1
|
Gan Y, Han H, Zhang Y, Zhou Z, Shen X, Fang J, Cui L, Zhou Z. Chitosan-based injectable porous microcarriers with enhanced adipogenic differentiation and angiogenesis for subcutaneous adipose tissue regeneration. BIOMATERIALS ADVANCES 2025; 169:214174. [PMID: 39756088 DOI: 10.1016/j.bioadv.2025.214174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Chitosan is a promising biomaterial for tissue engineering, but its functionality is limited by a lack of bioactive sites. This study develops chitosan/amniotic membrane microcarriers to enhance vascularization and tissue regeneration for subcutaneous adipose tissue. The incorporation of decellularized amniotic membrane enhances the bioactivities of chitosan in promoting cell differentiation and angiogenesis. Optimized preparation yielded porous microcarriers with a particle size of 261.2 ± 28 μm and an average pore size of 19.0 ± 4 μm. In vitro degradation analysis showed accelerated degradation with higher amniotic membrane content. Cytocompatibility and adipogenic capacity assessments indicated that the microcarriers supported cell adhesion and proliferation over 7 days, with amniotic membrane facilitating adipogenic differentiation of adipose-derived stem cells. When injected subcutaneously into nude mice, these microcarriers formed neoplastic adipose tissues, which were harvested 8 weeks later. Fluorescence staining, oil-red O staining and CD31 labeling demonstrated that amniotic membrane incorporation significantly enhanced in vivo adipose tissue formation and angiogenesis.
Collapse
Affiliation(s)
- Yan Gan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Haotian Han
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ying Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Ziwei Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Xiang Shen
- Department of Orthopedics, The Fourth Hospital of Changsha, Changsha, PR China
| | - Jianjun Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China.
| | - Lei Cui
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China.
| |
Collapse
|
2
|
Wang N, Hu W, Jiang H, Jiang D, Wang L. A portable micro-nanochannel bio-3D printed liver microtissue biosensor for DON detection. Biosens Bioelectron 2025; 267:116810. [PMID: 39357492 DOI: 10.1016/j.bios.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
We investigated a portable micro-nanochannel biosensor 3D-printed liver microtissues for rapid and sensitive deoxynivalenol (DON) detection. The screen-printed carbon electrode (SPCE) was modified with nanoporous anodic aluminum oxide (AAO), gold nanoparticles (AuNPs), and cytochrome C oxidase (COx) to enhance sensor performance. Gelatin methacrylate hydrogel, combined with hepatocellular carcinoma cells, formed the bioink for 3D printing. Liver microtissues were prepared through standardized and high-throughput techniques via bio-3D printing technology. These microtissues were immobilized onto modified electrodes to fabricate liver microtissue sensors. The peak current of this biosensor was positively correlated with DON concentration, as determined by cyclic voltammetry (CV), within a linear detection range of 2∼40 μg/mL. The standard curve equation is denoted by ICV(μA) = = 18.76956 + 0.03107CDON(μg/mL), with a correlation coefficient R2 was 0.99471(n=3). A minimum detection limit of 1.229 μg/mL was calculated from the formula, indicating the successful construction of a portable micro-nanochannel bio-3D printed liver microtissue biosensor. It provides innovative ideas for developing rapid and convenient instrumentation to detect mycotoxin hazards after grain production. It also holds significant potential for application in the prediction and assessment of post-production quality changes in grain.
Collapse
Affiliation(s)
- Nanwei Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Wei Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China; Harbin University of Commerce, Harbin, 150028, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu, 211198, China
| | - Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China.
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
3
|
Kafili G, Tamjid E, Simchi A. The impact of mechanical tuning on the printability of decellularized amniotic membrane bioinks for cell-laden bioprinting of soft tissue constructs. Sci Rep 2024; 14:29697. [PMID: 39613811 DOI: 10.1038/s41598-024-80973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Decellularized extracellular matrix (dECM) bioinks hold significant potential in the 3D bioprinting of tissue-engineered constructs (TECs). While 3D bioprinting allows for the creation of custom-designed TECs, the development of bioinks based solely on dAM, without the inclusion of supporting agents or chemical modifications, remains underexplored. In this study, we present the concentration-dependent printability and rheological properties of dAM bioinks, along with an analysis of their in vitro cellular responses. Our findings demonstrate that increasing dAM concentrations, within the range of 1 to 3% w/v, enhances the mechanical moduli of the bioinks, enabling the 3D printing of flat structures with superior shape fidelity. In vitro assays reveal high cell viability across all dAM bioink formulations; however, at 3% w/v, the bioink tends to impede fibroblast proliferation, resulting in round cell morphology. We propose that bioinks containing 2% w/v dAM strike an optimal balance, providing fine-resolved features and a supportive microenvironment for fibroblasts, promoting elongated spindle-like morphology and enhanced proliferation. These results underscore the importance of dAM concentration in regulating the properties and performance of bioinks, particularly regarding cell viability and morphology, for the successful 3D bioprinting of soft tissues.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
- Advanced Ceramics, University of Bremen, 28359, Bremen, Germany
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran.
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-11155, Tehran, Iran.
- Center for BioScience and Technology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran.
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), 28359, Bremen, Germany.
| |
Collapse
|
4
|
Heydari P, Mojahedi M, Javaherchi P, Sharifi M, Kharazi AZ. Advances and impact of human amniotic membrane and human amniotic-based materials in wound healing application. Int J Biol Macromol 2024; 281:136596. [PMID: 39419158 DOI: 10.1016/j.ijbiomac.2024.136596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Wound healing is a complicated process, especially when surgical, traumatic, burn, or pathological injury occurs, which requires different kinds of dressing covers including hydrogels, hydrocolloids, alginates foams and films for treatment. The human amniotic membrane (hAM) is a biodegradable extracellular matrix with unique and tailorable physicochemical and biological properties, generated by the membrane itself or other cells that are located on the membrane surface. It is noted as a promising aid for wound healing and tissue regeneration due to the release of growth factors and cytokines, and its antibacterial and immunosuppressive properties. Moreover, hAM has optimal physical, biological, and mechanical properties, which makes it a much better option as a regenerative skin treatment than existing alternative materials. In addition, this layer has a structure with different layers and cells with different functions, which act as a regenerative geometry and reservoir of bioactive substances and cells for wound healing. In the present work, the structural and biological features of hAM are introduced as well as the application of this layer in different forms of composites to enhance wound healing. Future studies are recommended to detect possible further functionalization to enhance the hAM effectiveness on wound healing.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mojahedi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Javaherchi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maede Sharifi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Hu M, Jiang W, Liu Q, Wang Q, Chen X, Chang C, Rao S, Zheng G, Shi Z, Meng Y. One-step construction of silver nanoparticles immersed hydrogels by triple-helix β-glucans and the application in infectious wound healing. Int J Biol Macromol 2024; 282:137146. [PMID: 39488321 DOI: 10.1016/j.ijbiomac.2024.137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Hydrogels composed of polysaccharides and silver nanoparticles (AgNPs) are widely recognized for their applications in wound dressings, particularly for healing wounds prone to infection. Traditional methods for preparing AgNPs immersed hydrogels are often complex, costly, and may lead to sustained cytotoxicity. To address these challenges, we developed a biocompatible, one-step green reduction strategy to generate AgNPs within hydrogels using a triple-helix β-glucan (PCPA) derived from Poria cocos, a renowned Chinese traditional herb. PCPA serves as a reducing agent, converting silver ions into AgNPs while its triple-helix conformation prevents AgNPs aggregation. The resulting hydrogel (PAg-G) is injectable and contains uniformly distributed AgNPs. PAg-G exhibits broad-spectrum antimicrobial activity and enhanced bioactivity. The in vivo study on S.aureus-infected SD rats demonstrated that PAg-G can accelerate wound healing within 12 days by down-regulating inflammatory factors such as IL-6 and TNF-α, and up-regulating VEGF and CD31 expression, promoting neovascularization in wound tissues. This innovative one-step construction of AgNPs immersed hydrogels offers a promising approach for the development of antimicrobial hydrogels, especially for treating bacterial-infected wounds.
Collapse
Affiliation(s)
- Mingjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Qian Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyan Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Zhaohua Shi
- Hubei Shizhen Laboratory, Wuhan, China; Key Laboratory of Chinese Medicine-Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
6
|
Buwalda SJ. 'Click' hydrogels from renewable polysaccharide resources: Bioorthogonal chemistry for the preparation of alginate, cellulose and other plant-based networks with biomedical applications. Int J Biol Macromol 2024; 282:136695. [PMID: 39447791 DOI: 10.1016/j.ijbiomac.2024.136695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Click chemistry refers to a class of highly selective reactions that occur in one pot, are not disturbed by water or oxygen, proceed quickly to high yield and generate only inoffensive byproducts. Since its first definition by Barry Sharpless in 2001, click chemistry has increasingly been used for the preparation of hydrogels, which are water-swollen polymer networks with numerous biomedical applications. Polysaccharides, which can be obtained from renewable resources including plants, have drawn growing attention for use in hydrogels due to the recent focus on the development of a sustainable society and the reduction of the environmental impact of the chemical industry. Importantly, plant-based polysaccharides are often bioresorbable and exhibit excellent biocompatibility and biomimicry. This comprehensive review describes the synthesis, characterization and biomedical applications of hydrogels which combine the renewable and biocompatible aspects of polysaccharides with the chemically and biomedically favorable characteristics of click crosslinking. The manuscript focuses on click hydrogels prepared from alginate and cellulose, the most widely used polysaccharides for this type of hydrogel, but also click hydrogels based on other plant-derived polymers (e.g. pectin) are discussed. In addition, the challenges are described that should be overcome to facilitate translation from academia to the clinic.
Collapse
Affiliation(s)
- Sytze J Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
7
|
Hampton C, Bharti K, Song MJ. Tissue Engineering of Outer Blood Retina Barrier for Therapeutic Development. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100538. [PMID: 38962280 PMCID: PMC11218818 DOI: 10.1016/j.cobme.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Age related macular degeneration and other retinal degenerative disorders are characterized by disruption of the outer blood retinal barrier (oBRB) with subsequent ischemia, neovascularization, and atrophy. Despite the treatment advances, there remains no curative therapy, and no treatment targeted at regenerating native-like tissue for patients with late stages of the disease. Here we present advances in tissue engineering, focusing on bioprinting methods of generating tissue allowing for safe and reliable production of oBRB as well as tissue reprogramming with induced pluripotent stem cells for transplantation. We compare these approaches to organ-on-a-chip models for studying the dynamic nature of physiologic conditions. Highlighted within this review are studies that employ good manufacturing practices and use clinical grade methods that minimize potential risk to patients. Lastly, we illustrate recent clinical applications demonstrating both safety and efficacy for direct patient use. These advances provide an avenue for drug discovery and ultimately transplantation.
Collapse
Affiliation(s)
- Christopher Hampton
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kapil Bharti
- National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Min Jae Song
- National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD, USA
| |
Collapse
|
8
|
Wang J, Ma Y, Meng Q, Yang Y, Zhang R, Zhong S, Gao Y, He W, Cui X. Photocrosslinked carboxymethylcellulose-based hydrogels: Synthesis, characterization for curcumin delivery and wound healing. Int J Biol Macromol 2024; 275:133558. [PMID: 38955296 DOI: 10.1016/j.ijbiomac.2024.133558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Skin could protect our body and regenerate itself to against dysfunctional and disfiguring scars when faced with external injury. As wound dressings, hydrogels are biocompatible, hydrophilic and have a 3D structure similar to the extracellular matrix (ECM). In particular, hydrogels with drug-releasing capabilities are in acute wound healing. In this paper, photocrosslinked hydrogels served as wound dressing based on sodium carboxymethylcellulose (CMC) were prepared to promote wound healing. Photocrosslinked hydrogels were prepared by grafting lysine and allyl glycidyl ether (AGE) onto CMC and encapsulating curcumin (Cur). The synthesized hydrogels had the unique 3D porous structure with a swelling ratio up to 1300 % in aqueous solution. The drug release ratios of the hydrogels were 20.8 % in acid environment, and 14.4 % in alkaline environment. Notably, the hydrogels showed good biocompatibility and antibacterial properties and also exhibited the ability to accelerate the process of skin wound healing while prevent inflammation and scar formation when applied to a mouse skin wound model. As a result, the prepared hydrogels Gel-CLA@Cur showed great potential in wound healing.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Qingye Meng
- College of Chemistry, Jilin University, Changchun 130012, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, PR China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
9
|
Guo X, Zhang W, Lu J, Zhu Y, Sun H, Xu D, Xian S, Yao Y, Qian W, Lu B, Shi J, Ding X, Li Y, Tong X, Xiao S, Huang R, Ji S. Amniotic miracle: Investigating the unique development and applications of amniotic membrane in wound healing. Skin Res Technol 2024; 30:e13860. [PMID: 39073182 DOI: 10.1111/srt.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The perfect repair of damaged skin has always been a constant goal for scientists; however, the repair and reconstruction of skin is still a major problem and challenge in injury and burns medicine. Human amniotic membrane (hAM), with its good mechanical properties and anti-inflammatory, antioxidant and antimicrobial benefits, containing growth factors that promote wound healing, has evolved over the last few decades from simple skin sheets to high-tech dressings, such as being made into nanocomposites, hydrogels, powders, and electrostatically spun scaffolds. This paper aims to explore the historical development, applications, trends, and research hotspots of hAM in wound healing. METHODS We examined 2660 publications indexed in the Web of Science Core Collection (WoSCC) from January 1, 1975 to July 12, 2023. Utilizing bibliometric methods, we employed VOSviewer, CiteSpace, and R-bibliometrix to characterize general information, identify development trends, and highlight research hotspots. Subsequently, we identified a collection of high-quality English articles focusing on the roles of human amniotic epithelial stem cells (hAESCs), human amniotic mesenchymal stem cells (hAMSCs), and amniotic membrane (AM) scaffolds in regenerative medicine and tissue engineering. RESULTS Bibliometric analysis identified Udice-French Research Universities as the most productive affiliation and Tseng S.C.G. as the most prolific author. Keyword analysis, historical direct quotations network, and thematic analysis helped us review the historical and major themes in this field. Our examination included the knowledge structure, global status, trends, and research hotspots regarding the application of hAM in wound healing. Our findings indicate that contemporary research emphasizes the preparation and application of products derived from hAM. Notably, both hAM and the cells isolated from it - hADSCs and hAESCs are prominent and promising areas of research in regenerative medicine and tissue engineering. CONCLUSION This research delivers a comprehensive understanding of the knowledge frameworks, global dynamics, emerging patterns, and primary research foci in the realm of hAM applications for wound healing. The field is rapidly evolving, and our findings offer valuable insights for researchers. Future research outcomes are anticipated to be applied in clinical practice, enhancing methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xinya Guo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Sun
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijin Qian
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingnan Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Shi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Ding
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixu Li
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xirui Tong
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shichu Xiao
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shizhao Ji
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
10
|
Li N, Zhang W, Wu S, Shafiq M, Xie P, Zhang L, Jiang S, Bi Y. Mesoporous Silicon with Strontium-Powered Poly(Lactic-Co-Glycolic acid)/Gelatin-Based Dressings Facilitate Skin Tissue Repair. Int J Nanomedicine 2024; 19:6449-6462. [PMID: 38946883 PMCID: PMC11214017 DOI: 10.2147/ijn.s460177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Functional inorganic nanomaterials (NMs) are widely exploited as bioactive materials and drug depots. The lack of a stable form of application of NMs at the site of skin injury, may impede the removal of the debridement, elevate pH, induce tissue toxicity, and limit their use in skin repair. This necessitates the advent of innovative wound dressings that overcome the above limitations. The overarching objective of this study was to exploit strontium-doped mesoporous silicon particles (PSiSr) to impart multifunctionality to poly(lactic-co-glycolic acid)/gelatin (PG)-based fibrous dressings (PG@PSiSr) for excisional wound management. Methods Mesoporous silicon particles (PSi) and PSiSr were synthesized using a chemo-synthetic approach. Both PSi and PSiSr were incorporated into PG fibers using electrospinning. A series of structure, morphology, pore size distribution, and cumulative pH studies on the PG@PSi and PG@PSiSr membranes were performed. Cytocompatibility, hemocompatibility, transwell migration, scratch wound healing, and delineated angiogenic properties of these composite dressings were tested in vitro. The biocompatibility of composite dressings in vivo was assessed by a subcutaneous implantation model of rats, while their potential for wound healing was discerned by implantation in a full-thickness excisional defect model of rats. Results The PG@PSiSr membranes can afford the sustained release of silicon ions (Si4+) and strontium ions (Sr2+) for up to 192 h as well as remarkably promote human umbilical vein endothelial cells (HUVECs) and NIH-3T3 fibroblasts migration. The PG@PSiSr membranes also showed better cytocompatibility, hemocompatibility, and significant formation of tubule-like networks of HUVECs in vitro. Moreover, PG@PSiSr membranes also facilitated the infiltration of host cells and promoted the deposition of collagen while reducing the accumulation of inflammatory cells in a subcutaneous implantation model in rats as assessed for up to day 14. Further evaluation of membranes transplanted in a full-thickness excisional wound model in rats showed rapid wound closure (PG@SiSr vs control, 96.1% vs 71.7%), re-epithelialization, and less inflammatory response alongside skin appendages formation (eg, blood vessels, glands, hair follicles, etc.). Conclusion To sum up, we successfully fabricated PSiSr particles and prepared PG@PSiSr dressings using electrospinning. The PSiSr-mediated release of therapeutic ions, such as Si4+ and Sr2+, may improve the functionality of PLGA/Gel dressings for an effective wound repair, which may also have implications for the other soft tissue repair disciplines.
Collapse
Affiliation(s)
- Naijing Li
- Department of Orthopedic Oncology, Yantai Shan Hospital, Yantai, People’s Republic of China
| | - Weiying Zhang
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Siyuan Wu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Muhammad Shafiq
- Innovation Center of Nanomedicines, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peihan Xie
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Lixiang Zhang
- Department of Health Management, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, People’s Republic of China
| | - Shichao Jiang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Yue Bi
- Department of Orthopedic Oncology, Yantai Shan Hospital, Yantai, People’s Republic of China
| |
Collapse
|
11
|
Pramanik S, Alhomrani M, Alamri AS, Alsanie WF, Nainwal P, Kimothi V, Deepak A, Sargsyan AS. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Biomed Mater 2024; 19:042008. [PMID: 38768611 DOI: 10.1088/1748-605x/ad4df7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have gained significant recognition as versatile biomaterials in the biomedical domain. GelMA hydrogels emulate vital characteristics of the innate extracellular matrix by integrating cell-adhering and matrix metalloproteinase-responsive peptide motifs. These features enable cellular proliferation and spreading within GelMA-based hydrogel scaffolds. Moreover, GelMA displays flexibility in processing, as it experiences crosslinking when exposed to light irradiation, supporting the development of hydrogels with adjustable mechanical characteristics. The drug delivery landscape has been reshaped by GelMA hydrogels, offering a favorable platform for the controlled and sustained release of therapeutic actives. The tunable physicochemical characteristics of GelMA enable precise modulation of the kinetics of drug release, ensuring optimal therapeutic effectiveness. In tissue engineering, GelMA hydrogels perform an essential role in the design of the scaffold, providing a biomimetic environment conducive to cell adhesion, proliferation, and differentiation. Incorporating GelMA in three-dimensional printing further improves its applicability in drug delivery and developing complicated tissue constructs with spatial precision. Wound healing applications showcase GelMA hydrogels as bioactive dressings, fostering a conducive microenvironment for tissue regeneration. The inherent biocompatibility and tunable mechanical characteristics of GelMA provide its efficiency in the closure of wounds and tissue repair. GelMA hydrogels stand at the forefront of biomedical innovation, offering a versatile platform for addressing diverse challenges in drug delivery, tissue engineering, and wound healing. This review provides a comprehensive overview, fostering an in-depth understanding of GelMA hydrogel's potential impact on progressing biomedical sciences.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India
| | - Vishwadeepak Kimothi
- Himalayan Institute of Pharmacy and Research, Rajawala, Dehradun, Uttrakhand, India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Armen S Sargsyan
- Scientific and Production Center 'Armbiotechnology' NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| |
Collapse
|
12
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
13
|
Wang H, Wan J, Zhang Z, Hou R. Recent advances on 3D-bioprinted gelatin methacrylate hydrogels for tissue engineering in wound healing: A review of current applications and future prospects. Int Wound J 2024; 21:e14533. [PMID: 38069620 PMCID: PMC10961039 DOI: 10.1111/iwj.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 03/25/2024] Open
Abstract
Advancements in 3D bioprinting, particularly the use of gelatin methacrylate (GelMA) hydrogels, are ushering in a transformative era in regenerative medicine and tissue engineering. This review highlights the pivotal role of GelMA hydrogels in wound healing and skin regeneration. Its biocompatibility, tunable mechanical properties and support for cellular proliferation make it a promising candidate for bioactive dressings and scaffolds. Challenges remain in optimizing GelMA hydrogels for clinical use, including scalability of 3D bioprinting techniques, durability under physiological conditions and the development of advanced bioinks. The review covers GelMA's applications from enhancing wound dressings, promoting angiogenesis and facilitating tissue regeneration to addressing microbial infections and diabetic wound healing. Preclinical studies underscore GelMA's potential in tissue healing and the need for further research for real-world applications. The future of GelMA hydrogels lies in overcoming these challenges through multidisciplinary collaboration, advancing manufacturing techniques and embracing personalized medicine paradigms.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of OrthopedicsSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Jiaming Wan
- Department of OrthopedicsYangzhou University Medical CollegeYangzhouChina
| | - Zhiqiang Zhang
- Department of OrthopedicsSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Ruixing Hou
- Department of OrthopedicsSuzhou Medical College of Soochow UniversitySuzhouChina
- Department of Trauma OrthopedicsSuzhou Ruihua Orthopedic HospitalSuzhouChina
| |
Collapse
|
14
|
Kafili G, Niknejad H, Tamjid E, Simchi A. Amnion-derived hydrogels as a versatile platform for regenerative therapy: from lab to market. Front Bioeng Biotechnol 2024; 12:1358977. [PMID: 38468689 PMCID: PMC10925797 DOI: 10.3389/fbioe.2024.1358977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In recent years, the amnion (AM) has emerged as a versatile tool for stimulating tissue regeneration and has been of immense interest for clinical applications. AM is an abundant and cost-effective tissue source that does not face strict ethical issues for biomedical applications. The outstanding biological attributes of AM, including side-dependent angiogenesis, low immunogenicity, anti-inflammatory, anti-fibrotic, and antibacterial properties facilitate its usage for tissue engineering and regenerative medicine. However, the clinical usage of thin AM sheets is accompanied by some limitations, such as handling without folding or tearing and the necessity for sutures to keep the material over the wound, which requires additional considerations. Therefore, processing the decellularized AM (dAM) tissue into a temperature-sensitive hydrogel has expanded its processability and applicability as an injectable hydrogel for minimally invasive therapies and a source of bioink for the fabrication of biomimetic tissue constructs by recapitulating desired biochemical cues or pre-defined architectural design. This article reviews the multi-functionality of dAM hydrogels for various biomedical applications, including skin repair, heart treatment, cartilage regeneration, endometrium regeneration, vascular graft, dental pulp regeneration, and cell culture/carrier platform. Not only recent and cutting-edge research is reviewed but also available commercial products are introduced and their main features and shortcomings are elaborated. Besides the great potential of AM-derived hydrogels for regenerative therapy, intensive interdisciplinary studies are still required to modify their mechanical and biological properties in order to broaden their therapeutic benefits and biomedical applications. Employing additive manufacturing techniques (e.g., bioprinting), nanotechnology approaches (e.g., inclusion of various bioactive nanoparticles), and biochemical alterations (e.g., modification of dAM matrix with photo-sensitive molecules) are of particular interest. This review article aims to discuss the current function of dAM hydrogels for the repair of target tissues and identifies innovative methods for broadening their potential applications for nanomedicine and healthcare.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Guo A, Zhang S, Yang R, Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications. Mater Today Bio 2024; 24:100939. [PMID: 38249436 PMCID: PMC10797197 DOI: 10.1016/j.mtbio.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have gained significant traction in diverse tissue engineering applications through the utilization of 3D printing technology. As an artificial hydrogel possessing remarkable processability, GelMA has emerged as a pioneering material in the advancement of tissue engineering due to its exceptional biocompatibility and degradability. The integration of 3D printing technology facilitates the precise arrangement of cells and hydrogel materials, thereby enabling the creation of in vitro models that simulate artificial tissues suitable for transplantation. Consequently, the potential applications of GelMA in tissue engineering are further expanded. In tissue engineering applications, the mechanical properties of GelMA are often modified to overcome the hydrogel material's inherent mechanical strength limitations. This review provides a comprehensive overview of recent advancements in enhancing the mechanical properties of GelMA at the monomer, micron, and nano scales. Additionally, the diverse applications of GelMA in soft tissue engineering via 3D printing are emphasized. Furthermore, the potential opportunities and obstacles that GelMA may encounter in the field of tissue engineering are discussed. It is our contention that through ongoing technological progress, GelMA hydrogels with enhanced mechanical strength can be successfully fabricated, leading to the production of superior biological scaffolds with increased efficacy for tissue engineering purposes.
Collapse
Affiliation(s)
- Ao Guo
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Shengting Zhang
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Cong Sui
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| |
Collapse
|
16
|
He Y, Yang W, Zhang C, Yang M, Yu Y, Zhao H, Guan F, Yao M. ROS/pH dual responsive PRP-loaded multifunctional chitosan hydrogels with controlled release of growth factors for skin wound healing. Int J Biol Macromol 2024; 258:128962. [PMID: 38145691 DOI: 10.1016/j.ijbiomac.2023.128962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Platelet-rich plasma (PRP) contains a variety of growth factors (GFs) and has been used in the treatment of a variety of diseases, including skin lesions. In particular, PRP with low immunogenicity will be more widely used. However, the explosive release of GFs limits its further application. In order to achieve controlled release of GFs, a multifunctional and reactive oxygen species (ROS)/pH dual responsive hydrogel was developed to load PRP derived from human cord blood for the treatment of skin wound healing. Based on the hydrogen bond and Schiff base interaction, carboxymethyl chitosan (CMCS), oxidized dextran (Odex) and oligomeric procyanidins (OPC) were crosslinked to form CMCS/Odex/OPC/PRP hydrogel with good injectability, self-healing, adhesion, ROS scavenging, antibacterial activity, controlled and sustained release of GFs. In vitro cell experiments suggested that this hydrogel possessed excellent biocompatibility and could promote the proliferation and migration of L929. In vivo healing of full-layer skin wounds further indicated that the prepared hydrogel could regulate inflammation and promote epithelialization, collagen deposition, and angiogenesis. In summary, this present study demonstrates that CMCS/Odex/OPC/PRP hydrogel may serve as a promising multifunctional dressing for skin wound healing.
Collapse
Affiliation(s)
- Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Weijuan Yang
- Shandong Qilu Stem Cell Engineering Co. LTD, Jinan 250102, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
17
|
Shi C, Zhang Y, Wu G, Zhu Z, Zheng H, Sun X, Heng Y, Pan S, Xiu H, Zhang J, Yin Z, Yu Z, Liang B. Hyaluronic Acid-Based Reactive Oxygen Species-Responsive Multifunctional Injectable Hydrogel Platform Accelerating Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2302626. [PMID: 37943252 DOI: 10.1002/adhm.202302626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Diabetic wounds are more likely to develop into complex and severe chronic wounds. The objective of this study is to develop and assess a reactive oxygen species (ROS)-responsive multifunctional injectable hydrogel for the purpose of diabetic wound healing. A multifunctional hydrogel (HA@Cur@Ag) is successfully synthesized with dual antioxidant, antibacterial, and anti-inflammatory properties by crosslinking thiol hyaluronic acid (SH-HA) and disulfide-bonded hyperbranched polyethylene glycol (HB-PBHE) through Michael addition; while, incorporating curcumin liposomes and silver nanoparticles (AgNPs). The HA@Cur@Ag hydrogel exhibits favorable biocompatibility, degradability, and injectivity. The outcomes of in vitro and in vivo experiments demonstrate that the hydrogel can effectively be loaded with and release curcumin liposomes, as well as silver ions, thereby facilitating diabetic wound healing through multiple mechanisms, including ROS scavenging, bactericidal activity, anti-inflammatory effects, and the promotion of angiogenesis. Transcriptome sequencing reveals that the HA@Cur@Ag hydrogel effectively suppresses the activation of the tumour necrosis factor (TNF)/nuclear factor κB (NF-κB) pathway to ameliorate oxidative stress and inflammation in diabetic wounds. These findings suggest that this ROS-responsive multifunctional injectable hydrogel, which possesses the ability to precisely coordinate and integrate intricate biological and molecular processes involved in wound healing, exhibits notable potential for expediting diabetic wound healing.
Collapse
Affiliation(s)
- Chen Shi
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Ying Zhang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P. R. China
| | - Guanfu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Zhangyu Zhu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Haiping Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Ximeng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yongyuan Heng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Shaowei Pan
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Haonan Xiu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Zhaowei Yin
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Bin Liang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| |
Collapse
|
18
|
Xu P, Cao J, Duan Y, Kankala RK, Chen A. Recent advances in fabrication of dECM-based composite materials for skin tissue engineering. Front Bioeng Biotechnol 2024; 12:1348856. [PMID: 38322790 PMCID: PMC10844517 DOI: 10.3389/fbioe.2024.1348856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Chronic wound management is an intractable medical and social problem, affecting the health of millions worldwide. Decellularized extracellular matrix (dECM)-based materials possess remarkable biological properties for tissue regeneration, which have been used as commercial products for skin regeneration in clinics. However, the complex external environment and the longer chronic wound-healing process hinder the application of pure dECM materials. dECM-based composite materials are constructed to promote the healing process of different wounds, showing noteworthy functions, such as anti-microbial activity and suitable degradability. Moreover, fabrication technologies for designing wound dressings with various forms have expanded the application of dECM-based composite materials. This review provides a summary of the recent fabrication technologies for building dECM-based composite materials, highlighting advances in dECM-based molded hydrogels, electrospun fibers, and bio-printed scaffolds in managing wounds. The associated challenges and prospects in the clinical application of dECM-based composite materials for wound healing are finally discussed.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, China
| | - Jiutao Cao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, China
| | - Youyu Duan
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, China
| |
Collapse
|
19
|
Huang Y, Chen Y, Cheng G, Li W, Zhang H, Yu C, Fang J, Zuo J, Li Y, Xu L, Sun D. A TA/Cu 2+ Nanoparticle Enhanced Carboxymethyl Chitosan-Based Hydrogel Dressing with Antioxidant Properties and Promoting Wound Healing. Int J Nanomedicine 2024; 19:231-245. [PMID: 38223881 PMCID: PMC10788072 DOI: 10.2147/ijn.s445844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background As the first line of immune defense and the largest organ of body, skin is vulnerable to damage caused by surgery, burns, collisions and other factors. Wound healing in the skin is a long and complex physiological process that is influenced by a number of different factors. Proper wound care can greatly improve the speed of wound healing and reduce the generation of scars. However, traditional wound dressings (bandages, gauze, etc.) often used in clinical practice have a single function, lack of active ingredients and are limited in use. Hydrogels with three-dimensional network structure are a potential biomedical material because of their physical and chemical environment similar to extracellular matrix. In particular, hydrogel dressings with low price, good biocompatibility, degradability, antibacterial and angiogenic activity are favored by the public. Methods Here, a carboxymethyl chitosan-based hydrogel dressing (CMCS-TA/Cu2+) reinforced by copper ion crosslinked tannic acid (TA/Cu2+) nanoparticles was developed. This study investigated the physical and chemical characteristics, cytotoxicity, and angiogenesis of TA/Cu2+ nanoparticles and CMCS-TA/Cu2+ hydrogels. Furthermore, a full-thickness skin defect wound model was employed to assess the in vivo wound healing capacity of hydrogel dressings. Results The introduction of TA/Cu2+ nanoparticles not only could increase the mechanical properties of the hydrogel but also continuously releases copper ions to promote cell migration (the cell migration could reach 92% at 48 h) and tubule formation, remove free radicals and promote wound healing (repair rate could reach 90% at 9 days). Conclusion Experiments have proved that CMCS-TA/Cu2+ hydrogel has good cytocompatibility, antioxidant and wound healing ability, providing an advantageous solution for skin repair.
Collapse
Affiliation(s)
- Yongjun Huang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Yong Chen
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, People’s Hospital, Qingyuan, 511518, People’s Republic of China
| | - Guoyun Cheng
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, 510500, People’s Republic of China
| | - Hongan Zhang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
- The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510260, People’s Republic of China
| | - Chaoqun Yu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jia Fang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jieyi Zuo
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Ying Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Lei Xu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Dawei Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| |
Collapse
|
20
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
21
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
22
|
Chen L, Ye J, Gao C, Deng F, Liu W, Zhang Q. Design and fabrication of gelatin-based hydrogel loaded with modified amniotic extracellular matrix for enhanced wound healing. Heliyon 2023; 9:e20521. [PMID: 37790967 PMCID: PMC10543223 DOI: 10.1016/j.heliyon.2023.e20521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Trauma can damage the structural integrity of skin leading to its function being affected. There is an urgent clinical need for innovative therapeutic wound dressings. However, several challenges persist despite the current demands. The development and application of functional dressings offer a novel approach to address skin and subcutaneous soft tissue defects. Amniotic membrane as an ideal biological multifunctional material covering wound surface has been reported in clinic. However, current clinical applications of amniotic membrane still have limitations, such as thinness and mechanically weak. In this paper, we employed decellularized human amniotic membrane (dHAM) as a bioactive extracellular matrix (ECM) and modified it through methacrylate (MA) grafting for engineering purposes, resulting in the photosensitive dECMMA. Subsequently, we utilized a photosensitizer to achieve photopolymerization of dECMMA with GelMA hydrogel, successfully creating a novel composite hydrogel termed dECMMA/GelMA. This composite hydrogel not only inherits the favorable physicochemical properties of hydrogels but also maintains comparable levels of bioactivity to dHAM itself, supporting cell proliferation, migration, angiogenesis, and retaining significant anti-inflammatory capacity. Additionally, we evaluated the reparative effect of the designed dECMMA/GelMA composite hydrogel on rabbit wound defects. We demonstrated that the dECMMA/GelMA promoted wound healing and re-epithelization. These findings highlight the substantial benefits and therapeutic potential of the dECMMA/GelMA composite hydrogel as a practical solution for clinical applications in the treatment of soft tissue damage. Furthermore, this research provides a new strategy for designing and manufacturing bioactive dressings with exceptional clinical efficacy in the future.
Collapse
Affiliation(s)
- Lifa Chen
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| | - JueLan Ye
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Chong Gao
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| | - Fei Deng
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| | - Wei Liu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, 120 Suzhi Road, Suqian, Jiangsu, 223812, PR China
| | - Qiang Zhang
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| |
Collapse
|
23
|
Li Y, An S, Deng C, Xiao S. Human Acellular Amniotic Membrane as Skin Substitute and Biological Scaffold: A Review of Its Preparation, Preclinical Research, and Clinical Application. Pharmaceutics 2023; 15:2249. [PMID: 37765218 PMCID: PMC10534359 DOI: 10.3390/pharmaceutics15092249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Human acellular amniotic membrane (HAAM) has emerged as a promising tool in the field of regenerative medicine, particularly for wound healing and tissue regeneration. HAAM provides a natural biological scaffold with low immunogenicity and good anti-infective and anti-scarring results. Despite its potential, the clinic application of HAAM faces challenges, particularly with respect to the preparation methods and its low mechanical strength. This review provides a comprehensive overview of HAAM, covering its preparation, sterilization, preclinical research, and clinical applications. This review also discusses promising decellularization and sterilization methods, such as Supercritical Carbon Dioxide (SC-CO2), and the need for further research into the regenerative mechanisms of HAAM. In addition, we discuss the potential of HAAM as a skin dressing and cell delivery system in preclinical research and clinical applications. Both the safety and effectiveness of HAAM have been validated by extensive research, which provides a robust foundation for its clinical application.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Siyu An
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| |
Collapse
|
24
|
Yu Y, Xiao H, Tang G, Wang H, Shen J, Sun Y, Wang S, Kong W, Chai Y, Liu X, Wang X, Wen G. Biomimetic hydrogel derived from decellularized dermal matrix facilitates skin wounds healing. Mater Today Bio 2023; 21:100725. [PMID: 37483381 PMCID: PMC10359665 DOI: 10.1016/j.mtbio.2023.100725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Cutaneous wound healing affecting millions of people worldwide represents an unsolvable clinical issue that is frequently challenged by scar formation with dramatical pain, impaired mobility and disfigurement. Herein, we prepared a kind of light-sensitive decellularized dermal extracellular matrix-derived hydrogel with fast gelling performance, biomimetic porous microstructure and abundant bioactive functions. On account of its excellent cell biocompatibility, this ECM-derived hydrogel could induce a marked cellular infiltration and enhance the tube formation of HUVECs. In vivo experiments based upon excisional wound splinting model showed that the hydrogel prominently imparted skin wound healing, as evidenced by notably increased skin appendages and well-organized collagen expression, coupled with significantly enhanced angiogenesis. Moreover, the skin regeneration mediated by this bioactive hydrogel was promoted by an accelerated M1-to-M2 macrophage phenotype transition. Consequently, the decellularized dermal matrix-derived bioactive hydrogel orchestrates the entire skin healing microenvironment to promote wound healing and will be of high value in treatment of cutaneous wound healing. As such, this biomimetic ddECMMA hydrogel provides a promising versatile opinion for the clinical translation.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoke Tang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Hongshu Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
25
|
Kafili G, Tamjid E, Niknejad H, Simchi A. Development of printable nanoengineered composite hydrogels based on human amniotic membrane for wound healing application. JOURNAL OF MATERIALS SCIENCE 2023; 58:12351-12372. [DOI: 10.1007/s10853-023-08783-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/14/2023] [Indexed: 01/06/2025]
|
26
|
Zhang GK, Ren J, Li JP, Wang DX, Wang SN, Shi LY, Li CY. Injectable hydrogel made from antler mesenchyme matrix for regenerative wound healing via creating a fetal-like niche. World J Stem Cells 2023; 15:768-780. [PMID: 37545751 PMCID: PMC10401419 DOI: 10.4252/wjsc.v15.i7.768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Scar formation and loss of cutaneous appendages are the greatest challenges in cutaneous wound healing. Previous studies have indicated that antler reserve mesenchyme (RM) cells and their conditioned medium improved regenerative wound healing with partial recovery of cutaneous appendages.
AIM To develop hydrogels from the antler RM matrix (HARM) and evaluate the effect on wound healing.
METHODS We prepared the hydrogels from the HARM via enzymatic solubilization with pepsin. Then we investigated the therapeutic effects of HARM on a full-thickness cutaneous wound healing rat model using both local injections surrounding the wound and topical wound application.
RESULTS The results showed that HARM accelerated wound healing rate and reduced scar formation. Also, HARM stimulated the regeneration of cutaneous appendages and blood vessels, and reduced collagen fiber aggregation. Further study showed that these functions might be achieved via creating a fetal-like niche at the wound site. The levels of fetal wound healing-related genes, including Collagen III and TGFβ3 treated with HARM were all increased, while the expression levels of Collagen I, TGFβ1, and Engrailed 1 were decreased in the healing. Moreover, the number of stem cells was increased in the fetal-like niche created by HARM, which may contribute to the regeneration of cutaneous appendages.
CONCLUSION Overall, we successfully developed an injectable hydrogel made from antler RM matrix for the regenerative repair of full-thickness cutaneous wounds. We uncovered the molecular mechanism of the hydrogels in promoting regenerative wound healing, and thus pave the way for HARM to be developed for the clinic use.
Collapse
Affiliation(s)
- Guo-Kun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Ji-Ping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
| | - Dong-Xu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
| | - Sheng-Nan Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
| | - Li-Yan Shi
- China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chun-Yi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| |
Collapse
|
27
|
Liu D, Lu G, Shi B, Ni H, Wang J, Qiu Y, Yang L, Zhu Z, Yi X, Du X, Shi B. ROS-Scavenging Hydrogels Synergize with Neural Stem Cells to Enhance Spinal Cord Injury Repair via Regulating Microenvironment and Facilitating Nerve Regeneration. Adv Healthc Mater 2023; 12:e2300123. [PMID: 36989238 DOI: 10.1002/adhm.202300123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Although stem cell-based therapy is recognized as a promising therapeutic strategy for spinal cord injury (SCI), its efficacy is greatly limited by local reactive oxygen species (ROS)-abundant and hyper-inflammatory microenvironments. It is still a challenge to develop bioactive scaffolds with outstanding antioxidant capacity for neural stem cells (NSCs) transplantation. In this study, albumin biomimetic cerium oxide nanoparticles (CeO2 @BSA nanoparticles, CeNPs) are prepared in a simple and efficient manner and dispersed in gelatin methacryloyl to obtain the ROS-scavenging hydrogel (CeNP-Gel). CeNP-Gel synergistically promotes neurogenesis via alleviating oxidative stress microenvironments and improving the viability of encapsulated NSCs. More interestingly, in the presence of CeNP-Gel, microglial polarization to anti-inflammatory M2 subtype are obviously facilitated, which is further verified to be associated with phosphoinositide 3-kinase/protein kinase B pathway activation. Additionally, the injectable ROS-scavenging hydrogel is confirmed to induce the integration and neural differentiation of transplanted NSCs. Compared with the blank-gel group, the survival rate of NSCs in CeNP-Gel group is about 3.5 times higher, and the neural differentiation efficiency is about 2.1 times higher. Therefore, the NSCs-laden ROS-scavenging hydrogel represents a comprehensive strategy with great application prospect for the treatment of SCI through comprehensively modulating the adverse microenvironment.
Collapse
Affiliation(s)
- Dun Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Geng Lu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Bo Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Huanyu Ni
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Jun Wang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Lin Yang
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 210037, P. R. China
| | - Xiao Du
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Benlong Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| |
Collapse
|
28
|
Li H, Li J, Xu J, Li L, Wang Y, Liu C, Zhou J. Advances in dermatological application of GelMA hydrogel microneedles. Skin Res Technol 2023; 29:e13327. [PMID: 37113084 PMCID: PMC10234172 DOI: 10.1111/srt.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Compared with systemic administration methods like injection and oral administration, traditional transdermal drug delivery has the advantages of rapid onset of activity and low side effects. However, hydrophilic drugs and bioactive substances are often unsuitable for traditional transdermal drug delivery. METHODS The application of microneedles made from gelatin methylacryloyl (GelMA) has greatly expanded thepossibilities for skin transdermal drug delivery. We have reviewed the latest literatures about the dermatological application of GelMA hydrogel microneedles in recent years using Google Scholar, PubMed and Springer. RESULTS GelMA hydrogel microneedles exhibit huge potency in the diagnosis and treatment of skin diseases, and this technology also brings broad application prospects for subcutaneous micro-invasive transdermal targeted drug delivery, which mainly used in skin tissue fluid collection, local substance delivery and wound healing. CONCLUSION With in-depth research on GelMA hydrogel, this technology will bring more breakthroughs and developments in the clinical diagnosis and treatment of skin diseases.
Collapse
Affiliation(s)
- Hongyang Li
- Pharmacal Research LaboratoryInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jiayi Li
- Pharmacal Research LaboratoryInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jingjing Xu
- Pharmacal Research LaboratoryInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Lingjun Li
- Pharmacal Research LaboratoryInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Yurong Wang
- School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Chunhui Liu
- Physics and Chemistry Test Center of Jiangsu ProvinceNanjingChina
| | - Jia Zhou
- School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
29
|
Fan Y, Lüchow M, Badria A, Hutchinson DJ, Malkoch M. Placenta Powder-Infused Thiol-Ene PEG Hydrogels as Potential Tissue Engineering Scaffolds. Biomacromolecules 2023; 24:1617-1626. [PMID: 36944137 PMCID: PMC10091351 DOI: 10.1021/acs.biomac.2c01355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Human placenta is a source of extracellular matrix for tissue engineering. In this study, placenta powder (PP), made from decellularized human placenta, was physically incorporated into synthetic poly(ethylene glycol) (PEG)-based hydrogels via UV-initiated thiol-ene coupling (TEC). The PP-incorporated PEG hydrogels (MoDPEG+) showed tunable storage moduli ranging from 1080 ± 290 to 51,400 ± 200 Pa. The addition of PP (1, 4, or 8 wt %) within the PEG hydrogels increased the storage moduli, with the 8 wt % PP hydrogels showing the highest storage moduli. PP reduced the swelling ratios compared with the pristine hydrogels (MoDPEG). All hydrogels showed good biocompatibility in vitro toward human skin cells and murine macrophages, with cell viability above 91%. Importantly, cells could adhere and proliferate on MoDPEG+ hydrogels due to the bioactive PP, while MoDPEG hydrogels were bio-inert as cells moved away from the hydrogel or were distributed in a large cluster on the hydrogel surface. To showcase their potential use in application-driven research, the MoDPEG+ hydrogels were straightforwardly (i) 3D printed using the SLA technique and (ii) produced via high-energy visible light (HEV-TEC) to populate damaged soft-tissue or bone cavities. Taking advantage of the bioactivity of PP and the tunable physicochemical properties of the synthetic PEG hydrogels, the presented MoDPEG+ hydrogels show great promise for tissue regeneration.
Collapse
Affiliation(s)
- Yanmiao Fan
- Division of Coating Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Mads Lüchow
- Division of Coating Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Adel Badria
- Division of Coating Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Daniel J Hutchinson
- Division of Coating Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Michael Malkoch
- Division of Coating Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| |
Collapse
|
30
|
Li W, Su Z, Hu Y, Meng L, Zhu F, Xie B, Wan J, Wu Q. Mussel-inspired methacrylated gelatin-dopamine/quaternized chitosan/glycerin sponges with self-adhesion, antibacterial activity, and hemostatic ability for wound dressings. Int J Biol Macromol 2023; 241:124102. [PMID: 36958445 DOI: 10.1016/j.ijbiomac.2023.124102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
It is one of the most emergent challenges to prepare wound dressings for quickly and effectively controlling profuse bleeding in clinical surgery and emergent accident. In this work, a novel strategy has been developed to prepare methacrylated gelatin-dopamine (GelMA-DA)/quaternized chitosan (QCS)/glycerol (Gly) composite sponges with good biocompatibility, tissue self-adhesion, antibacterial activity, and hemostatic ability. Results show that the GelMA-DA/QCS/Gly sponges display good biocompatibility and water absorption capacity. The lap shear strength of the GelMA-DA/QCS/Gly sponge with the GelMA-DA content of 5 W/V% is approximately 128.36 ± 8.45, 125.17 ± 7.18, 138.29 ± 7.94, and 113.83 ± 9.28 kPa for skin, liver, muscle, and fat, respectively. The GelMA-DA/QCS/Gly sponge displays better antibacterial activity against Gram positive and negative bacteria than the commercial Gelatin hemostatic sponge and CS hemostatic sponge. Animal experiments using rat tail and liver bleeding model show that the hemostasis time and blood loss in the GelMA-DA/QCS/Gly sponge group is approximately 33.3 ± 6.7 s and 0.19 ± 0.05 g, respectively, which is also better than that of the commercial Gelatin hemostatic sponge and CS hemostatic sponge. These results demonstrate promising potential of the GelMA-DA/QCS/Gly sponges for applications as hemostatic wound dressings in clinical surgery and emergent treatment.
Collapse
Affiliation(s)
- Wenchao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomedical Material and Engineering Center, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhengnan Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomedical Material and Engineering Center, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yanru Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomedical Material and Engineering Center, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lihui Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomedical Material and Engineering Center, Wuhan University of Technology, Wuhan 430070, PR China
| | - Fang Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomedical Material and Engineering Center, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bin Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomedical Material and Engineering Center, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomedical Material and Engineering Center, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
31
|
Jahanafrooz Z, Bakhshandeh B, Behnam Abdollahi S, Seyedjafari E. Human amniotic membrane as a multifunctional biomaterial: recent advances and applications. J Biomater Appl 2023; 37:1341-1354. [PMID: 36331116 DOI: 10.1177/08853282221137609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The developing fetus is wrapped by a human amniotic membrane or amnion. Amnion is a promising human tissue allograft in clinical application because of its chemical composition, collagen-based, and mechanical properties of the extracellular matrix. In addition, amnion contains cells and growth factors; therefore, meets the essential parameters of tissue engineering. No donor morbidity, easy processing and storage, fewer ethical issue, anti-inflammatory, antioxidant, antibacterial, and non-immunogenic properties are other advantages of amnion usage. For these reasons, amnion can resolve some bottlenecks in the regenerative medicine issues such as tissue engineering and cell therapy. Over the last decades, biomedical applications of amnion have evolved from a simple sheet for skin or cornea repair to high-technology applications such as amnion nanocomposite, powder, or hydrogel for the regeneration of cartilage, muscle, tendon, and heart. Furthermore, amnion has anticancer as well as drug/cell delivery capacity. This review highlights various ancient and new applications of amnion in research and clinical applications, from regenerative medicine to cancer therapy, focusing on articles published during the last decade that also revealed information regarding amnion-based products. Challenges and future perspectives of the amnion in regenerative medicine are also discussed.
Collapse
|
32
|
Jia Z, Ma H, Liu J, Yan X, Liu T, Cheng YY, Li X, Wu S, Zhang J, Song K. Preparation and Characterization of Polylactic Acid/Nano Hydroxyapatite/Nano Hydroxyapatite/Human Acellular Amniotic Membrane (PLA/nHAp/HAAM) Hybrid Scaffold for Bone Tissue Defect Repair. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1937. [PMID: 36903052 PMCID: PMC10003763 DOI: 10.3390/ma16051937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Bone tissue engineering is a novel and efficient repair method for bone tissue defects, and the key step of the bone tissue engineering repair strategy is to prepare non-toxic, metabolizable, biocompatible, bone-induced tissue engineering scaffolds of suitable mechanical strength. Human acellular amniotic membrane (HAAM) is mainly composed of collagen and mucopolysaccharide; it has a natural three-dimensional structure and no immunogenicity. In this study, a polylactic acid (PLA)/Hydroxyapatite (nHAp)/Human acellular amniotic membrane (HAAM) composite scaffold was prepared and the porosity, water absorption and elastic modulus of the composite scaffold were characterized. After that, the cell-scaffold composite was constructed using newborn Sprague Dawley (SD) rat osteoblasts to characterize the biological properties of the composite. In conclusion, the scaffolds have a composite structure of large and small holes with a large pore diameter of 200 μm and a small pore diameter of 30 μm. After adding HAAM, the contact angle of the composite decreases to 38.7°, and the water absorption reaches 249.7%. The addition of nHAp can improve the scaffold's mechanical strength. The degradation rate of the PLA+nHAp+HAAM group was the highest, reaching 39.48% after 12 weeks. Fluorescence staining showed that the cells were evenly distributed and had good activity on the composite scaffold; the PLA+nHAp+HAAM scaffold has the highest cell viability. The adhesion rate to HAAM was the highest, and the addition of nHAp and HAAM could promote the rapid adhesion of cells to scaffolds. The addition of HAAM and nHAp can significantly promote the secretion of ALP. Therefore, the PLA/nHAp/HAAM composite scaffold can support the adhesion, proliferation and differentiation of osteoblasts in vitro which provide sufficient space for cell proliferation, and is suitable for the formation and development of solid bone tissue.
Collapse
Affiliation(s)
- Zhilin Jia
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaqi Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinyu Yan
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiangqin Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuo Wu
- Department of Medical Oncology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jingying Zhang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
33
|
Fitriani N, Wilar G, Narsa AC, Mohammed AFA, Wathoni N. Application of Amniotic Membrane in Skin Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030748. [PMID: 36986608 PMCID: PMC10053812 DOI: 10.3390/pharmaceutics15030748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Amniotic membrane (AM) is an avascular structure composed of three different layers, which contain collagen, extracellular matrix, and biologically active cells (stem cells). Collagen, a naturally occurring matrix polymer, provides the structural matrix/strength of the amniotic membrane. Tissue remodeling is regulated by growth factors, cytokines, chemokines, and other regulatory molecules produced by endogenous cells within AM. Therefore, AM is considered an attractive skin-regenerating agent. This review discusses the application of AM in skin regeneration, including its preparation for application to the skin and its mechanisms of therapeutic healing in the skin. This review involved collecting research articles that have been published in several databases, including Google Scholar, PubMed, Science Direct, and Scopus. The search was conducted by using the keywords ‘amniotic membrane skin’, ‘amniotic membrane wound healing’, ‘amniotic membrane burn’, ‘amniotic membrane urethral defects’, ‘amniotic membrane junctional epidermolysis bullosa’, and ‘amniotic membrane calciphylaxis’. Ultimately, 87 articles are discussed in this review. Overall, AM has various activities that help in the regeneration and repair of damaged skin.
Collapse
Affiliation(s)
- Nurul Fitriani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Angga Cipta Narsa
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Ahmed F. A. Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Correspondence: ; Tel.: +62-22-842-888-888
| |
Collapse
|
34
|
Peng L, Liang Y, Yue J, Li H, Deng A, Xie S, Tang XZ, Wang J, Mao Z. Dramatic improvement in the mechanical properties of polydopamine/polyacrylamide hydrogel mediated human amniotic membrane. RSC Adv 2023; 13:3635-3642. [PMID: 36756590 PMCID: PMC9875367 DOI: 10.1039/d2ra07622e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Human amniotic membrane (hAM) is a promising material for tissue engineering due to several benefits, including desirable biocompatibility, stem cell source, antibacterial activity, etc. However, because of its low elasticity, the clinical application of hAM is severely restricted. To solve this issue, we employed polydopamine/polyacrylamide (PDA/PAM) hydrogels to toughen hAM. The test results indicated that the PDA/PAM hydrogel can enhance the toughness of hAM dramatically due to the formation of abundant chemical bonds and the strong mechanical properties of the hydrogel itself. Compared to pure hAM, the break elongation and tensile strength of PDA/PAM-toughened hAM rose by 154.15 and 492.31%, respectively. And most importantly, the fracture toughness was almost 15 times higher than untreated hAM. In addition, the cytotoxicity of the PDA/PAM-coated hAM was not detected due to the superior biocompatibility of the chemicals used in the study. Treating hAM with adhesive hydrogels to increase its mechanical characteristics will further promote the application of hAM as a tissue engineering material.
Collapse
Affiliation(s)
- Lin Peng
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Yufei Liang
- Powder Metallurgy Research Institute, Central South UniversityChangsha410083China
| | - Jianling Yue
- Powder Metallurgy Research Institute, Central South UniversityChangsha410083China
| | - Hanmei Li
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Aimin Deng
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Shun Xie
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Xiu-Zhi Tang
- Research Institute of Aerospace Technology, Central South UniversityChangsha410083China
| | - Jing Wang
- Department of Pathology, Xiangya Hospital, Central South University Changsha 410083 China
| | - Zenghui Mao
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| |
Collapse
|
35
|
Zhang W, Sun T, Zhang J, Hu X, Yang M, Han L, Xu G, Zhao Y, Li Z. Construction of artificial periosteum with methacrylamide gelatin hydrogel-wharton's jelly based on stem cell recruitment and its application in bone tissue engineering. Mater Today Bio 2022; 18:100528. [PMID: 36636638 PMCID: PMC9830312 DOI: 10.1016/j.mtbio.2022.100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
The presence of periosteum can greatly affect the repair of a bone fracture. An artificial periosteum imitates the biological function of natural periosteum, which is capable of protecting and maintaining bone tissue structure and promoting bone repair. In our artificial periosteum, biocompatible methacrylate gelatin was used to provide the mechanical support of the membrane, E7 peptide added bioactivity, and Wharton's jelly provided the biological activity support of the membrane, resulting in a hydrogel membrane (G-E-W) for the chemotactic recruitment of bone marrow mesenchymal stem cells (BMSCs) and promoting cell proliferation and osteogenic differentiation. In an in vitro experiment, the G-E-W membrane recruited BMSCs and promoted cell proliferation and osteogenic differentiation. After 4 weeks and 8 weeks of implantation in a rat skull defect, the group implanted with a G-E-W membrane was superior to the blank control group and single-component membrane group in both quantity and quality of new bone. The artificial G-E-W membrane recruits BMSC chemotaxis and promotes cell proliferation and osteogenic differentiation, thereby effectively improving the repair efficiency of fractures and bone defects.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Tianze Sun
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Jing Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Xiantong Hu
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China,Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China
| | - Ming Yang
- Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Liwei Han
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China,Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China
| | - Yantao Zhao
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China,Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China,Corresponding author. Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China.
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, China,Corresponding author. Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
36
|
Im GB, Lin RZ. Bioengineering for vascularization: Trends and directions of photocrosslinkable gelatin methacrylate hydrogels. Front Bioeng Biotechnol 2022; 10:1053491. [PMID: 36466323 PMCID: PMC9713639 DOI: 10.3389/fbioe.2022.1053491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/03/2022] [Indexed: 10/17/2023] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have been widely used in various biomedical applications, especially in tissue engineering and regenerative medicine, for their excellent biocompatibility and biodegradability. GelMA crosslinks to form a hydrogel when exposed to light irradiation in the presence of photoinitiators. The mechanical characteristics of GelMA hydrogels are highly tunable by changing the crosslinking conditions, including the GelMA polymer concentration, degree of methacrylation, light wavelength and intensity, and light exposure time et al. In this regard, GelMA hydrogels can be adjusted to closely resemble the native extracellular matrix (ECM) properties for the specific functions of target tissues. Therefore, this review focuses on the applications of GelMA hydrogels for bioengineering human vascular networks in vitro and in vivo. Since most tissues require vasculature to provide nutrients and oxygen to individual cells, timely vascularization is critical to the success of tissue- and cell-based therapies. Recent research has demonstrated the robust formation of human vascular networks by embedding human vascular endothelial cells and perivascular mesenchymal cells in GelMA hydrogels. Vascular cell-laden GelMA hydrogels can be microfabricated using different methodologies and integrated with microfluidic devices to generate a vasculature-on-a-chip system for disease modeling or drug screening. Bioengineered vascular networks can also serve as build-in vasculature to ensure the adequate oxygenation of thick tissue-engineered constructs. Meanwhile, several reports used GelMA hydrogels as implantable materials to deliver therapeutic cells aiming to rebuild the vasculature in ischemic wounds for repairing tissue injuries. Here, we intend to reveal present work trends and provide new insights into the development of clinically relevant applications based on vascularized GelMA hydrogels.
Collapse
Affiliation(s)
- Gwang-Bum Im
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
ECM-Mimicking Hydrogels Loaded with Bone Mesenchymal Stem Cell-Derived Exosomes for the Treatment of Cartilage Defects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3450672. [PMID: 36387356 PMCID: PMC9649317 DOI: 10.1155/2022/3450672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022]
Abstract
It is well-established that treating articular cartilage injuries is clinically challenging since they lack blood arteries, nerves, and lymphoid tissue. Recent studies have revealed that bone marrow stem cell-derived exosomes (BMSCs-Exos) exert significant chondroprotective effects through paracrine secretions, and hydrogel-based materials can synergize the exosomes through sustained release. Therefore, this research aims to synthesize an ECM (extracellular matrix)-mimicking gelatin methacryloyl (GelMA) hydrogel modified by gelatin combined with BMSCs-derived exosomes to repair cartilage damage. We first isolated and characterized exosomes from BMSCs supernatant and then loaded the exosomes into GelMA hydrogel to investigate cartilage repair effects in in vitro and in vivo experiments. The outcomes showed that the GelMA hydrogel has good biocompatibility with a 3D (three-dimensional) porous structure, exhibiting good carrier characteristics for exosomes. Furthermore, BMSCs-Exos had a significant effect on promoting chondrocyte ECM production and chondrocyte proliferation, and the GelMA hydrogel could enhance this effect through a sustained-release effect. Similarly, in vivo experiments showed that GelMA-Exos promoted cartilage regeneration in rat joint defects and the synthesis of related cartilage matrix proteins.
Collapse
|
38
|
Aquaculture derived hybrid skin patches for wound healing. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Kafili G, Tamjid E, Niknejad H, Simchi A. Development of injectable hydrogels based on human amniotic membrane and polyethyleneglycol-modified nanosilicates for tissue engineering applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Ma H, Peng Y, Zhang S, Zhang Y, Min P. Effects and Progress of Photo-Crosslinking Hydrogels in Wound Healing Improvement. Gels 2022; 8:609. [PMID: 36286110 PMCID: PMC9601727 DOI: 10.3390/gels8100609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 09/18/2023] Open
Abstract
Wound healing is a dynamic physiological process, including three stages: inflammation, tissue formation, and remodeling. The quality of wound healing is affected by many topical and systemic factors, while any small factor may affect the process. Therefore, improving the quality of wound healing is a complex and arduous challenge. Photo-crosslinking reaction using visible light irradiation is a novel method for hydrogel preparation. Photo-crosslinking hydrogels can be controlled in time and space, and are not interfered by temperature conditions, which have been widely used in the fields of medicine and engineering. This review aims to summarize the application of photo-crosslinking hydrogels in improving the quality of wound healing, mainly including the material design, application mechanism, and effect of photo-crosslinking hydrogels applied in wound healing, followed by the applicable animal models for experimental research. Finally, this review analyzes the clinical application prospects of photo-crosslinking hydrogels in the field of wound healing.
Collapse
Affiliation(s)
| | | | | | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
41
|
Duan Y, Huang W, Zhan B, Li Y, Xu X, Li K, Li X, Liu X, Ding S, Wang S, Guo J, Wang Y, Gu Q. A Bioink Derived From Human Placenta Supporting Angiogenesis. Biomed Mater 2022; 17. [PMID: 35732166 DOI: 10.1088/1748-605x/ac7b5b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
Bioprinting is an emerging approach for constructing sophisticated tissue analogues with detailed architectures such as vascular networks, which requires bioink fulfill the highly printable property and provide a cell-friendly microenvironment mimicking native extracellular matrix (ECM). Here, we developed a human placental ECM-derived bioink (hp-bioink) meeting the requirements of 3D printing for printability and bioactivity. We first decellularized the human placenta, followed by enzymatic digestion, dialysis, lyophilization, and re-solubilization to convert the extracts into hp-bioink. Then, we demonstrated that 3%-5% of hp-bioink can be printed with self-standing and 1%-2% of hp-bioink can be embedded with suspended hydrogels. Moreover, hp-bioink supports HUVEC assembly in vitro and angiogenesis in mice in vivo. Our research enriched the bank of human-derived bioink, and provided a new opportunity to further accelerate bioprinting research and application.
Collapse
Affiliation(s)
- Yongchao Duan
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Wenhui Huang
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Bo Zhan
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Yuanyuan Li
- Shanxi Provincial Peoples Hospital, No 29 Shuangtadong Street, Yinze district, Taiyuan, Taiyuan, Shanxi , 030012, CHINA
| | - Xue Xu
- Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, Beijing, 100044, CHINA
| | - Kai Li
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Xia Li
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Xin Liu
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Shenglong Ding
- Beijing Tongren Hospital, 2 Chongwenmennei Dajie Dongcheng District, Beijing, Beijing, 100730, CHINA
| | - Shuo Wang
- Institute of Zoology Chinese Academy of Sciences, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, CHINA
| | - Jia Guo
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Yukai Wang
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Qi Gu
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District District, Beijing, 100101, CHINA
| |
Collapse
|
42
|
Xue L, Deng T, Guo R, Peng L, Guo J, Tang F, Lin J, Jiang S, Lu H, Liu X, Deng L. A Composite Hydrogel Containing Mesoporous Silica Nanoparticles Loaded With Artemisia argyi Extract for Improving Chronic Wound Healing. Front Bioeng Biotechnol 2022; 10:825339. [PMID: 35402406 PMCID: PMC8990880 DOI: 10.3389/fbioe.2022.825339] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/28/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic wounds are a major health problem with increasing global prevalence, which endangers the physical and mental health of those affected and is a heavy burden to healthcare providers. Artemisia argyi extract (AE) has excellent antibacterial and anti-inflammatory properties. In this research, we developed AE loaded composite hydrogel scaffold based on methacrylate gelatin (GelMA)/methacrylate hyaluronic acid (HAMA) and mesoporous silica nanoparticle (MSN) as sustained-release drug carrier vehicles for the treatment of chronic wounds. The presented GelMA/1%HAMA hydrogel possessed stable rheological properties, suitable mechanical properties, appropriate biodegradability, swelling, sustained-release AE capacity. In vitro antibacterial and cell experiments showed that the GelMA/HAMA/MSN@AE hydrogel had excellent antibacterial activity and biocompatibility and induced macrophages to differentiate into M2 phenotype. In vivo wound healing of rat full-thickness cutaneous wounds further demonstrated that the prepared GelMA/HAMA/MSN@AE hydrogel could significantly promote chronic wound healing by upregulating the expression of IL-4, TGF-β1, CD31, and α-SMA but downregulating the expression of TNF-α and IFN-γ and promoting M1-M2 macrophages polarization. Altogether, we believe that the GelMA/HAMA/MSN@AE hydrogel will have wide application prospects in healing chronic wounds.
Collapse
Affiliation(s)
- Leyi Xue
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tewei Deng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Lu Peng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Junjun Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Fang Tang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Jingxia Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Sufang Jiang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijuan Lu
- School of Nursing Hunan University of Chinese Medicine, Changsha, China
| | - Xusheng Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Deng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou, China
| |
Collapse
|
43
|
Liu J, Qu M, Wang C, Xue Y, Huang H, Chen Q, Sun W, Zhou X, Xu G, Jiang X. A Dual-Cross-Linked Hydrogel Patch for Promoting Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106172. [PMID: 35319815 DOI: 10.1002/smll.202106172] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Diabetic wound treatment faces significant challenges in clinical settings. Alternative treatment approaches are needed. Continuous bleeding, disordered inflammatory regulation, obstruction of cell proliferation, and disturbance of tissue remodeling are the main characteristics of diabetic wound healing. Hydrogels made of either naturally derived or synthetic materials can potentially be designed with a variety of functions for managing the healing process of chronic wounds. Here, a hemostatic and anti-inflammatory hydrogel patch is designed for promoting diabetic wound healing. The hydrogel patch is derived from dual-cross-linked methacryloyl-substituted Bletilla Striata polysaccharide (B) and gelatin (G) via ultraviolet (UV) light. It is demonstrated that the B-G hydrogel can effectively regulate the M1/M2 phenotype of macrophages, significantly promote the proliferation and migration of fibroblasts in vitro, and accelerate angiogenesis. It can boost wound closure by normalizing epidermal tissue regeneration and depositing collagen appropriately in vivo without exogenous cytokine supplementation. Overall, the B-G bioactive hydrogel can promote diabetic wound healing in a simple, economical, effective, and safe manner.
Collapse
Affiliation(s)
- Jing Liu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Moyuan Qu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Canran Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Huang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Guihua Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
44
|
Fu L, Zhao Q, Li J, Zhao Z, Wang M, Sun H, Xia H. Fibroblasts Mediate Ectopic Bone Formation of Calcium Phosphate Ceramics. MATERIALS 2022; 15:ma15072569. [PMID: 35407901 PMCID: PMC9000332 DOI: 10.3390/ma15072569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023]
Abstract
Heterogeneity of fibroblasts directly affects the outcome of tissue regeneration; however, whether bioactive ceramics regulate bone regeneration through fibroblasts is unclear. Ectopic bone formation model with biphasic calcium phosphate (BCP) implantation was used to investigate the temporal and spatial distribution of fibroblasts around ceramics. The effect of BCP on L929 fibroblasts was evaluated by EdU assay, transwell assay, and qRT-PCR. Further, the effect of its conditioned medium on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was confirmed by ALP staining. SEM and XRD results showed that BCP contained abundant micro- and macro-pores and consisted of hydrogen-apatite (HA) and β-tricalcium phosphate (β-TCP) phases. Subsequently, BCP implanted into mice muscle successfully induced osteoblasts and bone formation. Fibroblasts labelled by vimentin gathered around BCP at 7 days and peaked at 14 days post implantation. In vitro, BCP inhibited proliferation of L929 fibroblast but promoted its migration. Moreover, expression of Col1a1, Bmp2, and Igf1 in L929 treated by BCP increased significantly while expression of Tgfb1 and Acta did not change. ALP staining further showed conditioned media from L929 fibroblasts treated by BCP could enhance osteogenic differentiation of BMSCs. In conclusion, fibroblasts mediate ectopic bone formation of calcium phosphate ceramics.
Collapse
Affiliation(s)
- Liangliang Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.F.); (Q.Z.); (J.L.); (Z.Z.); (M.W.); (H.S.)
- Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.F.); (Q.Z.); (J.L.); (Z.Z.); (M.W.); (H.S.)
| | - Jiaojiao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.F.); (Q.Z.); (J.L.); (Z.Z.); (M.W.); (H.S.)
| | - Zifan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.F.); (Q.Z.); (J.L.); (Z.Z.); (M.W.); (H.S.)
| | - Min Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.F.); (Q.Z.); (J.L.); (Z.Z.); (M.W.); (H.S.)
- Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huifang Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.F.); (Q.Z.); (J.L.); (Z.Z.); (M.W.); (H.S.)
- Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (L.F.); (Q.Z.); (J.L.); (Z.Z.); (M.W.); (H.S.)
- Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Correspondence:
| |
Collapse
|
45
|
Rohringer S, Schneider KH, Eder G, Hager P, Enayati M, Kapeller B, Kiss H, Windberger U, Podesser BK, Bergmeister H. Chorion-derived extracellular matrix hydrogel and fibronectin surface coatings show similar beneficial effects on endothelialization of expanded polytetrafluorethylene vascular grafts. Mater Today Bio 2022; 14:100262. [PMID: 35509865 PMCID: PMC9059097 DOI: 10.1016/j.mtbio.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The endothelium plays an important regulatory role for cardiovascular homeostasis. Rapid endothelialization of small diameter vascular grafts (SDVGs) is crucial to ensure long-term patency. Here, we assessed a human placental chorionic extracellular matrix hydrogel (hpcECM-gel) as coating material and compared it to human fibronectin in-vitro. hpcECM-gels were produced from placental chorion by decellularization and enzymatic digestion. Human umbilical vein endothelial cells (HUVECs) were seeded to non-, fibronectin- or hpcECM-gel-coated expanded polytetrafluorethylene (ePTFE) SDVGs. Coating efficiency as well as endothelial cell proliferation, migration and adhesion studies on grafts were performed. hpcECM-gel depicted high collagen and glycosaminoglycan content and neglectable DNA amounts. Laminin and fibronectin were both retained in the hpcECM-gel after the decellularization process. HUVEC as well as endothelial progenitor cell attachment were both significantly enhanced on hpcECM-gel coated grafts. HUVECs seeded to hpcECM-gel depicted significantly higher platelet endothelial cell adhesion molecule-1 (PECAM-1) expression in the perinuclear region. Cell retention to flow was enhanced on fibronectin and hpcECM-gel coated grafts. Since hpcECM-gel induced a significantly higher endothelial cell adhesion to ePTFE than fibronectin, it represents a possible alternative for SDVG modification to improve endothelialization.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karl H. Schneider
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gabriela Eder
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Pia Hager
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Marjan Enayati
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Kapeller
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Herbert Kiss
- Medical University of Vienna, Department of Obstetrics and Gynaecology, Division of Obstetrics and Feto-Maternal Medicine, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ursula Windberger
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Bruno K. Podesser
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helga Bergmeister
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
46
|
Elkhenany H, El-Derby A, Abd Elkodous M, Salah RA, Lotfy A, El-Badri N. Applications of the amniotic membrane in tissue engineering and regeneration: the hundred-year challenge. Stem Cell Res Ther 2022; 13:8. [PMID: 35012669 PMCID: PMC8744057 DOI: 10.1186/s13287-021-02684-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The amniotic membrane (Amnio-M) has various applications in regenerative medicine. It acts as a highly biocompatible natural scaffold and as a source of several types of stem cells and potent growth factors. It also serves as an effective nano-reservoir for drug delivery, thanks to its high entrapment properties. Over the past century, the use of the Amnio-M in the clinic has evolved from a simple sheet for topical applications for skin and corneal repair into more advanced forms, such as micronized dehydrated membrane, amniotic cytokine extract, and solubilized powder injections to regenerate muscles, cartilage, and tendons. This review highlights the development of the Amnio-M over the years and the implication of new and emerging nanotechnology to support expanding its use for tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Mohamed Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Radwa A Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt.
| |
Collapse
|
47
|
Sutrisno L, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. PLGA-collagen-BPNS Bifunctional composite mesh for photothermal therapy of melanoma and skin tissue engineering. J Mater Chem B 2022; 10:204-213. [PMID: 34935026 DOI: 10.1039/d1tb02366g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The treatment of melanoma requires not only the elimination of skin cancer cells but also skin regeneration to heal defects. To achieve this goal, a bifunctional composite scaffold of poly(DL-lactic-co-glycolic acid) (PLGA), collagen and black phosphorus nanosheets (BPNSs) was prepared by hybridizing a BPNS-embedded collagen sponge with a PLGA knitted mesh. The composite mesh increased the temperature under near-infrared laser irradiation. The incorporation of BPNSs provided the PLGA-collagen-BPNS composite mesh with excellent photothermal properties for the photothermal ablation of melanoma cells both in vitro and in vivo. The PLGA-collagen-BPNS composite mesh had high mechanical strength for easy handling. The PLGA-collagen-BPNS composite mesh facilitated the proliferation of fibroblasts, promoted the expression of angiogenesis-related genes and the genes of components of the extracellular matrix for skin tissue regeneration. The high mechanical strength, photothermal ablation capability and skin tissue regeneration effects demonstrate that the bifunctional PLGA-collagen-BPNS composite mesh is a versatile and effective platform for the treatment of melanoma and the regeneration of skin defects.
Collapse
Affiliation(s)
- Linawati Sutrisno
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
48
|
Wang P, Lv C, Zhou X, Wu Z, Wang Z, Wang Y, Wang L, Zhu Y, Guo M, Zhang P. Tannin-Bridged Magnetic Responsive Multifunctional Hydrogel for Enhanced Wound Healing by Mechanical Stimulation Induced Early Vascularization. J Mater Chem B 2022; 10:7808-7826. [DOI: 10.1039/d2tb01378a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wound healing is a complex process. Wound repair material requires multiple functionalities, such as anti-inflammatory, antibacterial, angiogenesis, pro-proliferation, and remodeling. To achieve rapid tissue regeneration, magnetic field-assisted therapy has become...
Collapse
|
49
|
Liu S, Liu Z, Wu M, Xu X, Huang F, Zhang L, Liu Y, Shuai Q. NIR as a "trigger switch" for rapid phase change, on-demand release, and photothermal synergistic antibacterial treatment with chitosan-based temperature-sensitive hydrogel. Int J Biol Macromol 2021; 191:344-358. [PMID: 34560148 DOI: 10.1016/j.ijbiomac.2021.09.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023]
Abstract
Temperature-sensitive hydrogels have shown good performances as wound dressing owing to their ability to fill wounds in the liquid state and to release drugs in a solid state. However, their treatment efficiency is restricted by the phase transition time. In this study, we developed a photothermal synergistic chitosan-based temperature-sensitive hydrogel, h-EGF-CS/β-GP-MPDA@Cip, with the unique properties of rapid phase transition and drug release under near-infrared light (NIR). High antibacterial efficiency was achieved when we covered infected mice wounds with hydrogels. The local high temperature produced under NIR illumination not only accelerated the formation of a porous gel to release the loaded drug on-demand, but also dissolved bacteria, achieving synergistic anti-bacterial treatment. In addition, the healing cycle of wounds could be significantly shortened by adding human epidermal growth factor (h-EGF) in the hydrogel. Overall, the developed temperature-sensitive hydrogel could utilise NIR as a "trigger switch" for on-demand drug release and photothermal-enhanced antibacterial treatment during the rapid phase change process.
Collapse
Affiliation(s)
- Shupeng Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhicheng Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mingyuan Wu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaomei Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fubin Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
50
|
Deus IA, Santos SC, Custódio CA, Mano JF. Designing highly customizable human based platforms for cell culture using proteins from the amniotic membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112574. [PMID: 35525741 DOI: 10.1016/j.msec.2021.112574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
In the past few years researchers have witnessed a paradigm shift in the development of biomaterials for drug discovery, tissue engineering, and regenerative medicine. After the great advances resulting from the transition of the 2D to the 3D, the new focus has been to increase the clinical relevance of such systems, as well as avoid the use of animals, by developing platforms that better replicate the human physiology in vitro. In this sense, we envisage the use of human matrices extracted from ethically sourced and readily available tissues as an optimal and promising alternative to currently used approaches. Hereupon, we report for the first time the chemical modification of human ECM proteins from the amniotic membrane (AM) with photoresponsive groups to produce bioinks and hydrogel precursors to engineer customizable platforms that are representative of native tissues and capable of supporting long-term cell culture. Our results demonstrated an efficient decellularization, liquefaction and functionalization of AM-derived ECM with methacryloyl domains (AMMA), with production of stable and versatile hydrogels. Mechanical characterization evidenced an increased compression strength as a function of methacrylation degree and decellularized ECM concentration. Three-dimensional (3D) stem cell culture in the AMMA hydrogels resulted in viable and proliferative cells up to 7 days; moreover, the mouldable character of the hydrogel precursors permits the processing of patterned hydrogel constructs allowing the control over cellular alignment and elongation, or microgels with highly tunable shape.
Collapse
Affiliation(s)
- Inês A Deus
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sara C Santos
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Catarina A Custódio
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|