1
|
Shi Q, Zhang X, Wu M, Xia Y, Pan Y, Weng J, Li N, Zan X, Xia J. Emulsifying Lipiodol with pH-sensitive DOX@HmA nanoparticles for hepatocellular carcinoma TACE treatment eliminate metastasis. Mater Today Bio 2023; 23:100873. [PMID: 38149018 PMCID: PMC10750100 DOI: 10.1016/j.mtbio.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Lipiodol-based transcatheter arterial chemoembolization (TACE) is currently the predominant and first-line treatment option recommended by the global standard for unresectable hepatocellular carcinoma (HCC). However, the unstable emulsion of Lipiodol causes a substantial proportion of chemotherapy drugs to enter the circulation system, leading to poor accumulation in cancer tissues and unexpected side effects of chemotherapy drugs. Herein, we emulsified Lipiodol with a pH-sensitive drug delivery system assembled from hexahistidine and zinc ions (HmA) with a super-high loading capacity of doxorubicin (DOX) and a promising ability to penetrate bio-barriers for the effective treatment of HCC by TACE. In vitro tests showed that DOX@HmA was comparable to free DOX in killing HCC cells. Impressively, during the in vivo TACE treatment, the anti-tumor efficacy of DOX@HmA was significantly greater than that of free DOX, indicating that DOX@HmA increased the accumulation of DOX in tumor. Emulsifying Lipiodol with pH-sensitive DOX@HmA significantly inhibited cell regeneration and tumor angiogenesis and decreased the systemic side effects of chemotherapy, especially by suppressing pulmonary metastasis in liver VX2 tumors in rabbits by inhibiting epithelial-mesenchymal transition (EMT). Emulsifying tumor microenvironment-responsive drug delivery systems (DDSs) with Lipiodol could be a new strategy for clinical TACE chemotherapy with potentially enhanced HCC treatment.
Collapse
Affiliation(s)
- Qing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xingxing Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Compus, Shanghai, 201499, China
| | - Minmin Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yating Pan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jialu Weng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Na Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xingjie Zan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jinglin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
2
|
Zhou S, Yang R, Xie X, Wang L, Zheng S, Li N, Tang S, Zan X. pH-Responsive Hexa-Histidine Metal Assembly (HmA) with Enhanced Biocatalytic Cascades as the Vehicle for Glucose-Mediated Long-Acting Insulin Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301771. [PMID: 37269054 PMCID: PMC10427356 DOI: 10.1002/advs.202301771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/26/2023] [Indexed: 06/04/2023]
Abstract
Diabetes has been listed as one of the three major diseases that endanger human health. Accurately injecting insulin (Ins) depending on the level of blood glucose (LBG) is the standard treatment, especially controlling LBG in the long-term by a single injection. Herein, the pH-responsive hexa-histidine metal assembly (HmA) encapsulated with enzymes (GOx and CAT) and Ins (HmA@GCI) is engineered as the vehicle for glucose-mediated insulin delivery. HmA not only shows high proteins loading efficiency, but also well retained proteins activity and protect proteins from protease damage. Within HmA, the biocatalytic activities of enzymes and the efficiency of the cascade reaction between GOx and CAT are enhanced, leading to a super response to the change of LBG with insulin release and efficient clearance of harmful byproducts of GOx (H2 O2 ). In the treatment of diabetic mice, HmA@GCI reduces LBG to normal in half an hour and maintains for more than 5 days by a single subcutaneous injection, and nearly 24 days with four consecutive injections. During the test period, no symptoms of hypoglycemia and toxicity to tissues and organs are observed. These results indicate that HmA@GCI is a safe and long-acting hypoglycemic agent with prospective clinical application.
Collapse
Affiliation(s)
- Sijie Zhou
- School of Ophthalmology and OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Ruhui Yang
- School of Ophthalmology and OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Xiaoling Xie
- School of Ophthalmology and OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Liwen Wang
- Department of OphthalmologyHuzhou Central HospitalAffiliated Central hospital Huzhou UniversityHuzhou313000China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., LtdWenzhou325000China
| | - Na Li
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Sicheng Tang
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Xingjie Zan
- School of Ophthalmology and OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|