1
|
Lin Z, Li Q, Han X, Luo H, Wang Z, Qin Z, Huang Y, Feng Q, Cao X. An injectable and degradable heterogeneous microgel assembly capable of forming a "micro-nest group" for cell condensation and cartilage regeneration. MATERIALS HORIZONS 2024; 11:5438-5450. [PMID: 39189308 DOI: 10.1039/d4mh00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Cell condensation, linking the migration and chondrogenic differentiation of MSCs, plays a crucial role in cartilage development. Current cartilage repair strategies are inadequately concerned with this process, leading to a suboptimal quality of regenerated cartilage. Inspired by the "nest flocks" structure of Social Weavers, a degradable heterogeneous microgel assembly (F/S-MA) is developed, which can release SDF-1, to form a "micro-nest group" structure and bond with HAV peptides to promote cell recruitment, condensation and chondrogenic differentiation. First, slow-degrading microgels (S-microgels) grafted with HAV peptides and fast-degrading microgels (F-microgels) loaded with SDF-1 are fabricated by an amidation reaction and Schiff base reaction, respectively. They employ sulfhydryl-modified gelatin as assembling agents to form F/S-MA through a thiol-ene reaction, exhibiting injectability, tissue adhesion, and microporosity. F-microgels undergo rapid degradation, leading to the release of SDF-1 and the formation of a "micro-nest group" in F/S-MA. Consequently, F/S-MA exhibits cell recruitment ability, meanwhile facilitating BMSC condensation through the synergistic effects of the "micro-nest group" and HAV peptides. In vitro experiments prove that F/S-MA enhances the expression of cell-condensation-related markers, ultimately upregulating the secretion of cartilage matrix. Animal experiments show that F/S-MA optimizes the quality of regenerated cartilage by improving cell recruitment and condensation. F/S-MA enhances cell condensation through structural and component design, which will provide new insights for cartilage regeneration.
Collapse
Affiliation(s)
- Zequ Lin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xiyuan Han
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Huitong Luo
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Zetao Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Zhihao Qin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou 510641, China
| | - Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
- School of Stomatology, Jinan University, Guangzhou 510641, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
Liao HJ, Chen HT, Chang CH. Peptides for Targeting Chondrogenic Induction and Cartilage Regeneration in Osteoarthritis. Cartilage 2024:19476035241276406. [PMID: 39291443 DOI: 10.1177/19476035241276406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
OBJECTS Osteoarthritis (OA) is a widespread degenerative joint condition commonly occurring in older adults. Currently, no disease-modifying drugs are available, and safety concerns associated with commonly used traditional medications have been identified. In this review, a significant portion of research in this field is concentrated on cartilage, aiming to discover methods to halt cartilage breakdown or facilitate cartilage repair. METHODS Researchers have mainly investigated the cartilage, seeking methods to promote its repair. This review focuses on peptide-based molecules known for their ability to selectively bind to growth factor cytokines and components of the cartilage extracellular matrix. RESULTS Chondroinductive peptides, synthetically producible, boast superior reproducibility, stability, modifiability, and yield efficiency over natural biomaterials. This review outlines a chondroinductive peptide design, molecular mechanisms, and their application in cartilage tissue engineering and also compares their efficacy in chondrogenesis in vitro and in vivo. CONCLUSIONS In this paper, we will summarize the application of peptides engineered to regenerate cartilage by acting as scaffolds, functional molecules, or both and discuss additional possibilities for peptides. This review article provides an overview of our current understanding of chondroinductive peptides for treating OA-affected cartilage and explores the delivery systems used for regeneration. These advancements may hold promise for enhancing or even replacing current treatment methodologies.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City
| | - Hui-Ting Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan
| |
Collapse
|
3
|
Kapat K, Gondane P, Kumbhakarn S, Takle S, Sable R. Challenges and Opportunities in Developing Tracheal Substitutes for the Recovery of Long-Segment Defects. Macromol Biosci 2024; 24:e2400054. [PMID: 39008817 DOI: 10.1002/mabi.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Tracheal resection and reconstruction procedures are necessary when stenosis, tracheomalacia, tumors, vascular lesions, or tracheal injury cause a tracheal blockage. Replacement with a tracheal substitute is often recommended when the trauma exceeds 50% of the total length of the trachea in adults and 30% in children. Recently, tissue engineering and other advanced techniques have shown promise in fabricating biocompatible tracheal substitutes with physical, morphological, biomechanical, and biological characteristics similar to native trachea. Different polymers and biometals are explored. Even with limited success with tissue-engineered grafts in clinical settings, complete healing of tracheal defects remains a substantial challenge due to low mechanical strength and durability of the graft materials, inadequate re-epithelialization and vascularization, and restenosis. This review has covered a range of reconstructive and regenerative techniques, design criteria, the use of bioprostheses and synthetic grafts for the recovery of tracheal defects, as well as the traditional and cutting-edge methods of their fabrication, surface modification for increased immuno- or biocompatibility, and associated challenges.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| |
Collapse
|
4
|
Zhao N, Qin L, Liu Y, Zhai M, Li D. Improved new bone formation capacity of hyaluronic acid-bone substitute compound in rat calvarial critical size defect. BMC Oral Health 2024; 24:994. [PMID: 39182066 PMCID: PMC11344309 DOI: 10.1186/s12903-024-04679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Bone loss of residual alveolar ridges is a great challenge in the field of dental implantology. Deproteinized bovine bone mineral (DBBM) is commonly used for bone regeneration, however, it is loose and difficult to handle in clinical practice. Hyaluronic acid (HA) shows viscoelasticity, permeability and excellent biocompatibility. The aim of this study is to evaluate whether high-molecular-weight (MW) HA combined with DBBM could promote new bone formation in rat calvarial critical size defects (CSDs). MATERIALS AND METHODS Rat calvarial CSDs (5 mm in diameter) were created. Rats (n = 45) were randomly divided into 3 groups: HA-DBBM compound grafting group, DBBM particles only grafting group and no graft group. Defect healing was assessed by hematoxylin-eosin staining and histomorphometry 2, 4 and 8 weeks postop, followed by Micro-CT scanning 8 weeks postop. Statistical analyses were performed by ANOVA followed by Tukey's post hoc test with P < 0.05 indicating statistical significance. RESULTS All rats survived after surgery. Histomorphometric evaluation revealed that at 2, 4 and 8 weeks postop, the percentage of newly formed bone was significantly greater in HA-DBBM compound grafting group than in the other two groups. Consistently, Micro-CT assessment revealed significantly more trabecular bone (BV/TV and Tb.N) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). Moreover, the trabecular bone was significantly more continuous (Tb.Pf) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). CONCLUSION HA not only significantly promoted new bone formation in rats calvarial CSDs but also improved the handling ability of DBBM.
Collapse
Affiliation(s)
- Ningbo Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Lei Qin
- DeLun Dental, Baiyun District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Min Zhai
- Department of Stomatology, General Hospital of the Tibet Military Area Command, Lhasa, Tibet, 850007, People's Republic of China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
5
|
Kalairaj MS, Pradhan R, Saleem W, Smith MM, Gaharwar AK. Intra-Articular Injectable Biomaterials for Cartilage Repair and Regeneration. Adv Healthc Mater 2024; 13:e2303794. [PMID: 38324655 PMCID: PMC11468459 DOI: 10.1002/adhm.202303794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Osteoarthritis is a degenerative joint disease characterized by cartilage deterioration and subsequent inflammatory changes in the underlying bone. Injectable hydrogels have emerged as a promising approach for controlled drug delivery in cartilage therapies. This review focuses on the latest developments in utilizing injectable hydrogels as vehicles for targeted drug delivery to promote cartilage repair and regeneration. The pathogenesis of osteoarthritis is discussed to provide a comprehensive understanding of the disease progression. Subsequently, the various types of injectable hydrogels used for intra-articular delivery are discussed. Specifically, physically and chemically crosslinked injectable hydrogels are critically analyzed, with an emphasis on their fabrication strategies and their capacity to encapsulate and release therapeutic agents in a controlled manner. Furthermore, the potential of incorporating growth factors, anti-inflammatory drugs, and cells within these injectable hydrogels are discussed. Overall, this review offers a comprehensive guide to navigating the landscape of hydrogel-based therapeutics in osteoarthritis.
Collapse
Affiliation(s)
| | - Ridhi Pradhan
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Waqas Saleem
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Morgan M. Smith
- Department of Veterinary Integrative BiosciencesSchool of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Genetics and Genomics Interdisciplinary ProgramTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
6
|
Pepe A, Laezza A, Armiento F, Bochicchio B. Chemical Modifications in Hyaluronic Acid-Based Electrospun Scaffolds. Chempluschem 2024; 89:e202300599. [PMID: 38507283 DOI: 10.1002/cplu.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Hyaluronic acid (HA) is a natural, non-sulfated glycosaminoglycan (GAG) present in ECM. It is involved in different biological functions with appealing properties in cosmetics and pharmaceutical preparations as well as in tissue engineering. Generally, HA has been electrospun in blends with natural or synthetic polymers to produce fibers having diameters in the order of nano and micro-scale whose pores can host cells able to regenerate damaged tissues. In the last decade, a rich literature on electrospun HA-based materials arose. Chemical modifications were generally introduced in HA scaffolds to favour crosslinking or conjugation with bioactive molecules. Considering the high solubility of HA in water, HA-based electrospun scaffolds are cross-linked to increase the stability in biological fluids. Crosslinking is necessary also to avoid the release of HA from the hybrid scaffold when implanted in-vivo. Furthermore, to endow the HA based scaffolds with new chemical or biological properties, conjugation of bioactive molecules to HA was widely reported. Herein, we review the existing research classifying chemical modifications on HA and HA-based electrospun fibers into three categories: i) in-situ crosslinking of electrospun HA-based scaffolds ii) off-site crosslinking of electrospun HA-based scaffolds; iii) conjugation of biofunctional molecules to HA with focus on peptides.
Collapse
Affiliation(s)
- Antonietta Pepe
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Antonio Laezza
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Francesca Armiento
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Brigida Bochicchio
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
7
|
Chen W, Wu P, Jin C, Chen Y, Li C, Qian H. Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells. J Nanobiotechnology 2024; 22:215. [PMID: 38693585 PMCID: PMC11064407 DOI: 10.1186/s12951-024-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.
Collapse
Affiliation(s)
- Wenya Chen
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Can Jin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yinjie Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Chong Li
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| | - Hui Qian
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
8
|
Karimizade A, Hasanzadeh E, Abasi M, Enderami SE, Mirzaei E, Annabi N, Mellati A. Collagen short nanofiber-embedded chondroitin sulfate-hyaluronic acid nanocomposite: A cartilage-mimicking in situ-forming hydrogel with fine-tuned properties. Int J Biol Macromol 2024; 266:131051. [PMID: 38556223 DOI: 10.1016/j.ijbiomac.2024.131051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
In situ-forming hydrogels that possess the ability to be injected in a less invasive manner and mimic the biochemical composition and microarchitecture of the native cartilage extracellular matrix are desired for cartilage tissue engineering. Besides, gelation time and stiffness of the hydrogel are two interdependent factors that affect cells' distribution and fate and hence need to be optimized. This study presented a bioinspired in situ-forming hydrogel composite of hyaluronic acid (HA), chondroitin sulfate (CS), and collagen short nanofiber (CSNF). HA and CS were functionalized with aldehyde and amine groups to form a gel through a Schiff-base reaction. CSNF was fabricated via electrospinning, followed by fragmentation by ultrasonics. Gelation time (11-360 s) and compressive modulus (1.4-16.2 kPa) were obtained by varying the concentrations of CS, HA, CSNFs, and CSNFs length. The biodegradability and biocompatibility of the hydrogels with varying gelation and stiffness were also assessed in vitro and in vivo. At three weeks, the assessment of hydrogels' chondrogenic differentiation also yields varying levels of chondrogenic differentiation. The subcutaneous implantation of the hydrogels in a mouse model indicated no severe inflammation. Results demonstrated that the injectable CS/HA@CSNF hydrogel was a promising hydrogel for tissue engineering and cartilage regeneration.
Collapse
Affiliation(s)
- Ayoob Karimizade
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), CA 90095, USA
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Espona-Noguera A, Tampieri F, Canal C. Engineering alginate-based injectable hydrogels combined with bioactive polymers for targeted plasma-derived oxidative stress delivery in osteosarcoma therapy. Int J Biol Macromol 2024; 257:128841. [PMID: 38104678 DOI: 10.1016/j.ijbiomac.2023.128841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Reactive Oxygen and Nitrogen Species (RONS) in biological systems display hormetic effects, capable of either promoting cell regenerative effects or inducing cell death. Recently, hydrogels have emerged as a promising delivery platform for RONS generated from Cold Atmospheric Plasmas (CAP), known as Plasma-Treated Hydrogels (PTH). PTH have been proposed as an alternative therapy to conventional cancer treatments, offering reduced side effects through the controlled and localized delivery of plasma-derived RONS. In this work, we have developed alginate-based PTH with dual therapeutic action provided by plasma-derived RONS acting as selective anticancer agents for osteosarcoma treatment, and biomolecules (hyaluronic acid and gelatin) to promote stem cell-mediated bone regeneration. For this purpose, we designed a novel manufacturing process to maximize the load of plasma-derived RONS within the PTH. Then, we assessed the PTH bioactivity on osteosarcoma MG-63 cells, and human mesenchymal stem cells (hMSCs). The results showed that the PTH composed of 0.25 % alginate +1 % hyaluronic acid is the most promising formulation in osteosarcoma treatment, showing a dual-action bioactivity as a selective cytotoxic anticancer agent, and as promoter of the proliferation and osteogenic differentiation of hMSCs. These findings provide strong evidence of the significant potential of PTH in the oncological field.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
10
|
Chen P, Liao X. Kartogenin delivery systems for biomedical therapeutics and regenerative medicine. Drug Deliv 2023; 30:2254519. [PMID: 37665332 PMCID: PMC10478613 DOI: 10.1080/10717544.2023.2254519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Kartogenin, a small and heterocyclic molecule, has emerged as a promising therapeutic agent for incorporation into biomaterials, owing to its unique physicochemical and biological properties. It holds potential for the regeneration of cartilage-related tissues in various common conditions and injuries. Achieving sustained release of kartogenin through appropriate formulation and efficient delivery systems is crucial for modulating cell behavior and tissue function. This review provides an overview of cutting-edge kartogenin-functionalized biomaterials, with a primarily focus on their design, structure, functions, and applications in regenerative medicine. Initially, we discuss the physicochemical properties and biological functions of kartogenin, summarizing the underlying molecular mechanisms. Subsequently, we delve into recent advancements in nanoscale and macroscopic materials for the carriage and delivery of kartogenin. Lastly, we address the opportunities and challenges presented by current biomaterial developments and explore the prospects for their application in tissue regeneration. We aim to enhance the generation of insightful ideas for the development of kartogenin delivery materials in the field of biomedical therapeutics and regenerative medicine by providing a comprehensive understanding of common preparation methods.
Collapse
Affiliation(s)
- Peixing Chen
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
11
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
12
|
Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater 2023; 28:386-401. [PMID: 37334069 PMCID: PMC10273284 DOI: 10.1016/j.bioactmat.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Organoids are in vitro model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility. Recently, the biochemical and biophysical properties of defined hydrogels can be precisely tuned, offering broader opportunities to support the development and maturation of organoids. In this review, the fundamental properties of ECM in vivo and critical strategies to design matrices for organoid culture are summarized. Two typically defined hydrogels derived from natural and synthetic polymers for their applicability to improve organoids formation are presented. The representative applications of incorporating organoids into defined hydrogels are highlighted. Finally, some challenges and future perspectives are also discussed in developing defined hydrogels and advanced technologies toward supporting organoid research.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
13
|
Liu G, Guo Q, Liu C, Bai J, Wang H, Li J, Liu D, Yu Q, Shi J, Liu C, Zhu C, Li B, Zhang H. Cytomodulin-10 modified GelMA hydrogel with kartogenin for in-situ osteochondral regeneration. Acta Biomater 2023; 169:317-333. [PMID: 37586447 DOI: 10.1016/j.actbio.2023.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The incidence of osteochondral defect is increasing year by year, but there is still no widely accepted method for repairing the defect. Hydrogels loaded with bioactive molecules have provided promising alternatives for in-situ osteochondral regeneration. Kartogenin (KGN) is an effective and steady small molecule with the function of cartilage regeneration and protection which can be further boosted by TGF-β. However, the high cost, instability, and immunogenicity of TGF-β would limit its combined effect with KGN in clinical application. In this study, a composite hydrogel CM-KGN@GelMA, which contained TGF-β1 analog short peptide cytomodulin-10 (CM-10) and KGN, was fabricated. The results indicated that CM-10 modified on GelMA hydrogels exerted an equivalent role in enhancing chondrogenesis as TGF-β1, and this effect was also boosted when combined with KGN. Moreover, it was revealed that CM-10 and KGN had a synergistic effect on promoting the chondrogenesis of BMSCs by up-regulating the expression of RUNX1 and SOX9 at both mRNA and protein levels in vitro. Finally, the composite hydrogel exhibited a satisfactory osteochondral defect repair effect in vivo, showing similar structures close to the native tissue. Taken together, this study has revealed that CM-10 may serve as an alternative for TGF-β1 and can collaborate with KGN to accelerate chondrogenesis, which suggests that the fabricated CM-KGN@GelMA composite hydrogel can be acted as a potential scaffold for osteochondral defect regeneration. STATEMENT OF SIGNIFICANCE: Kartogenin and TGF-β have shown great value in promoting osteochondral defect regeneration, and their combined application can enhance the effect and show great potential for clinical application. Herein, a functional CM-KGN@GelMA hydrogel was fabricated, which was composed of TGF-β1 mimicking peptide CM-10 and KGN. CM-10 in hydrogel retained an activity like TGF-β1 to facilitate BMSC chondrogenesis and exhibited boosting chondrogenesis by up-regulating RUNX1 and SOX9 when being co-applied with KGN. In vivo, the hydrogel promoted cartilage regeneration and subchondral bone reconstruction, showing similar structures as the native tissue, which might be vital in recovering the bio-function of cartilage. Thus, this study developed an effective scaffold and provided a promising way for osteochondral defect repair.
Collapse
Affiliation(s)
- Guoping Liu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China; Department of Spine Surgery, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Qianping Guo
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Changjiang Liu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Jianzhong Bai
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Jiaying Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Dachuan Liu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Qifan Yu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Jinhui Shi
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Chengyuan Liu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Caihong Zhu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Bin Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China; Department of Spinal Surgery, the Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu 213003, China.
| | - Hongtao Zhang
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
14
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Duan WL, Zhang LN, Bohara R, Martin-Saldaña S, Yang F, Zhao YY, Xie Y, Bu YZ, Pandit A. Adhesive hydrogels in osteoarthritis: from design to application. Mil Med Res 2023; 10:4. [PMID: 36710340 PMCID: PMC9885614 DOI: 10.1186/s40779-022-00439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/31/2022] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of degenerative joint disease which affects 7% of the global population and more than 500 million people worldwide. One research frontier is the development of hydrogels for OA treatment, which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives. Both approaches address the big challenge: establishing stable integration of such delivery systems or implants. Adhesive hydrogels provide possible solutions to this challenge. However, few studies have described the current advances in using adhesive hydrogel for OA treatment. This review summarizes the commonly used hydrogels with their adhesion mechanisms and components. Additionally, recognizing that OA is a complex disease involving different biological mechanisms, the bioactive therapeutic strategies are also presented. By presenting the adhesive hydrogels in an interdisciplinary way, including both the fields of chemistry and biology, this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.
Collapse
Affiliation(s)
- Wang-Lin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Ning Zhang
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Sergio Martin-Saldaña
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Yang Zhao
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yong Xie
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China. .,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China.
| | - Ya-Zhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
16
|
Sun D, Liu X, Xu L, Meng Y, Kang H, Li Z. Advances in the Treatment of Partial-Thickness Cartilage Defect. Int J Nanomedicine 2022; 17:6275-6287. [PMID: 36536940 PMCID: PMC9758915 DOI: 10.2147/ijn.s382737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/23/2022] [Indexed: 04/17/2024] Open
Abstract
Partial-thickness cartilage defects (PTCDs) of the articular surface is the most common problem in cartilage degeneration, and also one of the main pathogenesis of osteoarthritis (OA). Due to the lack of a clear diagnosis, the symptoms are often more severe when full-thickness cartilage defect (FTCDs) is present. In contrast to FTCDs and osteochondral defects (OCDs), PTCDs does not injure the subchondral bone, there is no blood supply and bone marrow exudation, and the nearby microenvironment is unsuitable for stem cells adhesion, which completely loses the ability of self-repair. Some clinical studies have shown that partial-thickness cartilage defects is as harmful as full-thickness cartilage defects. Due to the poor effect of conservative treatment, the destructive surgical treatment is not suitable for the treatment of partial-thickness cartilage defects, and the current tissue engineering strategies are not effective, so it is urgent to develop novel strategies or treatment methods to repair PTCDs. In recent years, with the interdisciplinary development of bioscience, mechanics, material science and engineering, many discoveries have been made in the repair of PTCDs. This article reviews the current status and research progress in the treatment of PTCDs from the aspects of diagnosis and modeling of PTCDs, drug therapy, tissue transplantation repair technology and tissue engineering ("bottom-up").
Collapse
Affiliation(s)
- Daming Sun
- Wuhan Sports University, Wuhan, People’s Republic of China
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xiangzhong Liu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Liangliang Xu
- Wuhan Sports University, Wuhan, People’s Republic of China
| | - Yi Meng
- Wuhan Sports University, Wuhan, People’s Republic of China
| | - Haifei Kang
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People’s Republic of China
| | - Zhanghua Li
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
17
|
Zhang H, Li Q, Xu X, Zhang S, Chen Y, Yuan T, Zeng Z, Zhang Y, Mei Z, Yan S, Zhang L, Wei S. Functionalized Microscaffold-Hydrogel Composites Accelerating Osteochondral Repair through Endochondral Ossification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52599-52617. [PMID: 36394998 DOI: 10.1021/acsami.2c12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Osteochondral regeneration remains a key challenge because of the limited self-healing ability of the bone and its complex structure and composition. Biomaterials based on endochondral ossification (ECO) are considered an attractive candidate to promote bone repair because they can effectively address the difficulties in establishing vascularization and poor bone regeneration via intramembranous ossification (IMO). However, its clinical application is limited by the complex cellular behavior of ECO and the long time required for induction of the cell cycle. Herein, functionalized microscaffold-hydrogel composites are developed to accelerate the developmental bone growth process via recapitulating ECO. The design comprises arginine-glycine-aspartic acid (RGD)-peptide-modified microscaffolds loaded with kartogenin (KGN) and wrapped with a layer of RGD- and QK-peptide-comodified alginate hydrogel. These microscaffolds enhance the proliferation and aggregation behavior of the human bone marrow mesenchymal stem cells (hBMSCs); the controlled release of kartogenin induces the differentiation of hBMSCs into chondrocytes; and the hydrogel grafted with RGD and QK peptide facilitates chondrocyte hypertrophy, which creates a vascularized niche for osteogenesis and finally accelerates osteochondral repair in vivo. The findings provide an efficient bioengineering approach by sequentially modulating cellular ECO behavior for osteochondral defect repair.
Collapse
Affiliation(s)
- He Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Qian Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Xiangliang Xu
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Tao Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Tumor Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Ziqian Zeng
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Yifei Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Zi Mei
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Shuang Yan
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Lei Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Shicheng Wei
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
18
|
Hao X, Zhang S, Li P, Huang J, Yuan Z, Tan J. Amniotic membrane extract-enriched hydrogel augments the therapeutic effect of menstrual blood-derived stromal cells in a rat model of intrauterine adhesion. BIOMATERIALS ADVANCES 2022; 142:213165. [PMID: 36341744 DOI: 10.1016/j.bioadv.2022.213165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
We previously demonstrated that transplantation of menstrual blood-derived stromal cells (MenSCs) is a safe and effective therapy for treating intrauterine adhesions (IUA). However, improving the colonization and therapeutic efficiency of MenSCs is still needed before full clinical application. Here, we established an amniotic membrane extract (AME)-enriched RGD hydrogel, and evaluated the therapeutic effect of this adjuvant combined with MenSCs transplantation in an IUA rat model. Our results indicated that AME promoted the proliferation and secretion of MenSCs in vitro, up-regulated the expression of apoptosis-suppressing gene BCL2 and down-regulated the expression of apoptosis-related genes Caspase-3 and Caspase-8. The AME-enriched hydrogel was biocompatible, and improved the survival of MenSCs in vitro and in vivo. It also promoted the retention of MenSCs in IUA uterus and augmented the effects of MenSCs on improving uterus morphology, endometrial proliferation, endometrial receptivity and fibrosis suppression. In addition, co-transplantation of MenSCs with AME-enriched hydrogel markedly down-regulated the expressions of inflammation-related genes IL10 and TGFβ while up-regulated the IL4/IFN-γ ratio in the IUA endometrium, and improved the expressions of cell proliferation-related antigen, gland-regeneration-related marker leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), angiogenesis-related marker platelet and endothelial cell adhesion molecule 1 (PECAM1), endometrial receptivity related genes ITGα5 and ITGβ3. Our study suggested that AME and MenSCs had a synergistic effect. Co-transplantation of MenSCs with AME-enriched hydrogel provided a promising approach for stem cell-based IUA treatment.
Collapse
Affiliation(s)
- Xinyao Hao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang 110022, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang 110022, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang 110022, China
| | - John Huang
- Department of Biotechnology, TheWell Bioscience, North Brunswick, New Jersey, 08902 United States
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang 117004, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang 110022, China.
| |
Collapse
|
19
|
Wu Y, Wang F, Shi Y, Lin G, Qiao J, Wang L. Molecular dynamics simulation of hyaluronic acid hydrogels: Effect of water content on mechanical and tribological properties. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107169. [PMID: 36208538 DOI: 10.1016/j.cmpb.2022.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Recently conducted biomedical studies have shown that the drug diffusivity of hyaluronic acid hydrogel plays an important role in the treatment of joint diseases. The drug diffusivity is closely related to the water content of hydrogel. In addition, different water content will not only affect its mechanical and tribological properties, but also change the effect of drug release. METHODS In this work, a Molecular dynamics simulation was used to investigate the effect of water content on spatial distribution, tribological and mechanical properties of a hyaluronic acid hydrogel network. This paper focuses on the analysis and calculation of the radial distribution function of 20, 40, 60, and 80% water content model and the friction force and mechanical parameters under the influence of different load and friction speed. RESULTS The results show that at 20 and 40% water content, the spatial distribution is loose and the intermolecular force is not strong, resulting in a major lack in tribological and mechanical properties; whereas at 60 and 80% water content, the spatial distribution becomes gradually compact and the intermolecular force is gradually increased. The tribological and mechanical properties manifest a marked improvement. CONCLUSIONS The calculations reveal that the hydrogel model has the best wear resistance, pressure resistance, and plastic deformation resistance at 80% water content. In the range of 20-80% water content, the mechanical properties and friction properties of hydrogels become better and better with the increase of water content.
Collapse
Affiliation(s)
- Yuyao Wu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Jinwei Qiao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| |
Collapse
|
20
|
Yan L, Zhou T, Ni R, Jia Z, Jiang Y, Guo T, Wang K, Chen X, Han L, Lu X. Adhesive Gelatin-Catechol Complex Reinforced Poly(Acrylic Acid) Hydrogel with Enhanced Toughness and Cell Affinity for Cartilage Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:4366-4377. [PMID: 36044775 DOI: 10.1021/acsabm.2c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The repair of cartilage damage caused by trauma, wear, or degenerative deformation remains a major challenge in modern medicine. Therefore, it is essential to develop a mechanically compatible and bioactive scaffold for cartilage tissue regeneration. In this study, a mussel-inspired, tough, adhesive polydopamine/gelatin-poly(acrylic acid) (PDA/Gel-PAA) composite hydrogel was developed for cartilage regeneration. The hydrogel achieved a high compressive strength of up to 0.67 MPa and a toughness of 420 J/m2 because of the unique chemical-physical cross-linking structure by introducing the PDA/Gel complex into the PAA network. PAA chains with rich carboxyl groups mimic the negatively charged glycosaminoglycans (GAGs) in the natural cartilage extracellular matrix (ECM), leading to strong water retention in the hydrogel. The incorporation of the PDA/Gel complex with catechol groups on PDA and arginine-glycine-aspartic acid (RGD) sequences on gelatin chains provided abundant adhesive motifs to improve the cell affinity and tissue adhesiveness of PAA, thereby facilitating the adhesion and proliferation of bone marrow stromal cells (BMSCs). In addition, transforming growth factor-β3 (TGFβ3) was stably immobilized and released from the PDA/Gel-PAA hydrogel. Thus, adhesive hydrogels can provide a suitable microenvironment to promote cell migration in the defect area and induce chronogenesis for cartilage regeneration.
Collapse
Affiliation(s)
- Liwei Yan
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ting Zhou
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ruicheng Ni
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhanrong Jia
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yanan Jiang
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China
| | - Lu Han
- School of Medicine and Pharmaceutics, Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xiong Lu
- School of Materials Science and Engineering, Key Lab of Advanced Technologies of Materials, Ministry of Education, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| |
Collapse
|
21
|
Xun X, Qiu J, Zhang J, Wang H, Han F, Xu X, Yuan R. Triple-functional injectable liposome-hydrogel composite enhances bacteriostasis and osteo/angio-genesis for advanced maxillary sinus floor augmentation. Colloids Surf B Biointerfaces 2022; 217:112706. [PMID: 35870422 DOI: 10.1016/j.colsurfb.2022.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Bone-grafting biological materials are commonly used to increase the height of the alveolar bone in the maxillary posterior region during maxillary sinus floor augmentation. However, there has been little research on the development of an injectable bone-grafting material with bacteriostatic, angiogenic, and osteogenic properties. In this work, we developed a triple-functional vancomycin/deferoxamine/dexamethasone (Van/DFO/Dex) liposome-hydrogel composite with desirable injectability. The release kinetics confirmed orderly sustained release of Van (a bacteriostat), DFO (a vascularised small molecule), and Dex (an osteogenic small molecule). In vitro findings demonstrated the favourable cytocompatibility and antibacterial ability of this composite against Staphylococcus aureus. Additionally, the angiogenic ability of human umbilical vein endothelial cells and osteogenic differentiation activity of MC3T3-E1 cells were enhanced. An in vivo bacteriostasis assay and rabbit maxillary sinus floor augmentation model corroborated the enhanced bacteriostasis and vascularised bone regeneration properties of this functionalised composite. Overall, the favourable injectability to be fit for the minimally invasive procedure, locally sustained release property, and prominent biological functions underscore the clinical potential of Van/DFO/Dex as an ideal bone-grafting material for irregular bone defect repairs, such as maxillary sinus floor augmentation.
Collapse
Affiliation(s)
- Xingxiang Xun
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Jianzhong Qiu
- Center of Oral Medicine, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China
| | - Jing Zhang
- Department of Operation, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China
| | - Hejing Wang
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xiao Xu
- Center of Oral Medicine, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China.
| | - Rongtao Yuan
- School of Stomatology of Qingdao University, Qingdao 266003, PR China; Center of Oral Medicine, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China.
| |
Collapse
|
22
|
Zheng J, Xie Y, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Stepwise Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells in Collagen Sponges under Different Microenvironments. Int J Mol Sci 2022; 23:ijms23126406. [PMID: 35742851 PMCID: PMC9223568 DOI: 10.3390/ijms23126406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Biomimetic microenvironments are important for controlling stem cell functions. In this study, different microenvironmental conditions were investigated for the stepwise control of proliferation and chondrogenic differentiation of human bone-marrow-derived mesenchymal stem cells (hMSCs). The hMSCs were first cultured in collagen porous sponges and then embedded with or without collagen hydrogels for continual culture under different culture conditions. The different influences of collagen sponges, collagen hydrogels, and induction factors were investigated. The collagen sponges were beneficial for cell proliferation. The collagen sponges also promoted chondrogenic differentiation during culture in chondrogenic medium, which was superior to the effect of collagen sponges embedded with hydrogels without loading of induction factors. However, collagen sponges embedded with collagen hydrogels and loaded with induction factors had the same level of promotive effect on chondrogenic differentiation as collagen sponges during in vitro culture in chondrogenic medium and showed the highest promotive effect during in vivo subcutaneous implantation. The combination of collagen sponges with collagen hydrogels and induction factors could provide a platform for cell proliferation at an early stage and subsequent chondrogenic differentiation at a late stage. The results provide useful information for the chondrogenic differentiation of stem cells and cartilage tissue engineering.
Collapse
Affiliation(s)
- Jing Zheng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yan Xie
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan;
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Correspondence: ; Tel.: +81-29-860-4496
| |
Collapse
|
23
|
Zhu M, Zhong W, Cao W, Zhang Q, Wu G. Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioact Mater 2022; 9:221-238. [PMID: 34820567 PMCID: PMC8585793 DOI: 10.1016/j.bioactmat.2021.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The repair of articular cartilage defects is still challenging in the fields of orthopedics and maxillofacial surgery due to the avascular structure of articular cartilage and the limited regenerative capacity of mature chondrocytes. To provide viable treatment options, tremendous efforts have been made to develop various chondrogenically-functionalized biomaterials for cartilage tissue engineering. Peptides that are derived from and mimic the functions of chondroconductive cartilage extracellular matrix and chondroinductive growth factors, represent a unique group of bioactive agents for chondrogenic functionalization. Since they can be chemically synthesized, peptides bear better reproducibility, more stable efficacy, higher modifiability and yielding efficiency in comparison with naturally derived biomaterials and recombinant growth factors. In this review, we summarize the current knowledge in the designs of the chondroinductive/chondroconductive peptides, the underlying molecular mechanisms and their-functionalized biomaterials for cartilage tissue engineering. We also systematically compare their in-vitro and in-vivo efficacies in inducing chondrogenesis. Our vision is to stimulate the development of novel peptides and their-functionalized biomaterials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym 2022; 278:118952. [PMID: 34973769 DOI: 10.1016/j.carbpol.2021.118952] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
Polysaccharide hydrogels have been widely utilized in tissue engineering. They interact with the organismal environments, modulating the cargos release and realizing of long-term survival and activations of living cells. In this review, the potential strategies for modification of polysaccharides were introduced firstly. It is not only used to functionalize the polysaccharides for the consequent formation of hydrogels, but also used to introduce versatile side groups for the regulation of cell behavior. Then, techniques and underlying mechanisms in inducing the formation of hydrogels by polysaccharides or their derivatives are briefly summarized. Finally, the applications of polysaccharide hydrogels in vivo, mainly focus on the performance for alleviation of foreign-body response (FBR) and as cell scaffolds for tissue regeneration, are exemplified. In addition, the perspectives and challenges for further research are addressed. It aims to provide a comprehensive framework about the potentials and challenges that the polysaccharide hydrogels confronting in tissue engineering.
Collapse
|
25
|
Wang H, Wang D, Luo B, Wang D, Jia H, Peng P, Shang Q, Mao J, Gao C, Peng Y, Gan L, Du J, Luo Z, Yang L. Decoding the annulus fibrosus cell atlas by scRNA-seq to develop an inducible composite hydrogel: A novel strategy for disc reconstruction. Bioact Mater 2022; 14:350-363. [PMID: 35386822 PMCID: PMC8964821 DOI: 10.1016/j.bioactmat.2022.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The key pathological change during IVDD is dysfunction of the annulus fibrosus (AF). However, due to the lack of an in-depth understanding of AF biology, the methods to reconstruct the AF are very limited. In this study, the mice AF cell atlas were decoded by single-cell RNA sequencing to provide a guide for AF reconstruction. The results first identify a new population of AF cells, fibrochondrocyte-like AF cells, which synthesize both collagen I and collagen II and are potential functional cells for AF reconstruction. According to the dual features of the AF extracellular matrix, a composite hydrogel based on the acylation of methacrylated silk fibroin with methacrylated hyaluronic acid was produced. To obtain the ability to stimulate differentiation, the composite hydrogels were combined with a fibrochondrocyte-inducing supplement. Finally, reconstruction of the AF defects, by the novel AF stem cell-loaded composite hydrogel, could be observed, its amount of chondroid matrices recovered to 31.7% of AF aera which is significantly higher than that in other control groups. In summary, this study decodes the AF cell atlas, based on which a novel strategy for AF reconstruction is proposed. There are 10 populations of cells in the annulus fibrosus (AF), as decoded by single cell RNA sequencing. Lineage tracing shows the route of migration and differentiation of annulus fibrosus-derived stem cells (AFSCs). A new population of AF cells, fibrochondrocyte-like AF cells, was identified. Both the fibrinoid and chondroid matrices of AF are reconstructed by the novel AFSCs-loaded composite hydrogel.
Collapse
|
26
|
Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, Allémann E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur J Pharm Biopharm 2022; 172:41-52. [PMID: 35114357 DOI: 10.1016/j.ejpb.2022.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic and inflammatory disease with no effective regenerative treatments to date. The therapeutic potential of mesenchymal stem cells (MSCs) remains to be fully explored. Intra-articular injection of these cells promotes cartilage protection and regeneration by paracrine signaling and differentiation into chondrocytes. However, joints display a harsh avascular environment for these cells upon injection. This phenomenon prompted researchers to develop suitable injectable materials or systems for MSCs to enhance their function and survival. Among them, hydrogels can absorb a large amount of water and maintain their 3D structure but also allow incorporation of bioactive agents or small molecules in their matrix that maximize the action of MSCs. These materials possess advantageous cartilage-like features such as collagen or hyaluronic acid moieties that interact with MSC receptors, thereby promoting cell adhesion. This review provides an up-to-date overview of the progress and opportunities of MSCs entrapped into hydrogels, combined with bioactive/small molecules to improve the therapeutic effects in OA treatment.
Collapse
Affiliation(s)
- P Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - C Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - O Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - E Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
27
|
Mazzocchi A, Yoo KM, Nairon KG, Kirk LM, Rahbar E, Soker S, Skardal A. Exploiting maleimide-functionalized hyaluronan hydrogels to test cellular responses to physical and biochemical stimuli. Biomed Mater 2022; 17:10.1088/1748-605X/ac45eb. [PMID: 34937006 PMCID: PMC9528802 DOI: 10.1088/1748-605x/ac45eb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Currentin vitrothree-dimensional (3D) models of liver tissue have been limited by the inability to study the effects of specific extracellular matrix (ECM) components on cell phenotypes. This is in part due to limitations in the availability of chemical modifications appropriate for this purpose. For example, hyaluronic acid (HA), which is a natural ECM component within the liver, lacks key ECM motifs (e.g. arginine-glycine-aspartic acid (RGD) peptides) that support cell adhesion. However, the addition of maleimide (Mal) groups to HA could facilitate the conjugation of ECM biomimetic peptides with thiol-containing end groups. In this study, we characterized a new crosslinkable hydrogel (i.e. HA-Mal) that yielded a simplified ECM-mimicking microenvironment supportive of 3D liver cell culture. We then performed a series of experiments to assess the impact of physical and biochemical signaling in the form of RGD peptide incorporation and transforming growth factorß(TGF-ß) supplementation, respectively, on hepatic functionality. Hepatic stellate cells (i.e. LX-2) exhibited increased cell-matrix interactions in the form of cell spreading and elongation within HA-Mal matrices containing RGD peptides, enabling physical adhesions, whereas hepatocyte-like cells (HepG2) had reduced albumin and urea production. We further exposed the encapsulated cells to soluble TGF-ßto elicit a fibrosis-like state. In the presence of TGF-ßbiochemical signals, LX-2 cells became activated and HepG2 functionality significantly decreased in both RGD-containing and RGD-free hydrogels. Altogether, in this study we have developed a hydrogel biomaterial platform that allows for discrete manipulation of specific ECM motifs within the hydrogel to better understand the roles of cell-matrix interactions on cell phenotype and overall liver functionality.
Collapse
Affiliation(s)
- Andrea Mazzocchi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America
| | - Kyung Min Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America
| | - Kylie G Nairon
- Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Ave, Columbus, OH 43210, United States of America
| | - L Madison Kirk
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America.,Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Ave, Columbus, OH 43210, United States of America.,The Ohio State University and Arthur G. James Comprehensive Cancer Center, 460 W. 10th Ave, Columbus, OH 43210, United States of America
| |
Collapse
|
28
|
Chanthick C, Thongboonkerd V. Hyaluronic acid promotes calcium oxalate crystal growth, crystal-cell adhesion, and crystal invasion through extracellular matrix. Toxicol In Vitro 2022; 80:105320. [DOI: 10.1016/j.tiv.2022.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
29
|
Hu X, Xia Z, Cai K. Recent advances of 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. J Mater Chem B 2022; 10:1486-1507. [DOI: 10.1039/d1tb02537f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesenchymal stem cells (MSCs) have been increasingly recognized as resources for disease treatments and regenerative medicine. Meanwhile, the unique chemical and physical properties of hydrogels provide innate advantages to achieve...
Collapse
|
30
|
Daou F, Cochis A, Leigheb M, Rimondini L. Current Advances in the Regeneration of Degenerated Articular Cartilage: A Literature Review on Tissue Engineering and Its Recent Clinical Translation. MATERIALS 2021; 15:ma15010031. [PMID: 35009175 PMCID: PMC8745794 DOI: 10.3390/ma15010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
Functional ability is the basis of healthy aging. Articular cartilage degeneration is amongst the most prevalent degenerative conditions that cause adverse impacts on the quality of life; moreover, it represents a key predisposing factor to osteoarthritis (OA). Both the poor capacity of articular cartilage for self-repair and the unsatisfactory outcomes of available clinical interventions make innovative tissue engineering a promising therapeutic strategy for articular cartilage repair. Significant progress was made in this field; however, a marked heterogeneity in the applied biomaterials, biofabrication, and assessments is nowadays evident by the huge number of research studies published to date. Accordingly, this literature review assimilates the most recent advances in cell-based and cell-free tissue engineering of articular cartilage and also focuses on the assessments performed via various in vitro studies, ex vivo models, preclinical in vivo animal models, and clinical studies in order to provide a broad overview of the latest findings and clinical translation in the context of degenerated articular cartilage and OA.
Collapse
Affiliation(s)
- Farah Daou
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
| | - Massimiliano Leigheb
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
- Department of Orthopaedics and Traumatology, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
- Correspondence: ; Tel.: +39-0321-660-673
| |
Collapse
|
31
|
Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol 2021; 9:760532. [PMID: 34917612 PMCID: PMC8669051 DOI: 10.3389/fcell.2021.760532] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells maintain a subtle balance between self-renewal and differentiation under the regulatory network supported by both intracellular and extracellular components. Proteoglycans are large glycoproteins present abundantly on the cell surface and in the extracellular matrix where they play pivotal roles in facilitating signaling transduction and maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles and their functions in the regulation of stem cell homeostasis, as well as recent progress and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier or bio-active molecules in bone regeneration.
Collapse
Affiliation(s)
- Jiawen Chen
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Shenzhen Stomatology Hospital, Southern Medical University, Shenzhen, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United states
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
33
|
Zhang X, Yan Z, Guan G, Lu Z, Yan S, Du A, Wang L, Li Q. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair. J Biomater Appl 2021; 36:1019-1032. [PMID: 34605703 DOI: 10.1177/08853282211044853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Natural cartilage tissue has excellent mechanical properties and has certain cellular components. At this stage, it is a great challenge to produce cartilage scaffolds with excellent mechanical properties, biocompatibility, and biodegradability. Hydrogels are commonly used in tissue engineering because of their excellent biocompatibility; however, the mechanical properties of commonly used hydrogels are difficult to meet the requirements of making cartilage scaffolds. The mechanical properties of high concentration polyethylene glycol diacrylate (PEGDA) hydrogel are similar to those of natural cartilage, but its biocompatibility is poor. Low concentration hydrogel has better biocompatibility, but its mechanical properties are poor. In this study, two different hydrogels were combined to produce cartilage scaffolds with good mechanical properties and strong biocompatibility. First, the PEGDA grid scaffold was printed with light curing 3D printing technology, and then the low concentration GelMA/Alginate hydrogel with chondral cells was filled into the PEGDA grid scaffold. After a series of cell experiments, the filling hydrogel with the best biocompatibility was screened out, and finally the filled hydrogel with cells and excellent biocompatibility was obtained. Cartilage tissue engineering scaffolds with certain mechanical properties were found to have a tendency of cartilage formation in in vitro culture. Compared with the scaffold obtained by using a single hydrogel, this molding method can produce a tissue engineering scaffold with excellent mechanical properties on the premise of ensuring biocompatibility, which has a certain potential application value in the field of cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiang Zhang
- 12636School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, China.,70570National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,70570Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Zhenhao Yan
- 12636School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, China.,70570National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,70570Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Guotao Guan
- 12636School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, China.,70570National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,70570Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Zijing Lu
- 70570Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shujie Yan
- 12636School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, China.,70570National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,70570Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Azhen Du
- 12636School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, China.,70570National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,70570Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Lixia Wang
- 12636School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, China.,70570National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,70570Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Qian Li
- 12636School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, China.,70570National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,70570Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Afami ME, El Karim I, About I, Krasnodembskaya AD, Laverty G, Lundy FT. Multicomponent Peptide Hydrogels as an Innovative Platform for Cell-Based Tissue Engineering in the Dental Pulp. Pharmaceutics 2021; 13:1575. [PMID: 34683868 PMCID: PMC8539061 DOI: 10.3390/pharmaceutics13101575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
In light of the increasing levels of antibiotic resistance, nanomaterials and novel biologics are urgently required to manage bacterial infections. To date, commercially available self-assembling peptide hydrogels have not been studied extensively for their ability to inhibit micro-organisms relevant to tissue engineering sites such as dental root canals. In this work, we assess the biocompatibility of dental pulp stem/stromal cells with commercially available multicomponent peptide hydrogels. We also determine the effects of dental pulp stem/stromal cell (DPSC) culture in hydrogels on growth factor/cytokine expression. Furthermore, to investigate novel aspects of self-assembling peptide hydrogels, we determine their antimicrobial activity against the oral pathogens Staphylococcus aureus, Enterococcus faecalis, and Fusobacterium nucleatum. We show that self-assembling peptide hydrogels and hydrogels functionalized with the adhesion motif Arg-Gly-Asp (RGD) are biocompatible with DPSCs, and that cells grown in 3D hydrogel cultures produce a discrete secretome compared with 2D-cultured cells. Furthermore, we show that soluble peptides and assembled hydrogels have antimicrobial effects against oral pathogens. Given their antibacterial activity against oral pathogens, biocompatibility with dental pulp stem/stromal cells and enhancement of an angiogenic secretome, multicomponent peptide hydrogels hold promise for translational use.
Collapse
Affiliation(s)
- Marina E. Afami
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.E.A.); (I.E.K.); (A.D.K.)
| | - Ikhlas El Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.E.A.); (I.E.K.); (A.D.K.)
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, 13385 Marseille, France;
| | - Anna D. Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.E.A.); (I.E.K.); (A.D.K.)
| | - Garry Laverty
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.E.A.); (I.E.K.); (A.D.K.)
| |
Collapse
|
35
|
Ajeeb B, Acar H, Detamore MS. Chondroinductive Peptides for Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:745-765. [PMID: 34375146 DOI: 10.1089/ten.teb.2021.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inducing and maintaining a hyaline cartilage phenotype is the greatest challenge for cartilage regeneration. Synthetic chondroinductive biomaterials might be the answer to the unmet clinical need for a safe, stable, and cost-effective material capable of inducing true hyaline cartilage formation. The past decade witnessed an emergence of peptides to achieve chondrogenesis, as peptides have the advantages of versatility, high target specificity, minimized toxicity and immunogenicity, and ease of synthesis. Here, we review peptides as the basis for creating promising synthetic chondroinductive biomaterials for in situ scaffold-based cartilage regeneration. We provide a thorough review of peptides evaluated for cartilage regeneration while distinguishing between peptides reported to induce chondrogenesis independently, and peptides reported to act in synergy with other growth factors to induce cartilage regeneration. Additionally, we highlight that most peptide studies have been in vitro, and appropriate controls are not always present. A few rigorously-performed in vitro studies have proceeded to in vivo studies, but the peptides in those in vivo studies were mainly introduced via systemic, subcutaneous, or intraarticular injections, with a paucity of studies employing in situ defects with appropriate controls. Clinical translation of peptides will require the evaluation of these peptides in well-controlled in vivo cartilage defect studies. In the decade ahead, we may be poised to leverage peptides to design devices that are safe, reproducible, cost-efficient, and scalable biomaterials, which are themselves chondroinductive to achieve true hyaline cartilage regeneration without the need for growth factors and other small molecules.
Collapse
Affiliation(s)
- Boushra Ajeeb
- University of Oklahoma, 6187, Biomedical Engineering, Norman, Oklahoma, United States;
| | - Handan Acar
- University of Oklahoma, 6187, Biomedical Engineering, Norman, Oklahoma, United States;
| | | |
Collapse
|
36
|
Yang J, Tang Z, Liu Y, Luo Z, Xiao Y, Zhang X. Comparison of chondro-inductivity between collagen and hyaluronic acid hydrogel based on chemical/physical microenvironment. Int J Biol Macromol 2021; 182:1941-1952. [PMID: 34062160 DOI: 10.1016/j.ijbiomac.2021.05.188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 02/09/2023]
Abstract
Achieving chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) successfully is crucial for cartilage regeneration. To date, various hydrogels with different chemical microenvironment have been used to modulate chondrogenic differentiation of BMSCs, especially collagen and hyaluronic acid hydrogel. However, the chondro-inductive ability of collagen and hyaluronic acid hydrogel has not been evaluated yet and the different chemical and physical microenvironment of these two hydrogels increase the difficulty of comparison. In this study, three different hydrogels based on collagen and hyaluronic acid (self-assembled collagen hydrogel (Col), self-assembled collagen hydrogel cross-linked with genipin (Cgp), and methacrylated hyaluronic acid hydrogel (HA)) were prepared and their chondro-inductive ability on the encapsulated BMSCs was evaluated. Col and Cgp have the same chemical composition and similar microstructure, but are different from HA, while Cgp and HA hydrogels have the same mechanical strength. It was found that chemical and physical microenvironments of the hydrogels combined to influence cell condensation. Thanks to cell condensation was more likely to occur in collagen hydrogels in the early stage, the cartilage-induced ability was in the order of Col > Cgp > HA. However, the severe shrinkage of Col and Cgp resulted in no enough space for cell proliferation within hydrogels in the later stage. In contrast, relatively stable physical microenvironment of HA helped to maintain continuous production of cartilage-related matrix in the later stage. Overall, these results revealed that the chondro-inductive ability of collagen and hyaluronic acid hydrogel with different chemical and physical microenvironment cannot be evaluated by a particular time period. However, it provided important information for optimization and design of the future hydrogels towards successful repair of articular cartilage.
Collapse
Affiliation(s)
- Jirong Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China; Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou, China
| | - Zizhao Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| | - Yifan Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| | - Zhaocong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| |
Collapse
|