston Scientific Corp, Inc, Clonmel Co, Tipperary, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
6
|
Shahbad R, Pipinos M, Jadidi M, Desyatova A, Gamache J, MacTaggart J, Kamenskiy A. Structural and Mechanical Properties of Human Superficial Femoral and Popliteal Arteries. Ann Biomed Eng 2024; 52:794-815. [PMID: 38321357 PMCID: PMC11455778 DOI: 10.1007/s10439-023-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024]
Abstract
The femoropopliteal artery (FPA) is the main artery in the lower limb. It supplies blood to the leg muscles and undergoes complex deformations during limb flexion. Atherosclerotic disease of the FPA (peripheral arterial disease, PAD) is a major public health burden, and despite advances in surgical and interventional therapies, the clinical outcomes of PAD repairs continue to be suboptimal, particularly in challenging calcified lesions and biomechanically active locations. A better understanding of human FPA mechanical and structural characteristics in relation to age, risk factors, and the severity of vascular disease can help develop more effective and longer-lasting treatments through computational modeling and device optimization. This review aims to summarize recent research on the main biomechanical and structural properties of human superficial femoral and popliteal arteries that comprise the FPA and describe their anatomy, composition, and mechanical behavior under different conditions.
Collapse
Affiliation(s)
- Ramin Shahbad
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Margarita Pipinos
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Anastasia Desyatova
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Jennifer Gamache
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA.
| |
Collapse
|
7
|
Struczewska P, Razian SA, Townsend K, Jadidi M, Shahbad R, Zamani E, Gamache J, MacTaggart J, Kamenskiy A. Mechanical, structural, and physiologic differences between above and below-knee human arteries. Acta Biomater 2024; 177:278-299. [PMID: 38307479 PMCID: PMC11456514 DOI: 10.1016/j.actbio.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Peripheral Artery Disease (PAD) affects the lower extremities and frequently results in poor clinical outcomes, especially in the vessels below the knee. Understanding the biomechanical and structural characteristics of these arteries is important for improving treatment efficacy, but mechanical and structural data on tibial vessels remain limited. We compared the superficial femoral (SFA) and popliteal (PA) arteries that comprise the above-knee femoropopliteal (FPA) segment to the infrapopliteal (IPA) anterior tibial (AT), posterior tibial (PT), and fibular (FA) arteries from the same 15 human subjects (average age 52, range 42-67 years, 87 % male). Vessels were imaged using μCT, evaluated with biaxial mechanical testing and constitutive modeling, and assessed for elastin, collagen, smooth muscle cells (SMCs), and glycosaminoglycans (GAGs). IPAs were more often diseased or calcified compared to the FPAs. They were also twice smaller, 53 % thinner, and significantly stiffer than the FPA longitudinally, but not circumferentially. IPAs experienced 48 % higher physiologic longitudinal stresses (62 kPa) but 27 % lower circumferential stresses (24 kPa) and similar cardiac cycle stretch of <1.02 compared to the FPA. IPAs had lower longitudinal pre-stretch (1.12) than the FPAs (1.29), but there were no differences in the stored elastic energy during pulsation. The physiologic circumferential stiffness was similar in the above and below-knee arteries (718 kPa vs 754 kPa). Structurally, IPAs had less elastin, collagen, and GAGs than the FPA, but maintained similar SMC content. Our findings contribute to a better understanding of segment-specific human lower extremity artery biomechanics and may inform the development of better medical devices for PAD treatment. STATEMENT OF SIGNIFICANCE: Peripheral Artery Disease (PAD) in the lower extremity arteries exhibits distinct characteristics and results in different clinical outcomes when treating arteries above and below the knee. However, their mechanical, structural, and physiologic differences are poorly understood. Our study compared above- and below-knee arteries from the same middle-aged human subjects and demonstrated distinct differences in size, structure, and mechanical properties, leading to variations in their physiological behavior. These insights could pave the way for creating location-specific medical devices and treatments for PAD, offering a more effective approach to its management. Our findings provide new, important perspectives for clinicians, researchers, and medical device developers interested in treating PAD in both above- and below-knee locations.
Collapse
Affiliation(s)
| | | | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Elham Zamani
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Jennifer Gamache
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
8
|
Wang C, Shen M, Song Y, Chang L, Yang Y, Li Y, Liu T, Wang Y. Biaxial hyperelastic and anisotropic behaviors of the corneal anterior central stroma along the preferential fibril orientations. Part I: Measurement and calibration of personalized stress-strain curves. Exp Eye Res 2023; 236:109677. [PMID: 37827443 DOI: 10.1016/j.exer.2023.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Lacking specimens is the biggest limitation of studying the mechanical behaviors of human corneal. Extracting stress-strain curves is the crucial step in investigating hyperelastic and anisotropic properties of human cornea. 15 human corneal specimens extracted from the small incision lenticule extraction (SMILE) surgery were applied in this study. To accurately measure the personalized true stress-strain curve using corneal lenticules, the digital image correlation (DIC) method and finite element method were used to calibrate the stress and the strain of the biaxial extension test. The hyperelastic load-displacement curves obtained from the biaxial extension test were performed in preferential fibril orientations, which are arranged along the nasal-temporal (NT) and the superior-inferior (SI) directions within the anterior central stroma. The displacement and strain fields were accurately calibrated and calculated using the digital image correlation (DIC) method. A conversion equation was given to convert the effective engineering strain to the true strain. The stress field distribution, which was simulated using the finite element method, was verified. Based on this, the effective nominal stress with personalized characteristics was calibrated. The personalized stress-strain curves containing individual characteristic, like diopter and anterior surface curvature, was accurately measured in this study. These results provide an experimental method using biaxial tensile test with corneal lenticules. It is the foundation for investigating the hyperelasticity and anisotropy of the central anterior stroma of human cornea.
Collapse
Affiliation(s)
- Congzheng Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Min Shen
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.
| | - Yi Song
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| | - Le Chang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| | - Yaqing Yang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Yikuan Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Taiwei Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China; Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Yan Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
9
|
Zhang W, Jadidi M, Razian SA, Holzapfel GA, Kamenskiy A, Nordsletten DA. A viscoelastic constitutive model for human femoropopliteal arteries. Acta Biomater 2023; 170:68-85. [PMID: 37699504 PMCID: PMC10802972 DOI: 10.1016/j.actbio.2023.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
High failure rates present challenges for surgical and interventional therapies for peripheral artery disease of the femoropopliteal artery (FPA). The FPA's demanding biomechanical environment necessitates complex interactions with repair devices and materials. While a comprehensive understanding of the FPA's mechanical characteristics could improve medical treatments, the viscoelastic properties of these muscular arteries remain poorly understood, and the constitutive model describing their time-dependent behavior is absent. We introduce a new viscoelastic constitutive model for the human FPA grounded in its microstructural composition. The model is capable of detailing the contributions of each intramural component to the overall viscoelastic response. Our model was developed utilizing fractional viscoelasticity and tested using biaxial experimental data with hysteresis and relaxation collected from 10 healthy human subjects aged 57 to 65 and further optimized for high throughput and automation. The model accurately described the experimental data, capturing significant nonlinearity and hysteresis that were particularly pronounced circumferentially, and tracked the contribution of passive smooth muscle cells to viscoelasticity that was twice that of the collagen fibers. The high-throughput parameter estimation procedure we developed included a specialized objective function and modifications to enhance convergence for the common exponential-type fiber laws, facilitating computational implementation. Our new model delineates the time-dependent behavior of human FPAs, which will improve the fidelity of computational simulations investigating device-artery interactions and contribute to their greater physical accuracy. Moreover, it serves as a useful tool to investigate the contribution of arterial constituents to overall tissue viscoelasticity, thereby expanding our knowledge of arterial mechanophysiology. STATEMENT OF SIGNIFICANCE: The demanding biomechanical environment of the femoropopliteal artery (FPA) necessitates complex interactions with repair devices and materials, but the viscoelastic properties of these muscular arteries remain poorly understood with the constitutive model describing their time-dependent behavior being absent. We hereby introduce the first viscoelastic constitutive model for the human FPA grounded in its microstructures. This model was tested using biaxial mechanical data collected from 10 healthy human subjects between the ages of 57 to 65. It can detail the contributions of each intramural component to the overall viscoelastic response, showing that the contribution of passive smooth muscle cells to viscoelasticity is twice that of collagen fibers. The usefulness of this model as tool to better understand arterial mechanophysiology was demonstrated.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz Univerisity of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
10
|
Cosentino F, Sherifova S, Sommer G, Raffa G, Pilato M, Pasta S, Holzapfel GA. Regional biomechanical characterization of human ascending aortic aneurysms: Microstructure and biaxial mechanical response. Acta Biomater 2023; 169:107-117. [PMID: 37579911 DOI: 10.1016/j.actbio.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
The ascending thoracic aortic aneurysm (ATAA) is a permanent dilatation of the vessel with a high risk of adverse events, and shows heterogeneous properties. To investigate regional differences in the biomechanical properties of ATAAs, tissue samples were collected from 10 patients with tricuspid aortic valve phenotype and specimens from minor, anterior, major, and posterior regions were subjected to multi-ratio planar biaxial extension tests and second-harmonic generation (SHG) imaging. Using the data, parameters of a microstructure-motivated constitutive model were obtained considering fiber dispersion. SHG imaging showed disruptions in the organization of the layers. Structural and material parameters did not differ significantly between regions. The non-symmetric fiber dispersion model proposed by Holzapfel et al. [25] was used to fit the data. The mean angle of collagen fibers was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. The experimental data collected in this study contribute to the biomechanical data available in the literature on human ATAAs. Region-specific parameters for the constitutive models are fundamental to improve the current risk stratification strategies, which are mainly based on aortic size. Such investigations can facilitate the development of more advanced finite element models capable of capturing the regional heterogeneity of pathological tissues. STATEMENT OF SIGNIFICANCE: Tissue samples of human ascending thoracic aortic aneurysms (ATAA) were collected. Samples from four regions underwent multi-ratio planar biaxial extension tests and second-harmonic generation imaging. Region-specific parameters of a microstructure-motivated model considering fiber dispersion were obtained. Structural and material parameters did not differ significantly between regions, however, the mean fiber angle was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. This study provides a unique set of mechanical and structural data, supporting the microstructural influence on the tissue response. It may facilitate the development of better finite element models capable of capturing the regional tissue heterogeneity.
Collapse
Affiliation(s)
- Federica Cosentino
- Ri.MED Foundation, Palermo, Italy; Department of Engineering, University of Palermo, Italy
| | - Selda Sherifova
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Giuseppe Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Michele Pilato
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Salvatore Pasta
- Department of Engineering, University of Palermo, Italy; Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian Institute of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
11
|
Dwivedi KK, Lakhani P, Yadav A, Kumar S, Kumar N. Location specific multi-scale characterization and constitutive modeling of pig aorta. J Mech Behav Biomed Mater 2023; 142:105809. [PMID: 37116311 DOI: 10.1016/j.jmbbm.2023.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The mechanical and structural behavior of the aorta depend on physiological functions and vary from proximal to distal. Understanding the relation between regionally varying mechanical and multi-scale structural response of aorta can be helpful to assess the disease outcomes. Therefore, this study investigated the variation in mechanical and multi-scale structural properties among the major segments of aorta such as ascending aorta (AA), descending aorta (DA) and abdominal aorta (ABA), and established a relation between mechanical and multi-structural parameters. The obtained results showed significant increase in anisotropy and nonlinearity from proximal to distal aorta. The change in periphery length and radii between load and stress free configuration was also found increasing far from the heart. Opening angle was significantly large for ABA than AA and DA (AA/DA vs ABA; p = 0.001). Mean circumferential residual stretch (ratio of mean periphery length at load and stress free configurations) was found decreasing between AA and DA, and then increasing between DA to ABA and its value was significantly more for ABA (AA vs DA; p = 0.041, AA vs ABA; p = 0.001, DA vs ABA; p = 0.001). The waviness of collagen fibers, collagen fiber content, collagen fibril diameter and total protein content were found significantly increasing from proximal to distal. Pearson correlation test showed a significant linear correlation between variation in mechanical and multi-scale structural parameters over the aortic length. Residual stretch was found positively correlated with collagen fiber content (r = 0.82) whereas opening angel was found positively correlated with total protein content (TPC) (r = 0.76).
Collapse
Affiliation(s)
| | | | - Ashu Yadav
- Department of Automobile Engineering, Manipal University Jaipur, Jaipur, India
| | - Sachin Kumar
- Department of Mechanical Engineering, IIT Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, IIT Ropar, India; Department of Mechanical Engineering, IIT Ropar, India.
| |
Collapse
|
12
|
Jaiswal S, Hannineh R, Nadimpalli S, Lieber S, Chester SA. Characterization and modeling of the in-plane collagen fiber distribution in the porcine dermis. Med Eng Phys 2023; 115:103973. [PMID: 37120170 DOI: 10.1016/j.medengphy.2023.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The structural arrangement of collagen fibers in the plane of the dermis layer plays a critical role in accurately predicting the mechanical behavior of skin tissues. This paper combines a histological analysis with statistical modeling to characterize and model the in-plane collagen fiber distribution in the porcine dermis. The histology data reveals that the fiber distribution in the plane of the porcine dermis is non-symmetric. The histology data forms the basis of our model, which employs a combination of two π-periodic von-Mises distribution density functions to create a non-symmetric distribution. We demonstrate that a non-symmetric in-plane fiber distribution is a significant improvement over a symmetric distribution.
Collapse
|
13
|
Wang C, Shen M, Song Y, Chang L, Yang Y, Li Y, Liu T, Wang Y. Biaxial hyperelastic and anisotropic behaviors of the corneal anterior central stroma along the preferential fibril orientations. Part II: Quantitative computational analysis of mechanical response of stromal components. J Mech Behav Biomed Mater 2023; 142:105802. [PMID: 37043981 DOI: 10.1016/j.jmbbm.2023.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
To study the hyperelastic and anisotropic behaviors of the central anterior stroma for patients with myopia, 40 corneal stromal specimens extracted after small incision lenticule extraction (SMILE) surgery were used in the biaxial extension test along two preferential fibril orientations. An improved collagen fibril crimping constitutive model with a specific physical meaning was proposed to analyze the hyperelasticity and anisotropy of the stroma. The effective elastic modulus of the two families of preferentially oriented collagen fibrils and the stiffness of the non-collagenous matrix along all three directions were compared according to the specific physical meaning of the parameters. Anisotropic behavior was found in the hyperelastic properties of the corneal anterior central stroma in the preferential fibril orientations. The stiffness of non-collagenous matrix is significantly larger in the optical axis direction than in the nasal-temporal (NT) and superior-inferior (SI) directions. Moreover, individual differences between males and females slightly impact on hyperelastic and anisotropic behaviors. The differences of these behaviors were significant in the comparison of the left and right eyes. These results have a guiding significance for the accurate design of surgical plans for refractive surgery according to a patient's condition and have a driving value for the further exploration of the biomechanical properties of the whole cornea.
Collapse
|
14
|
Dwivedi KK, Lakhani P, Sihota P, Tikoo K, Kumar S, Kumar N. The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin. Acta Biomater 2023; 158:324-346. [PMID: 36565785 DOI: 10.1016/j.actbio.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In type 2 diabetes mellitus (T2DM), elevated glucose level impairs the biochemistry of the skin which may result in alteration of its mechanical and structural properties. The several aspects of structural and mechanical changes in skin due to T2DM remain poorly understood. To fill these research gaps, we developed a non-obese T2DM rat (Sprague Dawley (SD)) model for investigating the effect of T2DM on the in vivo strain stress state, mechanical and structural properties of skin. In vivo strain and mechanical anisotropy of healthy and T2DM skin were measured using the digital imaging correlation (DIC) technique and DIC coupled bulge experiment, respectively. Fluorescence microscopy and histology were used to assess the collagen and elastin fibers microstructure whereas nanoscale structure was captured through atomic force microscopy (AFM). Based on the microstructural observations, skin was modeled as a multilayer membrane where in and out of plane distribution of collagen fibers and planar distribution of elastin fibers were cast in constitutive model. Further, the state of in vivo stresses of healthy and T2DM were measured using model parameters and in vivo strain in the constitutive model. The results showed that T2DM causes significant loss in in vivo stresses (p < 0.01) and increase in anisotropy (p < 0.001) of skin. These changes were found in good correlation with T2DM associated alteration in skin microstructure. Statistical analysis emphasized that increase in blood glucose concentration (HbA1c) was the main cause of impaired biomechanical properties of skin. The presented data in this study can help to understand the skin pathology and to simulate the skin related clinical procedures. STATEMENT OF SIGNIFICANCE: Our study is significant as it presents findings related to the effect of T2DM on the physiologic stress strain, structural and mechanical response of SD rat skin. In this study, we developed a non-obese T2DM SD rat model which mimics the phenotype of Asian type 2 diabetics (non-obese). Several structural and mechanical characterization techniques were explored for multiscale characterization of healthy and T2DM skin. Further, based on microstructural information, we presented the constitutive models that incorporate the real microstructure of skin. The presented results can be helpful to simulate the realistic mechanical response of skin during various clinical trials.
Collapse
Affiliation(s)
- Krashn Kr Dwivedi
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India; Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| |
Collapse
|
15
|
Kobeissi H, Mohammadzadeh S, Lejeune E. Enhancing Mechanical Metamodels with a Generative Model-Based Augmented Training Dataset. J Biomech Eng 2022; 144:1141932. [PMID: 35767343 DOI: 10.1115/1.4054898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/08/2022]
Abstract
Modeling biological soft tissue is complex in part due to material heterogeneity. Microstructural patterns, which play a major role in defining the mechanical behavior of these tissues, are both challenging to characterize, and difficult to simulate. Recently, machine learning (ML)-based methods to predict the mechanical behavior of heterogeneous materials have made it possible to more thoroughly explore the massive input parameter space associated with heterogeneous blocks of material. Specifically, we can train ML models to closely approximate computationally expensive heterogeneous material simulations where the ML model is trained on datasets of simulations with relevant spatial heterogeneity. However, when it comes to applying these techniques to tissue, there is a major limitation: the number of useful examples available to characterize the input domain under study is often limited. In this work, we investigate the efficacy of both ML-based generative models and procedural methods as tools for augmenting limited input pattern datasets. We find that a Style-based Generative Adversarial Network with an adaptive discriminator augmentation mechanism is able to successfully leverage just 1,000 example patterns to create authentic generated patterns. And, we find that diverse generated patterns with adequate resemblance to real patterns can be used as inputs to finite element simulations to meaningfully augment the training dataset. To enable this methodological contribution, we have created an open access Finite Element Analysis simulation dataset based on Cahn-Hilliard patterns. We anticipate that future researchers will be able to leverage this dataset and build on the work presented here.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | | | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
16
|
He Y, Northrup H, Le H, Cheung AK, Berceli SA, Shiu YT. Medical Image-Based Computational Fluid Dynamics and Fluid-Structure Interaction Analysis in Vascular Diseases. Front Bioeng Biotechnol 2022; 10:855791. [PMID: 35573253 PMCID: PMC9091352 DOI: 10.3389/fbioe.2022.855791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/08/2022] [Indexed: 01/17/2023] Open
Abstract
Hemodynamic factors, induced by pulsatile blood flow, play a crucial role in vascular health and diseases, such as the initiation and progression of atherosclerosis. Computational fluid dynamics, finite element analysis, and fluid-structure interaction simulations have been widely used to quantify detailed hemodynamic forces based on vascular images commonly obtained from computed tomography angiography, magnetic resonance imaging, ultrasound, and optical coherence tomography. In this review, we focus on methods for obtaining accurate hemodynamic factors that regulate the structure and function of vascular endothelial and smooth muscle cells. We describe the multiple steps and recent advances in a typical patient-specific simulation pipeline, including medical imaging, image processing, spatial discretization to generate computational mesh, setting up boundary conditions and solver parameters, visualization and extraction of hemodynamic factors, and statistical analysis. These steps have not been standardized and thus have unavoidable uncertainties that should be thoroughly evaluated. We also discuss the recent development of combining patient-specific models with machine-learning methods to obtain hemodynamic factors faster and cheaper than conventional methods. These critical advances widen the use of biomechanical simulation tools in the research and potential personalized care of vascular diseases.
Collapse
Affiliation(s)
- Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
| | - Hannah Northrup
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Ha Le
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
- Vascular Surgery Section, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Yan Tin Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
- *Correspondence: Yan Tin Shiu,
| |
Collapse
|
17
|
Silva FS, de Souza KSC, Galdino OA, de Moraes MV, Ishikawa U, Medeiros MA, Lima JPMS, de Paula Medeiros KC, da Silva Farias NB, de Araújo Júnior RF, de Rezende AA, Abreu BJ, de Oliveira MF. Hyperbaric oxygen therapy mitigates left ventricular remodeling, upregulates MMP-2 and VEGF, and inhibits the induction of MMP-9, TGF-β1, and TNF-α in streptozotocin-induced diabetic rat heart. Life Sci 2022; 295:120393. [PMID: 35167880 DOI: 10.1016/j.lfs.2022.120393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
AIMS Hyperbaric oxygen (HBO) therapy has been widely used for the adjunctive treatment of diabetic wounds, and is currently known to influence left ventricular (LV) function. However, morphological and molecular repercussions of the HBO in the diabetic myocardium remain to be described. We aimed to investigate whether HBO therapy would mitigate adverse LV remodeling caused by streptozotocin (STZ)-induced diabetes. MAIN METHODS Sixty-day-old Male Wistar rats were divided into four groups: Control (n = 8), HBO (n = 7), STZ (n = 10), and STZ + HBO (n = 8). Diabetes was induced by a single STZ injection (60 mg/kg, i.p.). HBO treatment (100% oxygen at 2.5 atmospheres absolute, 60 min/day, 5 days/week) lasted for 5 weeks. LV morphology was evaluated using histomorphometry. Gene expression analyzes were performed for LV collagens I (Col1a1) and III (Col3a1), matrix metalloproteinases 2 (Mmp2) and 9 (Mmp9), and transforming growth factor-β1 (Tgfb1). The Immunoexpression of cardiac tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) were also quantified. KEY FINDINGS HBO therapy prevented LV concentric remodeling, heterogeneous myocyte hypertrophy, and fibrosis in diabetic rats associated with attenuation of leukocyte infiltration. HBO therapy also increased Mmp2 gene expression, and inhibited the induction of Tgfb1 and Mmp9 mRNAs caused by diabetes, and normalized TNF-α and VEGF protein expression. SIGNIFICANCE HBO therapy had protective effects for the LV structure in STZ-diabetic rats and ameliorated expression levels of genes involved in cardiac collagen turnover, as well as pro-inflammatory and pro-angiogenic signaling.
Collapse
Affiliation(s)
- Flávio Santos Silva
- Department of Health Sciences, Federal Rural University of the Semi-Arid, Mossoró, Brazil.
| | | | - Ony Araujo Galdino
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Uta Ishikawa
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bento João Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
18
|
Manenti A, Roncati L, Manco G, Zizzo M, Farinetti A. Pathophysiology of the profunda femoris artery in chronic lower limb ischemia. Ann Vasc Surg 2021; 77:e2-e3. [PMID: 34411675 DOI: 10.1016/j.avsg.2021.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 10/20/2022]
Affiliation(s)
| | - Luca Roncati
- Department of Pathology, University of Modena, Italy
| | | | | | | |
Collapse
|
19
|
Poole JJA, Mostaço-Guidolin LB. Optical Microscopy and the Extracellular Matrix Structure: A Review. Cells 2021; 10:1760. [PMID: 34359929 PMCID: PMC8308089 DOI: 10.3390/cells10071760] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biological tissues are not uniquely composed of cells. A substantial part of their volume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity. Understanding the intimate interaction between the cells and their structural microenvironment is central to our understanding of the factors driving the formation of normal versus remodelled tissue, including the processes involved in chronic fibrotic diseases. The visualization of the ECM is a key factor to track such changes successfully. This review is focused on presenting several optical imaging microscopy modalities used to characterize different ECM components. In this review, we describe and provide examples of applications of a vast gamut of microscopy techniques, such as widefield fluorescence, total internal reflection fluorescence, laser scanning confocal microscopy, multipoint/slit confocal microscopy, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG, THG), coherent anti-Stokes Raman scattering (CARS), fluorescence lifetime imaging microscopy (FLIM), structured illumination microscopy (SIM), stimulated emission depletion microscopy (STED), ground-state depletion microscopy (GSD), and photoactivated localization microscopy (PALM/fPALM), as well as their main advantages, limitations.
Collapse
Affiliation(s)
| | - Leila B. Mostaço-Guidolin
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|