1
|
Vitale S, Calapà F, Colonna F, Luongo F, Biffoni M, De Maria R, Fiori ME. Advancements in 3D In Vitro Models for Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405084. [PMID: 38962943 PMCID: PMC11348154 DOI: 10.1002/advs.202405084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/05/2024]
Abstract
The process of drug discovery and pre-clinical testing is currently inefficient, expensive, and time-consuming. Most importantly, the success rate is unsatisfactory, as only a small percentage of tested drugs are made available to oncological patients. This is largely due to the lack of reliable models that accurately predict drug efficacy and safety. Even animal models often fail to replicate human-specific pathologies and human body's complexity. These factors, along with ethical concerns regarding animal use, urge the development of suitable human-relevant, translational in vitro models.
Collapse
Affiliation(s)
- Sara Vitale
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Federica Calapà
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Francesca Colonna
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Francesca Luongo
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
- Fondazione Policlinico Universitario “A. Gemelli” – IRCCSLargo F. Vito 1RomeItaly
| | - Micol E. Fiori
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| |
Collapse
|
2
|
Zhang X, Al‐Danakh A, Zhu X, Feng D, Yang L, Wu H, Li Y, Wang S, Chen Q, Yang D. Insights into the mechanisms, regulation, and therapeutic implications of extracellular matrix stiffness in cancer. Bioeng Transl Med 2024. [DOI: 10.1002/btm2.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/29/2024] [Indexed: 01/03/2025] Open
Abstract
AbstractThe tumor microenvironment (TME) is critical for cancer initiation, growth, metastasis, and therapeutic resistance. The extracellular matrix (ECM) is a significant tumor component that serves various functions, including mechanical support, TME regulation, and signal molecule generation. The quantity and cross‐linking status of ECM components are crucial factors in tumor development, as they determine tissue stiffness and the interaction between stiff TME and cancer cells, resulting in aberrant mechanotransduction, proliferation, migration, invasion, angiogenesis, immune evasion, and treatment resistance. Therefore, broad knowledge of ECM dysregulation in the TME might aid in developing innovative cancer therapies. This review summarized the available information on major ECM components, their functions, factors that increase and decrease matrix stiffness, and related signaling pathways that interplay between cancer cells and the ECM in TME. Moreover, mechanotransduction alters during tumorogenesis, and current drug therapy based on ECM as targets, as well as future efforts in ECM and cancer, are also discussed.
Collapse
Affiliation(s)
- Ximo Zhang
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Abdullah Al‐Danakh
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Xinqing Zhu
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Dan Feng
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Linlin Yang
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Haotian Wu
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yingying Li
- Department of Discipline Construction Dalian Medical University Dalian China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology Dalian Medical University Dalian China
| | - Qiwei Chen
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
- Zhongda Hospital, Medical School Advanced Institute Life Health Southeast University Nanjing China
| | - Deyong Yang
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
- Department of Surgery Healinghands Clinic Dalian China
| |
Collapse
|
3
|
Meng J, Xu X, Jiang C, Xia P, Xu P, Tian L, Xu Y, Li D, Tan Y, Ji B. Tensile force field plays a crucial role in local invasion of tumor cells through a mechano-chemical coupling mechanism. SOFT MATTER 2024. [PMID: 39027971 DOI: 10.1039/d4sm00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cancer metastasis starts from early local invasion, during which tumor cells detach from the primary tumor, penetrate the extracellular matrix (ECM), and then invade neighboring tissues. However, the cellular mechanics in the detaching and penetrating processes have not been fully understood, and the underlying mechanisms that influence cell polarization and migration in the 3D matrix during tumor invasion remain largely unknown. In this study, we employed a dual tumor-spheroid model to investigate the cellular mechanisms of the tumor invasion. Our results revealed that the tensional force field developed by the active contraction of cells and tissues played a pivotal role in tumor invasion, acting as the driving force for remodeling the collagen fibers during the invasion process. The remodeled collagen fibers promoted cell polarization and migration because of the stiffening of the fiber matrix. The aligned fibers facilitated tumor cell invasion and directed migration from one spheroid to the other. Inhibiting/shielding the cellular contractility abolished matrix remodeling and re-alignment and significantly decreased tumor cell invasion. By developing a coarse-grained cell model that considers the mutual interaction between cells and fibers, we predicted the tensional force field in the fiber network and the associated cell polarization and cell-matrix interaction during cell invasion, which revealed a mechano-chemical coupling mechanism at the cellular level of the tumor invasion process. Our study highlights the roles of cellular mechanics at the early stage of tumor metastasis and may provide new therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Jianfeng Meng
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiangyu Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chaohui Jiang
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Peng Xia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Science Institute, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Xu
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Liangfei Tian
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingke Xu
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| | - Youhua Tan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Katti PD, Jasuja H. Current Advances in the Use of Tissue Engineering for Cancer Metastasis Therapeutics. Polymers (Basel) 2024; 16:617. [PMID: 38475301 PMCID: PMC10934711 DOI: 10.3390/polym16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer is a leading cause of death worldwide and results in nearly 10 million deaths each year. The global economic burden of cancer from 2020 to 2050 is estimated to be USD 25.2 trillion. The spread of cancer to distant organs through metastasis is the leading cause of death due to cancer. However, as of today, there is no cure for metastasis. Tissue engineering is a promising field for regenerative medicine that is likely to be able to provide rehabilitation procedures to patients who have undergone surgeries, such as mastectomy and other reconstructive procedures. Another important use of tissue engineering has emerged recently that involves the development of realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis therapeutics, as well as evaluate cancer biology at metastasis. This review covers the current studies in developing tissue-engineered metastasis structures. This article reports recent developments in in vitro models for breast, prostate, colon, and pancreatic cancer. The review also identifies challenges and opportunities in the use of tissue engineering toward new, clinically relevant therapies that aim to reduce the cancer burden.
Collapse
|
5
|
Hassani I, Anbiah B, Moore AL, Abraham PT, Odeniyi IA, Habbit NL, Greene MW, Lipke EA. Establishment of a tissue-engineered colon cancer model for comparative analysis of cancer cell lines. J Biomed Mater Res A 2024; 112:231-249. [PMID: 37927200 DOI: 10.1002/jbm.a.37611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 11/07/2023]
Abstract
To overcome the limitations of in vitro two-dimensional (2D) cancer models in mimicking the complexities of the native tumor milieu, three-dimensional (3D) engineered cancer models using biomimetic materials have been introduced to more closely recapitulate the key attributes of the tumor microenvironment. Specifically, for colorectal cancer (CRC), a few studies have developed 3D engineered tumor models to investigate cell-cell interactions or efficacy of anti-cancer drugs. However, recapitulation of CRC cell line phenotypic differences within a 3D engineered matrix has not been systematically investigated. Here, we developed an in vitro 3D engineered CRC (3D-eCRC) tissue model using the natural-synthetic hybrid biomaterial PEG-fibrinogen and three CRC cell lines, HCT 116, HT-29, and SW480. To better recapitulate native tumor conditions, our 3D-eCRC model supported higher cell density encapsulation (20 × 106 cells/mL) and enabled longer term maintenance (29 days) as compared to previously reported in vitro CRC models. The 3D-eCRCs formed using each cell line demonstrated line-dependent differences in cellular and tissue properties, including cellular growth and morphology, cell subpopulations, cell size, cell granularity, migration patterns, tissue growth, gene expression, and tissue stiffness. Importantly, these differences were found to be most prominent from Day 22 to Day 29, thereby indicating the importance of long-term culture of engineered CRC tissues for recapitulation and investigation of mechanistic differences and drug response. Our 3D-eCRC tissue model showed high potential for supporting future in vitro comparative studies of disease progression, metastatic mechanisms, and anti-cancer drug candidate response in a CRC cell line-dependent manner.
Collapse
Affiliation(s)
- Iman Hassani
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
- Department of Chemical Engineering, Tuskegee University, Tuskegee, Alabama, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Andrew L Moore
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Peter T Abraham
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Ifeoluwa A Odeniyi
- Department of Nutritional Sciences, Auburn University, Auburn, Alabama, USA
| | - Nicole L Habbit
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Michael W Greene
- Department of Nutritional Sciences, Auburn University, Auburn, Alabama, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Habbit NL, Anbiah B, Suresh J, Anderson L, Davies ML, Hassani I, Ghosh TM, Greene MW, Prabhakarpandian B, Arnold RD, Lipke EA. Ratiometric Inclusion of Fibroblasts Promotes Both Castration-Resistant and Androgen-Dependent Tumorigenic Progression in Engineered Prostate Cancer Tissues. Adv Healthc Mater 2023; 12:e2301139. [PMID: 37450342 DOI: 10.1002/adhm.202301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
To investigate the ratiometric role of fibroblasts in prostate cancer (PCa) progression, this work establishes a matrix-inclusive, 3D engineered prostate cancer tissue (EPCaT) model that enables direct coculture of neuroendocrine-variant castration-resistant (CPRC-ne) or androgen-dependent (ADPC) PCa cells with tumor-supporting stromal cell types. Results show that the inclusion of fibroblasts within CRPC-ne and ADPC EPCaTs drives PCa aggression through significant matrix remodeling and increased proliferative cell populations. Interestingly, this is observed to a much greater degree in EPCaTs formed with a small number of fibroblasts relative to the number of PCa cells. Fibroblast coculture also results in ADPC behavior more similar to the aggressive CRPC-ne condition, suggesting fibroblasts play a role in elevating PCa disease state and may contribute to the ADPC to CRPC-ne switch. Bulk transcriptomic analyses additionally elucidate fibroblast-driven enrichment of hallmark gene sets associated with tumorigenic progression. Finally, the EPCaT model clinical relevancy is probed through a comparison to the Cancer Genome Atlas (TCGA) PCa patient cohort; notably, similar gene set enrichment is observed between EPCaT models and the patient primary tumor transcriptome. Taken together, study results demonstrate the potential of the EPCaT model to serve as a PCa-mimetic tool in future therapeutic development efforts.
Collapse
Affiliation(s)
- Nicole L Habbit
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Joshita Suresh
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Luke Anderson
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Megan L Davies
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Iman Hassani
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Taraswi M Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 So. Donahue Dr., Pharmaceutical Research Building, Auburn, AL, 36849, USA
| | - Michael W Greene
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, 210 Spidle Hall, Auburn, AL, 36849, USA
| | | | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 So. Donahue Dr., Pharmaceutical Research Building, Auburn, AL, 36849, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| |
Collapse
|