1
|
Sun M, Hu X, Tian L, Yang X, Min L. Auxetic Biomedical Metamaterials for Orthopedic Surgery Applications: A Comprehensive Review. Orthop Surg 2024; 16:1801-1815. [PMID: 38961661 PMCID: PMC11293933 DOI: 10.1111/os.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Poisson's ratio in auxetic materials shifts from typically positive to negative, causing lateral expansion during axial tension. This scale-independent characteristic, originating from tailored architectures, exhibits specific physical properties, including energy adsorption, shear resistance, and fracture resistance. These metamaterials demonstrate exotic mechanical properties with potential applications in several engineering fields, but biomedical applications seem to be one of the most relevant, with an increasing number of articles published in recent years, which present opportunities ranging from cellular repair to organ reconstruction with outstanding mechanical performance, mechanical conduction, and biological activity compared with traditional biomedical metamaterials. Therefore, focusing on understanding the potential of these structures and promoting theoretical and experimental investigations into the benefits of their unique mechanical properties is necessary for achieving high-performance biomedical applications. Considering the demand for advanced biomaterial implants in surgical technology and the profound advancement of additive manufacturing technology that are particularly relevant to fabricating complex and customizable auxetic mechanical metamaterials, this review focuses on the fundamental geometric configuration and unique physical properties of negative Poisson's ratio materials, then categorizes and summarizes auxetic material applications across some surgical departments, revealing efficacy in joint surgery, spinal surgery, trauma surgery, and sports medicine contexts. Additionally, it emphasizes the substantial potential of auxetic materials as innovative biomedical solutions in orthopedics and demonstrates the significant potential for comprehensive surgical application in the future.
Collapse
Affiliation(s)
- Minghao Sun
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Leilei Tian
- Department of AnesthesiologyWest China Hospital, Sichuan University/West China School of Nursing, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
- Provincial Engineering Research Center for Biomaterials Genome of SichuanSichuan UniversityChengduChina
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| |
Collapse
|
2
|
Dong Z, Ren X, Jia B, Zhang X, Wan X, Wu Y, Huang H. Composite patch with negative Poisson's ratio mimicking cardiac mechanical properties: Design, experiment and simulation. Mater Today Bio 2024; 26:101098. [PMID: 38840795 PMCID: PMC11152757 DOI: 10.1016/j.mtbio.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Developing patches that effectively merge intrinsic deformation characteristics of cardiac with superior tunable mechanical properties remains a crucial biomedical pursuit. Currently used traditional block-shaped or mesh patches, typically incorporating a positive Poisson's ratio, often fall short of matching the deformation characteristics of cardiac tissue satisfactorily, thus often diminishing their repairing capability. By introducing auxeticity into the cardiac patches, this study is trying to present a beneficial approach to address these shortcomings of the traditional patches. The patches, featuring the auxetic effect, offer unparalleled conformity to the cardiac complex mechanical challenges. Initially, scaffolds demonstrating the auxetic effect were designed by merging chiral rotation and concave angle units, followed by integrating scaffolds with a composite hydrogel through thermally triggering, ensuring excellent biocompatibility closely mirroring heart tissue. Tensile tests revealed that auxetic patches possessed superior elasticity and strain capacity exceeding cardiac tissue's physiological activity. Notably, Model III showed an equivalent modulus ratio and Poisson's ratio closely toward cardiac tissue, underscoring its outstanding mechanical potential as cardiac patches. Cyclic tensile loading tests demonstrated that Model III withstood continuous heartbeats, showcasing outstanding cyclic loading and recovery capabilities. Numerical simulations further elucidated the deformation and failure mechanisms of these patches, leading to an exploration of influence on mechanical properties with alternative design parameters, which enabled the customization of mechanical strength and Poisson's ratio. Therefore, this research presents substantial potential for designing cardiac auxetic patches that can emulate the deformation properties of cardiac tissue and possess adjustable mechanical parameters.
Collapse
Affiliation(s)
- Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xuanjia Zhang
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan, 610207, China
| | - Xiaopeng Wan
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yang Wu
- Department of Cardiovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
3
|
Sunavala-Dossabhoy G, Saba BM, McCarthy KJ. Debulking of the Femoral Stem in a Primary Total Hip Joint Replacement: A Novel Method to Reduce Stress Shielding. Bioengineering (Basel) 2024; 11:393. [PMID: 38671814 PMCID: PMC11047840 DOI: 10.3390/bioengineering11040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In current-generation designs of total primary hip joint replacement, the prostheses are fabricated from alloys. The modulus of elasticity of the alloy is substantially higher than that of the surrounding bone. This discrepancy plays a role in a phenomenon known as stress shielding, in which the bone bears a reduced proportion of the applied load. Stress shielding has been implicated in aseptic loosening of the implant which, in turn, results in reduction in the in vivo life of the implant. Rigid implants shield surrounding bone from mechanical loading, and the reduction in skeletal stress necessary to maintain bone mass and density results in accelerated bone loss, the forerunner to implant loosening. Femoral stems of various geometries and surface modifications, materials and material distributions, and porous structures have been investigated to achieve mechanical properties of stems closer to those of bone to mitigate stress shielding. For improved load transfer from implant to femur, the proposed study investigated a strategic debulking effort to impart controlled flexibility while retaining sufficient strength and endurance properties. Using an iterative design process, debulked configurations based on an internal skeletal truss framework were evaluated using finite element analysis. The implant models analyzed were solid; hollow, with a proximal hollowed stem; FB-2A, with thin, curved trusses extending from the central spine; and FB-3B and FB-3C, with thick, flat trusses extending from the central spine in a balanced-truss and a hemi-truss configuration, respectively. As outlined in the International Organization for Standardization (ISO) 7206 standards, implants were offset in natural femur for evaluation of load distribution or potted in testing cylinders for fatigue testing. The commonality across all debulked designs was the minimization of proximal stress shielding compared to conventional solid implants. Stem topography can influence performance, and the truss implants with or without the calcar collar were evaluated. Load sharing was equally effective irrespective of the collar; however, the collar was critical to reducing the stresses in the implant. Whether bonded directly to bone or cemented in the femur, the truss stem was effective at limiting stress shielding. However, a localized increase in maximum principal stress at the proximal lateral junction could adversely affect cement integrity. The controlled accommodation of deformation of the implant wall contributes to the load sharing capability of the truss implant, and for a superior biomechanical performance, the collared stem should be implanted in interference fit. Considering the results of all implant designs, the truss implant model FB-3C was the best model.
Collapse
Affiliation(s)
- Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology, LSU Health Science Center in Shreveport and Feist Weiller Cancer Center, Shreveport, LA 71130, USA
| | - Brent M. Saba
- Saba Metallurgical and Plant Engineering Services, LLC, Madisonville, LA 70447, USA;
| | - Kevin J. McCarthy
- Department of Cellular Biology and Anatomy, LSU Health Science Center in Shreveport and Feist Weiller Cancer Center, Shreveport, LA 71130, USA;
| |
Collapse
|
4
|
Gallab M, Le PTM, Shintani SA, Takadama H, Ito M, Kitagaki H, Matsushita T, Honda S, Okuzu Y, Fujibayashi S, Yamaguchi S. Mechanical, bioactive, and long-lasting antibacterial properties of a Ti scaffold with gradient pores releasing iodine ions. BIOMATERIALS ADVANCES 2024; 158:213781. [PMID: 38335763 DOI: 10.1016/j.bioadv.2024.213781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The ideal bone implant would effectively prevent aseptic as well as septic loosening by minimizing stress shielding, maximizing bone ingrowth, and preventing implant-associated infections. Here, a novel gradient-pore-size titanium scaffold was designed and manufactured to address these requirements. The scaffold features a larger pore size (900 μm) on the top surface, gradually decreasing to small sizes (600 μm to 300 μm) towards the center, creating a gradient structure. To enhance its functionality, the additively manufactured scaffolds were biofunctionalized using simple chemical and heat treatments so as to incorporate calcium and iodine ions throughout the surface. This unique combination of varying pore sizes with a biofunctional surface provides highly desirable mechanical properties, bioactivity, and notably, long-lasting antibacterial activity. The target mechanical aspects, including low elastic modulus, high compression, compression-shear, and fatigue strength, were effectively achieved. Furthermore, the biofunctional surface exhibits remarkable in vitro bioactivity and potent antibacterial activity, even under conditions specifically altered to be favorable for bacterial growth. More importantly, the integration of small pores alongside larger ones ensures a sustained high release of iodine, resulting in antimicrobial activity that persisted for over three months, with full eradication of the bacteria. Taken together, this gradient structure exhibits obvious superiority in combining most of the desired properties, making it an ideal candidate for orthopedic and dental implant applications.
Collapse
Affiliation(s)
- Mahmoud Gallab
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan; Faculty of Engineering, Minia University, Minia 61111, Egypt.
| | - Phuc Thi Minh Le
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan; Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
| | - Seine A Shintani
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Hiroaki Takadama
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Morihiro Ito
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Hisashi Kitagaki
- Osaka Yakin Kogyo Co., Ltd., Zuiko 4-4-28, Higashi Yodogawa-ku, Osaka City, Osaka 533-0005, Japan
| | - Tomiharu Matsushita
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Shintaro Honda
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Yaichiro Okuzu
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Seiji Yamaguchi
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan.
| |
Collapse
|
5
|
Putra NE, Moosabeiki V, Leeflang MA, Zhou J, Zadpoor AA. Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron-manganese scaffolds. Acta Biomater 2024; 178:340-351. [PMID: 38395100 DOI: 10.1016/j.actbio.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Additively manufactured (AM) biodegradable porous iron-manganese (FeMn) alloys have recently been developed as promising bone-substituting biomaterials. However, their corrosion fatigue behavior has not yet been studied. Here, we present the first study on the corrosion fatigue behavior of an extrusion-based AM porous Fe35Mn alloy under cyclic loading in air and in the revised simulated body fluid (r-SBF), including the fatigue crack morphology and distribution in the porous structure. We hypothesized that the fatigue behavior of the architected AM Fe35Mn alloy would be strongly affected by the simultaneous biodegradation process. We defined the endurance limit as the maximum stress at which the scaffolds could undergo 3 million loading cycles without failure. The endurance limit of the scaffolds was determined to be 90 % of their yield strength in air, but only 60 % in r-SBF. No notable crack formation in the specimens tested in air was observed even after loading up to 90 % of their yield strength. As for the specimens tested in r-SBF, however, cracks formed in the specimens subjected to loads exceeding 60 % of their yield strength appeared to initiate on the periphery and propagate toward the internal struts. Altogether, the results show that the extrusion-based AM porous Fe35Mn alloy is capable of tolerating up to 60 % of its yield strength for up to 3 million cycles, which corresponds to 1.5 years of use of load-bearing implants subjected to repetitive gait cycles. The fatigue performance of the alloy thus further enhances its potential for trabecular bone substitution subjected to cyclic compressive loading. STATEMENT OF SIGNIFICANCE: Fatigue behavior of extrusion-based AM porous Fe35Mn alloy scaffolds in air and revised simulated body fluid was studied. The Fe35Mn alloy scaffolds endured 90 % of their yield strength for up to 3 × 106 loading cycles in air. Moreover, the scaffolds tolerated 3 × 106 loading cycles at 60 % of their yield strength in revised simulated body fluid. The Fe35Mn alloy scaffolds exhibited a capacity of withstanding 1.5-year physiological loading when used as bone implants.
Collapse
Affiliation(s)
- Niko E Putra
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands.
| | - Vahid Moosabeiki
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Marius A Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| |
Collapse
|
6
|
Blankenship B, Meier T, Zhao N, Mavrikos S, Arvin S, De La Torre N, Hsu B, Seymour N, Grigoropoulos CP. Three-Dimensional Optical Imaging of Internal Deformations in Polymeric Microscale Mechanical Metamaterials. NANO LETTERS 2024; 24:2735-2742. [PMID: 38277644 PMCID: PMC10921468 DOI: 10.1021/acs.nanolett.3c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Recent advances in two-photon polymerization fabrication processes are paving the way to creating macroscopic metamaterials with microscale architectures, which exhibit mechanical properties superior to their bulk material counterparts. These metamaterials typically feature lightweight, complex patterns such as lattice or minimal surface structures. Conventional tools for investigating these microscale structures, such as scanning electron microscopy, cannot easily probe the internal features of these structures, which are critical for a comprehensive assessment of their mechanical behavior. In turn, we demonstrate an optical confocal microscopy-based approach that allows for high-resolution optical imaging of internal deformations and fracture processes in microscale metamaterials under mechanical load. We validate this technique by investigating an exemplary metamaterial lattice structure of 80 × 80 × 80 μm3 in size. This technique can be extended to other metamaterial systems and holds significant promise to enhance our understanding of their real-world performance under loading conditions.
Collapse
Affiliation(s)
- Brian
W. Blankenship
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Timon Meier
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Naichen Zhao
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Stefanos Mavrikos
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Sophia Arvin
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Natalia De La Torre
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Brian Hsu
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Nathan Seymour
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Costas P. Grigoropoulos
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Mirzaali MJ, Zadpoor AA. Orthopedic meta-implants. APL Bioeng 2024; 8:010901. [PMID: 38250670 PMCID: PMC10799688 DOI: 10.1063/5.0179908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Meta-biomaterials, engineered materials with distinctive combinations of mechanical, physical, and biological properties stemming from their micro-architecture, have emerged as a promising domain within biomedical engineering. Correspondingly, meta-implants, which serve as the device counterparts of meta-biomaterials, offer exceptional functionalities, holding great potential for addressing complex skeletal diseases. This paper presents a comprehensive overview of the various types of meta-implants, including hybrid, shape-morphing, metallic clay, and deployable meta-implants, highlighting their unprecedented properties and recent achievement in the field. This paper also delves into the potential future developments of meta-implants, addressing the exploration of multi-functionalities in meta-biomaterials and their applications in diverse biomedical fields.
Collapse
Affiliation(s)
- Mohammad J. Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft 2628CD, The Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft 2628CD, The Netherlands
| |
Collapse
|
8
|
Chmielewska A, Dean D. The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomater 2024; 173:51-65. [PMID: 37972883 DOI: 10.1016/j.actbio.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
It is well documented that overly stiff skeletal replacement and fixation devices may fail and require revision surgery. Recent attempts to better support healing and sustain healed bone have looked at stiffness-matching of these devices to the desired role of limiting the stress on fractured or engrafted bone to compressive loads and, after the reconstructed bone has healed, to ensure that reconstructive medical devices (implants) interrupt the normal loading pattern as little as possible. The mechanical performance of these devices can be optimized by adjusting their location, integration/fastening, material(s), geometry (external and internal), and surface properties. This review highlights recent research that focuses on the optimal design of skeletal reconstruction devices to perform during and after healing as the mechanical regime changes. Previous studies have considered auxetic materials, homogeneous or gradient (i.e., adaptive) porosity, surface modification to enhance device/bone integration, and choosing the device's attachment location to ensure good osseointegration and resilient load transduction. By combining some or all of these factors, device designers work hard to avoid problems brought about by unsustainable stress shielding or stress concentrations as a means of creating sustainable stress-strain relationships that best repair and sustain a surgically reconstructed skeletal site. STATEMENT OF SIGNIFICANCE: Although standard-of-care skeletal reconstruction devices will usually allow normal healing and improved comfort for the patient during normal activities, there may be significant disadvantages during long-term use. Stress shielding and stress concentration are amongst the most common causes of failure of a metallic device. This review highlights recent developments in devices for skeletal reconstruction that match the stiffness, while not interrupting the normal loading pattern of a healthy bone, and help to combat stress shielding and stress concentration. This review summarises various approaches to achieve stiffness-matching: application of materials with modulus close to that of the bone; adaptation of geometry with pre-defined mechanical properties; and/or surface modification that ensures good integration and proper load transfer to the bone.
Collapse
Affiliation(s)
- Agnieszka Chmielewska
- The Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - David Dean
- The Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
9
|
Wang L, Huang H, Yuan H, Yao Y, Park JH, Liu J, Geng X, Zhang K, Hollister SJ, Fan Y. In vitro fatigue behavior and in vivo osseointegration of the auxetic porous bone screw. Acta Biomater 2023; 170:185-201. [PMID: 37634835 DOI: 10.1016/j.actbio.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
The incidence of screw loosening, migration, and pullout caused by the insufficient screw-bone fixation stability is relatively high in clinical practice. To solve this issue, the auxetic unit-based porous bone screw (AS) has been put forward in our previous work. Its favorable auxetic effect can improve the primary screw-bone fixation stability after implantation. However, porous structure affected the fatigue behavior and in vivo longevity of bone screw. In this study, in vitro fatigue behaviors and in vivo osseointegration performance of the re-entrant unit-based titanium auxetic bone screw were studied. The tensile-tensile fatigue behaviors of AS and nonauxetic bone screw (NS) with the same porosity (51%) were compared via fatigue experiments, fracture analysis, and numerical simulation. The in vivo osseointegration of AS and NS were compared via animal experiment and biomechanical analysis. Additionally, the effects of in vivo dynamic tensile loading on the osseointegration of AS and NS were investigated and analyzed. The fatigue strength of AS was approximately 43% lower while its osseointegration performance was better than NS. Under in vivo dynamic tensile loading, the osseointegration of AS and NS both improved significantly, with the maximum increase of approximately 15%. Preferrable osseointegration of AS might compensate for the shortage of fatigue resistance, ensuring its long-term stability in vivo. Adequate auxetic effect and long-term stability of the AS was supposed to provide enough screw-bone fixation stability to overcome the shortages of the solid bone screw, developing the success of surgery and showing significant clinical application prospects in orthopedic surgery. STATEMENT OF SIGNIFICANCE: This research investigated the high-cycle fatigue behavior of re-entrant unit-based auxetic bone screw under tensile-tensile cyclic loading and its osseointegration performance, which has not been focused on in existing studies. The fatigue strength of auxetic bone screw was lower while the osseointegration was better than non-auxetic bone screw, especially under in vivo tensile loading. Favorable osseointegration of auxetic bone screw might compensate for the shortage of fatigue resistance, ensuring its long-term stability and longevity in vivo. This suggested that with adequate auxetic effect and long-term stability, the auxetic bone screw had significant application prospects in orthopedic surgery. Findings of this study will provide a theoretical guidance for design optimization and clinical application of the auxetic bone screw.
Collapse
Affiliation(s)
- Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Huiwen Huang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Yuan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yan Yao
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jeong Hun Park
- Wallace H. Coulter Department of Biomedical Engineering and Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Jinglong Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xuezheng Geng
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Kuo Zhang
- Laboratory Animal Science Center, Peking University Health Science Center, Beijing 100083, China
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering and Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
10
|
Tashkinov M, Tarasova A, Vindokurov I, Silberschmidt VV. Composites with Re-Entrant Lattice: Effect of Filler on Auxetic Behaviour. Polymers (Basel) 2023; 15:4076. [PMID: 37896322 PMCID: PMC10610391 DOI: 10.3390/polym15204076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
This study is focused on the deformation behaviour of composites formed by auxetic lattice structures acting as a matrix based on the re-entrant unit-cell geometry with a soft filler, motivated by biomedical applications. Three-dimensional models of two types of the auxetic-lattice structures were manufactured using filament deposition modelling. Numerical finite-element models were developed for computational analysis of the effect of the filler with different mechanical properties on the effective Poisson's ratio and mechanical behaviour of such composites. Tensile tests of 3D-printed auxetic samples were performed with strain measurements using digital image correlation. The use of the filler phase with various elastic moduli resulted in positive, negative, and close-to-zero effective Poisson's ratios. Two approaches for numerical measurement of the Poisson's ratio were used. The failure probability of the two-phase composites with auxetic structure depending on the filler stiffness was investigated by assessing statistical distributions of stresses in the finite-elements models.
Collapse
Affiliation(s)
- Mikhail Tashkinov
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, Komsomolsky Ave., 29, 614990 Perm, Russia
| | - Anastasia Tarasova
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, Komsomolsky Ave., 29, 614990 Perm, Russia
| | - Ilia Vindokurov
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, Komsomolsky Ave., 29, 614990 Perm, Russia
| | - Vadim V. Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire LE11 3TU, UK
| |
Collapse
|
11
|
Yarali E, Zadpoor AA, Staufer U, Accardo A, Mirzaali MJ. Auxeticity as a Mechanobiological Tool to Create Meta-Biomaterials. ACS APPLIED BIO MATERIALS 2023; 6:2562-2575. [PMID: 37319268 PMCID: PMC10354748 DOI: 10.1021/acsabm.3c00145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Mechanical and morphological design parameters, such as stiffness or porosity, play important roles in creating orthopedic implants and bone substitutes. However, we have only a limited understanding of how the microarchitecture of porous scaffolds contributes to bone regeneration. Meta-biomaterials are increasingly used to precisely engineer the internal geometry of porous scaffolds and independently tailor their mechanical properties (e.g., stiffness and Poisson's ratio). This is motivated by the rare or unprecedented properties of meta-biomaterials, such as negative Poisson's ratios (i.e., auxeticity). It is, however, not clear how these unusual properties can modulate the interactions of meta-biomaterials with living cells and whether they can facilitate bone tissue engineering under static and dynamic cell culture and mechanical loading conditions. Here, we review the recent studies investigating the effects of the Poisson's ratio on the performance of meta-biomaterials with an emphasis on the relevant mechanobiological aspects. We also highlight the state-of-the-art additive manufacturing techniques employed to create meta-biomaterials, particularly at the micrometer scale. Finally, we provide future perspectives, particularly for the design of the next generation of meta-biomaterials featuring dynamic properties (e.g., those made through 4D printing).
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Urs Staufer
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Angelo Accardo
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J. Mirzaali
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
12
|
Hedayati R, Yousefi A, Dezaki ML, Bodaghi M. Analytical relationships for 2D Re-entrant auxetic metamaterials: An application to 3D printing flexible implants. J Mech Behav Biomed Mater 2023; 143:105938. [PMID: 37263172 DOI: 10.1016/j.jmbbm.2023.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Both 2D and 3D re-entrant designs are among the well-known prevalent auxetic structures exhibiting negative Poisson's ratio. The present study introduces novel analytical relationships for 2D re-entrant hexagonal honeycombs for both negative and positive ranges of the cell interior angle θ (θ<0 showing a negative Poisson's ratio). The derived analytical solutions are validated against finite element method (FEM) and experimental results. The results show that, compared to the analytical solutions available in the literature, the analytical relationships presented in this study provide the most accurate results for elastic modulus, Poisson's ratio, and yield stress. The analytical/computational tools are then implemented for designing Kinesio taping (KT) structures applicable to treatment of Achilles tendon injuries. One of the main features of the Achilles tendon is a natural auxetic behavior. Poisson's ratio distribution of an Achilles tendon is obtained using longitudinal and transverse strains and are then used to design and 3D print thermoplastic polyurethane (TPU) KT structures with non-uniform distribution of auxetic unit cells. The presented novel KT shows that it is capable of replicating the deformation and global and local Poisson's ratio distributions, similar to those of the Achilles tendon. Due to the absence of similar formulations and procedures in the literature, the results are expected to be instrumental for designing and 3D printing of flexible implants with unusual auxeticity.
Collapse
Affiliation(s)
- Reza Hedayati
- Department of Aerospace Materials and Structures (ASM), Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), Kluyverweg 1, 2629, HS, Delft, the Netherlands
| | - Armin Yousefi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Mohammadreza Lalegani Dezaki
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
13
|
Santos AA, Teixeira JVU, Pintão CAF, Correa DRN, Grandini CR, Lisboa-Filho PN. Ti-15Zr and Ti-15Zr-5Mo Biomaterials Alloys: An Analysis of Corrosion and Tribocorrosion Behavior in Phosphate-Buffered Saline Solution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1826. [PMID: 36902942 PMCID: PMC10004271 DOI: 10.3390/ma16051826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
It is crucial for clinical needs to develop novel titanium alloys feasible for long-term use as orthopedic and dental prostheses to prevent adverse implications and further expensive procedures. The primary purpose of this research was to investigate the corrosion and tribocorrosion behavior in the phosphate buffered saline (PBS) of two recently developed titanium alloys, Ti-15Zr and Ti-15Zr-5Mo (wt.%) and compare them with the commercially pure titanium grade 4 (CP-Ti G4). Density, XRF, XRD, OM, SEM, and Vickers microhardness analyses were conducted to give details about the phase composition and the mechanical properties. Additionally, electrochemical impedance spectroscopy was used to supplement the corrosion studies, while confocal microscopy and SEM imaging of the wear track were used to evaluate the tribocorrosion mechanisms. As a result, the Ti-15Zr (α + α' phase) and Ti-15Zr-5Mo (α″ + β phase) samples exhibited advantageous properties compared to CP-Ti G4 in the electrochemical and tribocorrosion tests. Moreover, a better recovery capacity of the passive oxide layer was observed in the studied alloys. These results open new horizons for biomedical applications of Ti-Zr-Mo alloys, such as dental and orthopedical prostheses.
Collapse
Affiliation(s)
- Adriana Alencar Santos
- Materials Science and Technology Program, Department of Physics, School of Sciences, UNESP—São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Jean Valdir Uchôa Teixeira
- Materials Science and Technology Program, Department of Physics, School of Sciences, UNESP—São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Carlos Alberto Fonzar Pintão
- Physical and Rheological Characterization Laboratory, Department of Physics, School of Sciences, UNESP—São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Diego Rafael Nespeque Correa
- Laboratory of Anelasticity and Biomaterials, Department of Physics, School of Sciences, UNESP—São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Carlos Roberto Grandini
- Laboratory of Anelasticity and Biomaterials, Department of Physics, School of Sciences, UNESP—São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Paulo Noronha Lisboa-Filho
- Laboratory of Nanotechnology and Advanced Materials Department of Physics, School of Sciences, UNESP—São Paulo State University, Bauru 17033-360, SP, Brazil
| |
Collapse
|
14
|
Chen D, Li D, Pan K, Gao S, Wang B, Sun M, Zhao C, Liu X, Li N. Strength enhancement and modulus modulation in auxetic meta-biomaterials produced by selective laser melting. Acta Biomater 2022; 153:596-613. [PMID: 36162764 DOI: 10.1016/j.actbio.2022.09.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 09/18/2022] [Indexed: 11/01/2022]
Abstract
Meta-biomaterials are applied to orthopedic implants to avoid stress shielding effects; however, there is no reason for the yield strength to be comparable to that of human bone. In this study, a composite unit cell was designed by combining the positive Poisson's ratio (PPR) and negative Poisson's ratio (NPR) unit cells, inspired by the second-phase strengthening theory. The purpose was to increase the strength while maintaining the elastic modulus. All structures were successfully fabricated from Ti-6Al-4V via selective laser melting. The relative density is between 0.08 and 0.24, which falls within the optimal range for bone growth. Mechanical tests indicated that the center of the inclined rod fractured in a stepwise fracture mode, which was consistent with the predictions of the Johnson-Cook model. The elastic modulus ranged from 0.652 ± 0.016 to 5.172 ± 0.021 GPa, and the yield strength varied from 10.62 ± 0.112 to 87.158 ± 2.215 MPa. An improved Gibson-Ashby law was proposed to facilitate the design of gradient structures. When the re-entrant angle was 40°, a hybrid body-centered cubic NPR structure was formed, resulting in a significant improvement in the mechanical properties. Importantly, the yield strength of the proposed composite structures increased by 43.23%, and the compression strength increased by 44.70% under the same elastic modulus. The strengthening mechanism has been proven to apply to other bending-dominated structures. Overall, this imparts unprecedented mechanical performance to auxetic meta-biomaterials and provides insights into improving the reported porous structures. STATEMENT OF SIGNIFICANCE: : Auxetic meta-biomaterials exhibit auxetic properties that can improve the contact between the bone-implant interface and reduce the risk of aseptic failure. To avoid the stress shielding effect, the elastic modulus has traditionally been decreased by increasing the porosity. However, the strength is simultaneously reduced. Therefore, a composite unit cell was proposed to increase strength rather than modulus by combining the positive and negative Poisson's ratio unit cells, inspired by the second-phase strengthening theory. We observed a 43.23% increase in the yield strength of the composite structure without increasing the elastic modulus. This strengthening mechanism has been proven to apply to other bending-dominated structures. Our approach provides insights into improving other bending-dominated structures and broadening their applications for bone implantation.
Collapse
Affiliation(s)
- Dongxu Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kejia Pan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuai Gao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bao Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minghan Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaotao Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
15
|
Mazur E, Shishkovsky I. Additively Manufactured Hierarchical Auxetic Mechanical Metamaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165600. [PMID: 36013736 PMCID: PMC9413695 DOI: 10.3390/ma15165600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 05/25/2023]
Abstract
Due to the ability to create structures with complex geometry at micro- and nanoscales, modern additive technologies make it possible to produce artificial materials (metamaterials) with properties different from those of conventional materials found in nature. One of the classes with special properties is auxetic materials-materials with a negative Poisson's ratio. In the review, we collect research results on the properties of auxetics, based on analytical, experimental and numerical methods. Special attention of this review is paid to the consideration of the results obtained in studies of hierarchical auxetic materials. The wide interest in the hierarchical subclass of auxetics is explained by the additional advantages of structures, such as more flexible adjustment of the desired mechanical characteristics (the porosity, stiffness, specific energy absorption, degree of material release, etc.). Possibilities of biomedical applications of hierarchical auxetic materials, such as coronary stents, filtration and drug delivery systems, implants and many others, where the ability for high-precision tuning is required, are underlined.
Collapse
|
16
|
Mirzaali MJ, Moosabeiki V, Rajaai SM, Zhou J, Zadpoor AA. Additive Manufacturing of Biomaterials-Design Principles and Their Implementation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5457. [PMID: 35955393 PMCID: PMC9369548 DOI: 10.3390/ma15155457] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 05/04/2023]
Abstract
Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled progress in the design and fabrication of customised or patient-specific (meta-)biomaterials and biomedical devices (e.g., implants, prosthetics, and orthotics) with complex internal microstructures and tuneable properties. In the past few decades, several design guidelines have been proposed for creating porous lattice structures, particularly for biomedical applications. Meanwhile, the capabilities of AM to fabricate a wide range of biomaterials, including metals and their alloys, polymers, and ceramics, have been exploited, offering unprecedented benefits to medical professionals and patients alike. In this review article, we provide an overview of the design principles that have been developed and used for the AM of biomaterials as well as those dealing with three major categories of biomaterials, i.e., metals (and their alloys), polymers, and ceramics. The design strategies can be categorised as: library-based design, topology optimisation, bio-inspired design, and meta-biomaterials. Recent developments related to the biomedical applications and fabrication methods of AM aimed at enhancing the quality of final 3D-printed biomaterials and improving their physical, mechanical, and biological characteristics are also highlighted. Finally, examples of 3D-printed biomaterials with tuned properties and functionalities are presented.
Collapse
Affiliation(s)
- Mohammad J. Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Kolken H, Garcia AF, Plessis AD, Meynen A, Rans C, Scheys L, Mirzaali M, Zadpoor A. Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials. Acta Biomater 2022; 138:398-409. [PMID: 34763109 DOI: 10.1016/j.actbio.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023]
Abstract
The fatigue performance of additively manufactured auxetic meta-biomaterials made from commercially pure titanium has been studied only recently. While certain assumptions have been made regarding the mechanisms underlying their fatigue failure, the exact mechanisms are not researched yet. Here, we studied the mechanisms of crack formation and propagation in cyclically loaded auxetic meta-biomaterials. Twelve different designs were subjected to compression-compression fatigue testing while performing full-field strain measurement using digital image correlation (DIC). The fatigue tests were stopped at different points before complete specimen failure to study the evolution of damage in the micro-architecture of the specimens using micro-computed tomography (micro-CT). Furthermore, finite element models were made to study the presence of stress concentrations. Structural weak spots were found in the inverted nodes and the vertical struts located along the outer rim of the specimens, matching the maximum principal strain concentrations and fracture sites in the DIC and micro-CT data. Cracks were often found to originate from internal void spaces or from sites susceptible to mode-I cracking. Many specimens maintained their structural integrity and exhibited no signs of rapid strain accumulation despite the presence of substantial crack growth. This observation underlines the importance of such microscale studies to identify accumulated damage that otherwise goes unnoticed. The potential release of powder particles from damaged lattices could elicit a foreign body response, adversely affecting the implant success. Finding the right failure criterion, therefore, requires more data than only those pertaining to macroscopic measurements and should always include damage assessment at the microscale. STATEMENT OF SIGNIFICANCE: The negative Poisson's ratio of auxetic meta-biomaterials makes them expand laterally in response to axial tension. This extraordinary property has great potential in the field of orthopedics, where it could enhance bone-implant contact. The fatigue performance of additively manufactured auxetic meta-biomaterials has only recently been studied and was found to be superior to many other bending- and stretch-dominated micro-architectures. In this study, we go beyond these macroscopic measurements and focus on the crack initiation and propagation. Full-field strain measurements and 3D imaging are used to paint a detailed picture of the mechanisms underlying fatigue. Using these data, specific aspects of the design and/or printing process can be targeted to improve the performance of auxetic meta-biomaterials in load-bearing applications.
Collapse
|
18
|
A Critical Review of the Design, Manufacture, and Evaluation of Bone Joint Replacements for Bone Repair. MATERIALS 2021; 15:ma15010153. [PMID: 35009299 PMCID: PMC8746215 DOI: 10.3390/ma15010153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
With the change of people’s living habits, bone trauma has become a common clinical disease. A large number of bone joint replacements is performed every year around the world. Bone joint replacement is a major approach for restoring the functionalities of human joints caused by bone traumas or some chronic bone diseases. However, the current bone joint replacement products still cannot meet the increasing demands and there is still room to increase the performance of the current products. The structural design of the implant is crucial because the performance of the implant relies heavily on its geometry and microarchitecture. Bionic design learning from the natural structure is widely used. With the progress of technology, machine learning can be used to optimize the structure of bone implants, which may become the focus of research in the future. In addition, the optimization of the microstructure of bone implants also has an important impact on its performance. The widely used design algorithm for the optimization of bone joint replacements is reviewed in the present study. Regarding the manufacturing of the implant, the emerging additive manufacturing technique provides more room for the design of complex microstructures. The additive manufacturing technique has enabled the production of bone joint replacements with more complex internal structures, which makes the design process more convenient. Numerical modeling plays an important role in the evaluation of the performance of an implant. For example, theoretical and numerical analysis can be carried out by establishing a musculoskeletal model to prepare for the practical use of bone implants. Besides, the in vitro and in vivo testing can provide mechanical properties of bone implants that are more in line with the implant recipient’s situation. In the present study, the progress of the design, manufacture, and evaluation of the orthopedic implant, especially the joint replacement, is critically reviewed.
Collapse
|
19
|
Huo Y, Lu Y, Meng L, Wu J, Gong T, Zou J, Bosiakov S, Cheng L. A Critical Review on the Design, Manufacturing and Assessment of the Bone Scaffold for Large Bone Defects. Front Bioeng Biotechnol 2021; 9:753715. [PMID: 34722480 PMCID: PMC8551667 DOI: 10.3389/fbioe.2021.753715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, bone tissue engineering has emerged as a promising solution for large bone defects. Additionally, the emergence and development of the smart metamaterial, the advanced optimization algorithm, the advanced manufacturing technique, etc. have largely changed the way how the bone scaffold is designed, manufactured and assessed. Therefore, the aim of the present study was to give an up-to-date review on the design, manufacturing and assessment of the bone scaffold for large bone defects. The following parts are thoroughly reviewed: 1) the design of the microstructure of the bone scaffold, 2) the application of the metamaterial in the design of bone scaffold, 3) the optimization of the microstructure of the bone scaffold, 4) the advanced manufacturing of the bone scaffold, 5) the techniques for assessing the performance of bone scaffolds.
Collapse
Affiliation(s)
- Yi Huo
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Lingfei Meng
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jiongyi Wu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Tingxiang Gong
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jia’ao Zou
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Sergei Bosiakov
- Faculty of Mechanics and Mathematics, Belarus State University, Minsk, Belarus
| | - Liangliang Cheng
- Department of Orthopeadics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
20
|
Influence of relative density on quasi-static and fatigue failure of lattice structures in Ti6Al4V produced by laser powder bed fusion. Sci Rep 2021; 11:19314. [PMID: 34588524 PMCID: PMC8481248 DOI: 10.1038/s41598-021-98631-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022] Open
Abstract
Lattice structures produced by additive manufacturing have been increasingly studied in recent years due to their potential to tailor prescribed mechanical properties. Their mechanical performances are influenced by several factors such as unit cell topology, parent material and relative density. In this study, static and dynamic behaviors of Ti6Al4V lattice structures were analyzed focusing on the criteria used to define the failure of lattices. A modified face-centered cubic (FCCm) lattice structure was designed to avoid the manufacturing problems that arise in the production of horizontal struts by laser powder bed fusion. The Gibson-Ashby curves of the FCCm lattice were obtained and it was found that relative density not only affects stiffness and strength of the structures, but also has important implications on the assumption of macroscopic yield criterion. Regarding fatigue properties, a stiffness based criterion was analyzed to improve the assessment of lattice structure failure in load bearing applications, and the influence of relative density on the stiffness evolution was studied. Apart from common normalization of S-N curves, a more accurate fatigue failure surface was developed, which is also compatible with stiffness based failure criteria. Finally, the effect of hot isostatic pressing in FCCm structures was also studied.
Collapse
|