1
|
Ghasemzadeh-Hasankolaei M, Correia TR, Mano JF. Bioinstructive Liquefied Pockets in Hierarchical Hydrogels and Bioinks. Adv Healthc Mater 2024:e2400286. [PMID: 39235370 DOI: 10.1002/adhm.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
This study proposes a novel, versatile, and modular platform for constructing porous and heterogeneous microenvironments based on the embedding of liquefied-based compartments in hydrogel systems. Using a bottom-up approach, microgels carrying the necessary cargo components, including cells and microparticles, are combined with a hydrogel precursor to fabricate a hierarchical structured (HS) system. The HS system possesses three key features that can be fully independently controlled: I) liquefied pockets enabling free cellular mobility; II) surface modified microparticles facilitating 3D microtissue organization inside the liquefied pockets; III) at a larger scale, the pockets are jammed in the hydrogel, forming a macro-sized construct. After crosslinking, the embedded microgels undergo a liquefaction process, forming a porous structure that ensures high diffusion of small biomolecules and enables cells to move freely within their miniaturized compartmentalized volume. More importantly, this platform allows the creation of multimodular cellular microenvironments within a hydrogel with controlled macrostructures, while decoupling micro- and macroenvironments. As a proof of concept, the enhancement of cellular functions using the HS system by encapsulating human adipose-derived mesenchymal stem cells (hASCs) is successfully demonstrated. Finally, the potential application of this system as a hybrid bioink for bioprinting complex 3D structures is showcased.
Collapse
Affiliation(s)
| | - Tiago R Correia
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
2
|
Ghasemzadeh-Hasankolaei M, Pinto CA, Jesus D, Saraiva JA, Mano JF. Effect of high cyclic hydrostatic pressure on osteogenesis of mesenchymal stem cells cultured in liquefied micro-compartments. Mater Today Bio 2023; 23:100861. [PMID: 38058695 PMCID: PMC10696388 DOI: 10.1016/j.mtbio.2023.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Bone resident cells are constantly subjected to a range of distinct mechanical loadings, which generates a complex microenvironment. In particular, hydrostatic pressure (HP) has a key impact on modulation of cell function and fate determination. Although HP is a constant mechanical stimulus, its role in regulating the osteogenesis process within a defined 3D microenvironment has not been comprehensively elucidated. Perceiving how environmental factors regulate the differentiation of stem cells is essential for expanding their regenerative potential. Inspired by the mechanical environment of bone, this study attempted to investigate the influence of different ranges of cyclic HP on human adipose-derived mesenchymal stem cells (MSCs) encapsulated within a compartmentalized liquefied microenvironment. Taking advantage of the liquefied environment of microcapsules, MSCs were exposed to cyclic HP of 5 or 50 MPa, 3 times/week at 37 °C. Biological tests using fluorescence staining of F-actin filaments showed a noticeable improvement in cell-cell interactions and cellular network formation of MSCs. These observations were more pronounced in osteogenic (OST) condition, as confirmed by fluorescent staining of vinculin. More interestingly, there was a significant increase in alkaline phosphatase activity of MSCs exposed to 50 MPa magnitude of HP, even in the absence of osteoinductive factors. In addition, a greater staining area of both osteopontin and hydroxyapatite was detected in the 50 MPa/OST group. These findings highlight the benefit of hydrostatic pressure to regulate osteogenesis of MSCs as well as the importance of employing simultaneous biochemical and mechanical stimulation to accelerate the osteogenic potential of MSCs for biomedical purposes.
Collapse
Affiliation(s)
| | - Carlos A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diana Jesus
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Campanile M, Bettinelli L, Cerutti C, Spinetti G. Bone marrow vasculature advanced in vitro models for cancer and cardiovascular research. Front Cardiovasc Med 2023; 10:1261849. [PMID: 37915743 PMCID: PMC10616801 DOI: 10.3389/fcvm.2023.1261849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiometabolic diseases and cancer are among the most common diseases worldwide and are a serious concern to the healthcare system. These conditions, apparently distant, share common molecular and cellular determinants, that can represent targets for preventive and therapeutic approaches. The bone marrow plays an important role in this context as it is the main source of cells involved in cardiovascular regeneration, and one of the main sites of liquid and solid tumor metastasis, both characterized by the cellular trafficking across the bone marrow vasculature. The bone marrow vasculature has been widely studied in animal models, however, it is clear the need for human-specific in vitro models, that resemble the bone vasculature lined by endothelial cells to study the molecular mechanisms governing cell trafficking. In this review, we summarized the current knowledge on in vitro models of bone marrow vasculature developed for cardiovascular and cancer research.
Collapse
Affiliation(s)
- Marzia Campanile
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Leonardo Bettinelli
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Camilla Cerutti
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
4
|
Niu C, Xiong Y, Yang L, Xiao X, Yang S, Huang Z, Yang Y, Feng L. Carboxy-terminal telopeptide levels of type I collagen hydrogels modulated the encapsulated cell fate for regenerative medicine. Int J Biol Macromol 2023; 228:826-837. [PMID: 36566813 DOI: 10.1016/j.ijbiomac.2022.12.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The cellular microenvironment has a profound impact on cell proliferation, interaction, and differentiation. In cell encapsulation for disease therapy, type I collagen is an important biomaterial due to its ability to mimic the extracellular matrix. Telopeptides (carboxy-terminal, CTX, and amino-terminal, NTX) protruding from the triple helix structure of type I collagen are cross-link sites, but also mediate the signal transmission in tissue homeostasis. It is worth investigating the features of the hydrogel microenvironment shaped by the tissue-derived type I collagen with various telopeptide levels, which is paramount for encapsulated cell development. Here, we found the fate of encapsulated human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) behaved differently towards decreasing CTX levels in the collagen hydrogels. Even among collagen hydrogels with a small magnitude of CTX variation, similar stiffness and microstructure, the apparent CTX modulation on the proliferation, cell-interaction, and genes expression of encapsulated hADSCs, as well as morphology and tubule structure formation of endothelial cells were observed, suggesting the biological roles of CTX and its modulation on microenvironment for cell development.
Collapse
Affiliation(s)
- Chuan Niu
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ying Xiong
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liping Yang
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiong Xiao
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shaojie Yang
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ziwei Huang
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuchu Yang
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Feng
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|