1
|
Liu T, Lu C, Jiang X, Wang Y, Chen Z, Qi C, Xu X, Feng X, Wang Q. Nano-Based Strategies Aiming at Tumor Microenvironment for Improved Cancer Therapy. Mol Pharm 2025. [PMID: 39818981 DOI: 10.1021/acs.molpharmaceut.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Malignant tumors pose a considerable threat to human life and health. Traditional treatments, such as radiotherapy and chemotherapy, often lack specificity, leading to collateral damage to normal tissues. Tumor microenvironment (TME) is characterized by hypoxia, acidity, redox imbalances, and elevated ATP levels factors that collectively promote tumor growth and metastasis. This review provides a comprehensive overview of the nanoparticles developed in recent years for TME-responsive strategies or TME-modulating methods for tumor therapy. The TME-responsive strategies focus on designing and synthesizing nanoparticles that can interact with the tumor microenvironment to achieve precisely controlled drug release. These nanoparticles activate drug release under specific conditions within the tumor environment, thereby enhancing the efficacy of the drugs while reducing toxicity to normal cells. Moreover, simply eliminating tumor cells does not fundamentally solve the problem. Only by comprehensively regulating the TME to make it unsuitable for tumor cell survival and proliferation can we achieve more thorough therapeutic effects and reduce the risk of tumor recurrence. TME regulation strategies aim to suppress the growth and metastasis of tumor cells by modulating various components within the TME. These strategies not only improve treatment outcomes but also have the potential to lay the foundation for future personalized cancer therapies.
Collapse
Affiliation(s)
- Tianhui Liu
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Changshun Lu
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Xue Jiang
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Yutong Wang
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Zhengrong Chen
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Chunshuang Qi
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Xiaoru Xu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun 130117, China
| | - Xiangru Feng
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Qingshuang Wang
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| |
Collapse
|
2
|
Chapdelaine A, Sun G. Molecular Pharmacology of Dasatinib Provides Unique Insights into the Mechanistic Basis of Success and Failure of Targeted Cancer Therapy. ACS Pharmacol Transl Sci 2025; 8:1-9. [PMID: 39816794 PMCID: PMC11729423 DOI: 10.1021/acsptsci.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025]
Abstract
Despite the enthusiasm for targeted cancer therapies in preclinical studies and the success of a select few drugs, many promising drug candidates fail in clinical trials. The gap between preclinical promise and clinical outcomes underscores the need to investigate factors influencing the success or failure of targeted therapies. Dasatinib, an inhibitor of Abl and Src protein tyrosine kinases, is highly effective toward chronic myeloid leukemia (CML) by targeting BCR-Abl, but it is ineffective against solid tumors when targeting Src kinases. A review reveals cytotoxic inhibition is a key attribute predictive of dasatinib's clinical efficacy toward CML, and cytostatic inhibition by targeting Src kinases is the underlying reason for the preclinical promise and clinical inefficacy toward solid tumors. The analysis reveals that preclinical cytotoxic inhibition is highly predictive of clinical efficacy and shows that cancer regression can only be achieved when the drug-target is an essential oncogenic driver in a monodriver cancer. The analysis highlights dasatinib's potential in achieving stable disease in solid tumors, supporting its use in combination therapies.
Collapse
Affiliation(s)
- Abygail
G. Chapdelaine
- Department of Cell and Molecular
Biology, University of Rhode Island, 120 Flagg Rd, Kingston, Rhode Island 02881, United States
| | - Gongqin Sun
- Department of Cell and Molecular
Biology, University of Rhode Island, 120 Flagg Rd, Kingston, Rhode Island 02881, United States
| |
Collapse
|
3
|
Hu Y, Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Nanoformula Design for Inducing Non-Apoptotic Cell Death Regulation: A Powerful Booster for Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2403493. [PMID: 39632361 DOI: 10.1002/adhm.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Cancer treatment has witnessed revolutionary advancements marked by the emergence of immunotherapy, specifically immune checkpoint blockade (ICB). However, the inherent low immunogenicity of tumor cells and the intricate immunosuppressive network within the tumor microenvironment (TME) pose significant challenges to the further development of immunotherapy. Nanotechnology has ushered in unprecedented opportunities and vast prospects for tumor immunotherapy. Nevertheless, traditional nano-formulations often rely on inducing apoptosis to kill cancer cells, which encounters the issue of immune silencing, hindering effective tumor immune activation. The non-apoptotic modes of regulated cell death (RCD), including pyroptosis, ferroptosis, autophagy, necroptosis, and cuproptosis, have gradually garnered attention. These non-apoptotic cell death pathways can induce effective immunogenic cell death (ICD), enhancing cancer immunotherapy. This review comprehensively explores advanced nano-formulation design strategies and their applications in enhancing cancer immunotherapy by promoting non-apoptotic RCD in recent years. It also discusses the potential advantages of these strategies in inducing tumor-specific non-apoptotic RCD. By deeply understanding the significance of non-apoptotic RCD in synergistic cancer immunotherapy, this article provides valuable insights for developing more advanced nano-delivery systems that can robustly induce highly immunogenic non-apoptotic modes, offering novel research and development avenues to address the clinical challenges encountered by immunotherapy represented by ICB.
Collapse
Affiliation(s)
- Yi Hu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Qing Yu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
4
|
Tang B, Huang R, Ma W. Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma. RSC Adv 2024; 14:38668-38688. [PMID: 39654926 PMCID: PMC11626385 DOI: 10.1039/d4ra07193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common types of cancers occurring in the head and neck region, is often associated with high mortality rates due to its invasiveness and morbidity. The mainstream treatment methods in clinical settings, including surgery, chemotherapy, and radiotherapy, may cause poor overall survival rate and prognosis, with issues such as drug resistance, damage to adjacent healthy tissues, and potential recurrences. Other treatment approaches such as immunotherapy, photodynamic therapy (PDT), and photothermal therapy (PPT) also suffer from inefficient tumor targeting and suboptimal therapeutic outcomes. Early detection is vital for HNSCC patients, but it is always limited by insensitivity and confusing clinical manifestations. Hence, it is highly desirable to develop optimized therapeutic and diagnostic strategies. With the boom in nanomaterials, nanotechnology-conducted HNSCC therapy has attracted widespread attention. Nanoparticles (NPs) are distinguished by their unique morphology and superior physicochemical property, and some can exhibit direct antitumor activity, while others serve as promising candidates for drug delivery. In addition, NPs offer the potential for structural modification for drug delivery and tumor targeting, enabling specific delivery to tumor cells through conjugation with biomarker ligands and improving cargo biocompatibility. This work reviews current therapies and diagnosis methods for HNSCC, highlights the characteristics of the major NPs, surveys their uses and advantages in the treatment of HNSCC, and discusses the obstacles and prospects in clinical applications, aiming to enlighten future research directions for nanotechnology-based therapy for HNSCC.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Rui Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
5
|
Shen XJ, Wei HL, Mo XC, Mo XX, Li L, He JC, Wei XY, Qin XJ, Xing SP, Luo Z, Chen ZQ, Yang J. Adaptor protein CEMIP reduces the chemosensitivity of small cell lung cancer via activation of an SRC-YAP oncogenic module. Acta Pharmacol Sin 2024; 45:2657-2671. [PMID: 39043968 PMCID: PMC11579373 DOI: 10.1038/s41401-024-01342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant malignancy with dismal prognosis due to rapid relapse after an initial treatment response. More effective treatments for SCLC are desperately needed. Our previous studies showed that cell migration-inducing hyaluronan binding protein (CEMIP) functionally promotes SCLC cell proliferation and metastasis. In this study, we investigated whether and how CEMIP regulates the chemosensitivity of SCLC. Through the GDSC database, we found that CEMIP expression levels were positively correlated with the IC50 values of several commonly used chemotherapeutic drugs in SCLC cells (cisplatin, gemcitabine, 5-fluorouracil and cyclophosphamide). We demonstrated that overexpression or knockdown of CEMIP in SCLC cells resulted in a notable increase or reduction in the IC50 value of cisplatin or etoposide, respectively. We further revealed that CEMIP functions as an adaptor protein in SCLC cells to interact with SRC and YAP through the 1-177 aa domain and 820-1361 aa domain, respectively, allowing the autophosphorylation of Y416 and activation of SRC, thus facilitating the interaction between YAP and activated SRC, and resulting in increased phosphorylation of Y357, protein stability, nuclear accumulation and transcriptional activation of YAP. Overexpressing SRC or YAP counteracted the CEMIP knockdown-mediated increase in the sensitivity of SCLC cells to cisplatin and etoposide. The combination of the SRC inhibitor dasatinib or the YAP inhibitor verteporfin and cisplatin/etoposide (EP regimen) displayed excellent synergistic antitumor effects on SCLC both in vitro and in vivo. This study demonstrated that targeted therapy against the CEMIP/SRC/YAP complex is a potential strategy for SCLC and provides a rationale for the development of future clinical trials with translational prospects.
Collapse
Affiliation(s)
- Xiao-Ju Shen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hui-Lan Wei
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Cheng Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Xiang Mo
- Department of Pharmacology, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Li Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, China
| | - Jing-Chuan He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xin-Yu Wei
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Jun Qin
- Department of Pharmaceutical Analysis, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Shang-Ping Xing
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Zhuo Luo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| | - Zhi-Quan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Drug Basic Research for Prevention and Treatment of Geriatric Diseases, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
- The Laboratory of Toxicology of Traditional Chinese Medicine, Leve III Laboratory of National Administration of Traditional Chinese Medicine, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Wang F, Fan Y, Liu Y, Lou X, Sutrisno L, Peng S, Li J. Oxygen-carrying semiconducting polymer nanoprodrugs induce sono-pyroptosis for deep-tissue tumor treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230100. [PMID: 39175882 PMCID: PMC11335461 DOI: 10.1002/exp.20230100] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 08/24/2024]
Abstract
Sonodynamic therapy (SDT) has been explored for cancer therapy, especially for deep tumors due to its low tissue penetration restriction. The therapeutic efficacy of SDT is limited due to the complicated tumor microenvironment. This study reports the construction of oxygen-carrying semiconducting polymer nanoprodrugs (OSPNpro) for deep tumor treatment via combining amplified SDT with pyroptosis. An oxygen carrier perfluorohexane, sonodynamic semiconducting polymer as the sonosensitizer, and reactive oxygen species (ROS)-responsive prodrug are co-loaded into a nanoparticle system, leading to the formation of these polymer nanoprodrugs. Such OSPNpro show an effective accumulation in tumor tissues after systemic administration, in which they deliver oxygen to relieve tumor hypoxia microenvironment and thus mediate amplified SDT via producing ROS under ultrasound (US) irradiation, even when the tumors are covered with a 2-cm chicken breast tissue. In addition, the ROS-responsive prodrugs are activated by the generated ROS to trigger pyroptosis of tumor cells. Such a sono-pyroptosis induces a strong antitumor immunity with obviously higher level infiltrations of effector immune cells into tumors. Therefore, OSPNpro-based combinational therapy can greatly inhibit the growth of 2-cm chicken breast tissue-covered deep tumors and suppress tumor metastasis. This study offers a prodrug nanoplatform for treatment of deep tumor via sono-pyroptosis strategy.
Collapse
Affiliation(s)
- Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghaiChina
| | - Yongliang Fan
- Department of Cardiovascular SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghaiChina
| | - Xiangxin Lou
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghaiChina
| | - Linawati Sutrisno
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)TsukubaJapan
| | - Shaojun Peng
- Zhuhai Institute of Translational MedicineZhuhai Precision Medical CenterZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)ZhuhaiGuangdongChina
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghaiChina
| |
Collapse
|
7
|
Ji F, Shi C, Shu Z, Li Z. Nanomaterials Enhance Pyroptosis-Based Tumor Immunotherapy. Int J Nanomedicine 2024; 19:5545-5579. [PMID: 38882539 PMCID: PMC11178094 DOI: 10.2147/ijn.s457309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Pyroptosis, a pro-inflammatory and lytic programmed cell death pathway, possesses great potential for antitumor immunotherapy. By releasing cellular contents and a large number of pro-inflammatory factors, tumor cell pyroptosis can promote dendritic cell maturation, increase the intratumoral infiltration of cytotoxic T cells and natural killer cells, and reduce the number of immunosuppressive cells within the tumor. However, the efficient induction of pyroptosis and prevention of damage to normal tissues or cells is an urgent concern to be addressed. Recently, a wide variety of nanoplatforms have been designed to precisely trigger pyroptosis and activate the antitumor immune responses. This review provides an update on the progress in nanotechnology for enhancing pyroptosis-based tumor immunotherapy. Nanomaterials have shown great advantages in triggering pyroptosis by delivering pyroptosis initiators to tumors, increasing oxidative stress in tumor cells, and inducing intracellular osmotic pressure changes or ion imbalances. In addition, the challenges and future perspectives in this field are proposed to advance the clinical translation of pyroptosis-inducing nanomedicines.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Chunyu Shi
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhongmin Li
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
8
|
Ban W, Chen Z, Zhang T, Du T, Huo D, Zhu G, He Z, Sun J, Sun M. Boarding pyroptosis onto nanotechnology for cancer therapy. J Control Release 2024; 370:653-676. [PMID: 38735396 DOI: 10.1016/j.jconrel.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Pyroptosis, a non-apoptotic programmed cellular inflammatory death mechanism characterized by gasdermin (GSDM) family proteins, has gathered significant attention in the cancer treatment. However, the alarming clinical trial data indicates that pyroptosis-mediated cancer therapeutic efficiency is still unsatisfactory. It is essential to integrate the burgeoning biomedical findings and innovations with potent technology to hasten the development of pyroptosis-based antitumor drugs. Considering the rapid development of pyroptosis-driven cancer nanotherapeutics, here we aim to summarize the recent advances in this field at the intersection of pyroptosis and nanotechnology. First, the foundation of pyroptosis-based nanomedicines (NMs) is outlined to illustrate the reliability and effectiveness for the treatment of tumor. Next, the emerging nanotherapeutics designed to induce pyroptosis are overviewed. Moreover, the cross-talk between pyroptosis and other cell death modalities are discussed, aiming to explore the mechanistic level relationships to provide guidance strategies for the combination of different types of antitumor drugs. Last but not least, the opportunities and challenges of employing pyroptosis-based NMs in potential clinical cancer therapy are highlighted.
Collapse
Affiliation(s)
- Weiyue Ban
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhichao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tengda Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Dianqiu Huo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Guorui Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Lv W, Wang Y, Fu H, Liang Z, Huang B, Jiang R, Wu J, Zhao Y. Recent advances of multifunctional zwitterionic polymers for biomedical application. Acta Biomater 2024; 181:19-45. [PMID: 38729548 DOI: 10.1016/j.actbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Zwitterionic polymers possess equal total positive and negative charges in the repeating units, making them electrically neutral overall. This unique property results in superhydrophilicity, which makes the zwitterionic polymers highly effective in resisting protein adsorption, thus endowing the drug carriers with long blood circulation time, inhibiting thrombus formation on biomedical devices in contact with blood, and ensuring the good sensitivity of sensors in biomedical application. Moreover, zwitterionic polymers have tumor-targeting ability and pH-responsiveness, rendering them ideal candidates for antitumor drug delivery. Additionally, the high ionic conductivity of zwitterionic polymers makes them an important raw material for ionic skin. Zwitterionic polymers exhibit remarkable resistance to bacterial adsorption and growth, proving their suitability in a wide range of biomedical applications such as ophthalmic applications, and wound dressings. In this paper, we provide an in-depth analysis of the different structures and characteristics of zwitterionic polymers and highlight their unique qualities and suitability for biomedical applications. Furthermore, we discuss the limitations and challenges that must be overcome to realize the full potential of zwitterionic polymers and present an optimistic perspective for zwitterionic polymers in the biomedical fields. STATEMENT OF SIGNIFICANCE: Zwitterionic polymers have a series of excellent properties such as super hydrophilicity, anti-protein adsorption, antibacterial ability and good ionic conductivity. However, biomedical applications of multifunctional zwitterionic polymers are still a major field to be explored. This review focuses on the design and application of zwitterionic polymers-based nanosystems for targeted and responsive delivery of antitumor drugs and cancer diagnostic agents. Moreover, the use of zwitterionic polymers in various biomedical applications such as biomedical devices in contact with blood, biosensors, ionic skin, ophthalmic applications and wound dressings is comprehensively described. We discuss current results and future challenges for a better understanding of multifunctional zwitterionic polymers for biomedical applications.
Collapse
Affiliation(s)
- Wenfeng Lv
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanhui Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Huayu Fu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyang Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bangqi Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ruiqin Jiang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
10
|
Lin C, Lin P, Yao H, Liu S, Lin X, He R, Teng Z, Zuo X, Li Y, Ye J, Zhu G. Modulation of YBX1-mediated PANoptosis inhibition by PPM1B and USP10 confers chemoresistance to oxaliplatin in gastric cancer. Cancer Lett 2024; 587:216712. [PMID: 38364962 DOI: 10.1016/j.canlet.2024.216712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Gastric cancer (GC) is a common malignant tumor of the digestive tract, and chemoresistance significantly impacts GC patients' prognosis. PANoptosis has been associated with oxaliplatin-induced cell death. However, the direct regulatory role of YBX1 in cellular chemoresistance through PANoptosis remains unclear. In this study, we investigated the impact of YBX1 on regulating PANoptosis and its influence on the resistance of gastric cancer cells to oxaliplatin. Through overexpression and silencing experiments, we assessed YBX1's effect on proliferation and PANoptosis regulation in gastric cancer cells. Additionally, we identified PPM1B and USP10 as interacting proteins with YBX1 and confirmed their influence on YBX1 molecular function and protein expression levels. Our results demonstrate that YBX1 suppresses PANoptosis, leading to enhanced resistance of gastric cancer cells to oxaliplatin. Furthermore, we found that PPM1B and USP10 play critical roles in regulating YBX1-mediated PANoptosis inhibition. PPM1B directly interacts with YBX1, causing dephosphorylation of YBX1 at serine 314 residue. This dephosphorylation process affects the deubiquitination of YBX1 mediated by USP10, resulting in decreased YBX1 protein expression levels and impacting PANoptosis and oxaliplatin resistance in gastric cancer cells. Additionally, we discovered that the 314th amino acid of YBX1 has a profound impact on its own protein expression abundance, thereby affecting the functionality of YBX1. In conclusion, our study reveals the significance of PPM1B-mediated dephosphorylation of YBX1 and USP10-mediated deubiquitination in regulating PANoptosis and sensitivity to oxaliplatin in gastric cancer cells. These findings offer a potential therapeutic strategy for patients with oxaliplatin-resistant gastric cancer.
Collapse
Affiliation(s)
- Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Penghang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hengxin Yao
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Songyi Liu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Xiang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Ruofan He
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Zuhong Teng
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Xinyi Zuo
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Yuxuan Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
11
|
Liu J, Chen T, Liu X, Li Z, Zhang Y. Engineering materials for pyroptosis induction in cancer treatment. Bioact Mater 2024; 33:30-45. [PMID: 38024228 PMCID: PMC10654002 DOI: 10.1016/j.bioactmat.2023.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer remains a significant global health concern, necessitating the development of innovative therapeutic strategies. This research paper aims to investigate the role of pyroptosis induction in cancer treatment. Pyroptosis, a form of programmed cell death characterized by the release of pro-inflammatory cytokines and the formation of plasma membrane pores, has gained significant attention as a potential target for cancer therapy. The objective of this study is to provide a comprehensive overview of the current understanding of pyroptosis and its role in cancer treatment. The paper discusses the concept of pyroptosis and its relationship with other forms of cell death, such as apoptosis and necroptosis. It explores the role of pyroptosis in immune activation and its potential for combination therapy. The study also reviews the use of natural, biological, chemical, and multifunctional composite materials for pyroptosis induction in cancer cells. The molecular mechanisms underlying pyroptosis induction by these materials are discussed, along with their advantages and challenges in cancer treatment. The findings of this study highlight the potential of pyroptosis induction as a novel therapeutic strategy in cancer treatment and provide insights into the different materials and mechanisms involved in pyroptosis induction.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - XianLing Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Oncology, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
12
|
Siquara da Rocha LDO, de Morais EF, de Oliveira LQR, Barbosa AV, Lambert DW, Gurgel Rocha CA, Coletta RD. Exploring beyond Common Cell Death Pathways in Oral Cancer: A Systematic Review. BIOLOGY 2024; 13:103. [PMID: 38392321 PMCID: PMC10886582 DOI: 10.3390/biology13020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common and lethal type of head and neck cancer in the world. Variable response and acquisition of resistance to traditional therapies show that it is essential to develop novel strategies that can provide better outcomes for the patient. Understanding of cellular and molecular mechanisms of cell death control has increased rapidly in recent years. Activation of cell death pathways, such as the emerging forms of non-apoptotic programmed cell death, including ferroptosis, pyroptosis, necroptosis, NETosis, parthanatos, mitoptosis and paraptosis, may represent clinically relevant novel therapeutic opportunities. This systematic review summarizes the recently described forms of cell death in OSCC, highlighting their potential for informing diagnosis, prognosis and treatment. Original studies that explored any of the selected cell deaths in OSCC were included. Electronic search, study selection, data collection and risk of bias assessment tools were realized. The literature search was carried out in four databases, and the extracted data from 79 articles were categorized and grouped by type of cell death. Ferroptosis, pyroptosis, and necroptosis represented the main forms of cell death in the selected studies, with links to cancer immunity and inflammatory responses, progression and prognosis of OSCC. Harnessing the potential of these pathways may be useful in patient-specific prognosis and individualized therapy. We provide perspectives on how these different cell death types can be integrated to develop decision tools for diagnosis, prognosis, and treatment of OSCC.
Collapse
Affiliation(s)
- Leonardo de Oliveira Siquara da Rocha
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Everton Freitas de Morais
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| | - Andressa Vollono Barbosa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Daniel W Lambert
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK
| | - Clarissa A Gurgel Rocha
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Department of Propaedeutics, School of Dentistry, Federal University of Bahia, Salvador 40110-909, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil
| | - Ricardo D Coletta
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| |
Collapse
|
13
|
Bagheri M, Zandieh MA, Daryab M, Samaei SS, Gholami S, Rahmanian P, Dezfulian S, Eary M, Rezaee A, Rajabi R, Khorrami R, Salimimoghadam S, Hu P, Rashidi M, Ardakan AK, Ertas YN, Hushmandi K. Nanostructures for site-specific delivery of oxaliplatin cancer therapy: Versatile nanoplatforms in synergistic cancer therapy. Transl Oncol 2024; 39:101838. [PMID: 38016356 DOI: 10.1016/j.tranon.2023.101838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nanostructures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo-sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of nanoparticle-mediated phototherapy can increase OXA's potential in cancer suppression. All of these subjects and their clinical implications are discussed in the current review.
Collapse
Affiliation(s)
- Mohsen Bagheri
- Radiology Resident, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Eary
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
14
|
Sun Y, Yang X, Guan S, Ma T, Jiang Z, Gao M, Xu Y, Cong B. The role of phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) in regulating the progression of oral squamous cell carcinoma. Arch Oral Biol 2023; 156:105810. [PMID: 37852106 DOI: 10.1016/j.archoralbio.2023.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE The aim of this study was to explore the role of the tumor suppressor phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) on oral squamous cell carcinoma (OSCC) and its molecular mechanism. DESIGN Immunohistochemistry detected the expression of PAG1 in normal and tumor tissues. The PAG1 overexpressed OSCC cell lines were constructed by lentivirus transfection. Cell Counting Kit-8 assay (CCK-8), clone formation and flow cytometry evaluated the impact of PAG1 on the proliferation and apoptosis of OSCC cells. RNA sequencing (RNA-seq) detected the changes in intracellular genes, and transmission electron microscope (TEM) was used to compare the number of autophagosomes in OSCC cells between Negative and PAG1 group. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot were used to determine the expression of signaling pathway-related mRNA and proteins respectively. RESULTS In contrast to the normal tissues, PAG1 expression was significantly downregulated in tumor tissues. Treatment with lentivirus transfection, the expression of PAG1 in the OSCC cell lines was increase. Notably, transfected with PAG1-overexpressing lentivirus cells inhibited the proliferation of OSCC cells and promoted OSCC cells apoptosis. RNA-seq revealed that PAG1 mainly modulated the mitophagy and autophagy pathway, and many autophagosomes were observed in the PAG1 group using TEM. Mechanistically, we found that PAG1 upregulated the expression of autophagy related factors through inhibiting PI3K/Akt/mTOR signal pathway activation. CONCLUSION Overexpression of PAG1 inhibited OSCC progression by activating autophagy, its mechanism might be related to inhibition of PI3K/Akt/mTOR signal pathway phosphorylation.
Collapse
Affiliation(s)
- Yu Sun
- Medical College, Qingdao University, Qingdao 266071, China
| | - Xinting Yang
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China
| | - Shulong Guan
- Department of Surgery, Qingdao Shinan District People's Hospital, Qingdao 266520, China
| | - Tengyu Ma
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China
| | - Zhou Jiang
- Department of Reproductive, Women and Children's Hospital Affiliated to Qingdao University, Qingdao 266034, China
| | - Meihua Gao
- Central laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| | - Yingjie Xu
- Central laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| | - Beibei Cong
- Central laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| |
Collapse
|
15
|
Zhang Y, Han X, Wang K, Liu D, Ding X, Hu Z, Wang J. Co-Delivery Nanomicelles for Potentiating TNBC Immunotherapy by Synergetically Reshaping CAFs-Mediated Tumor Stroma and Reprogramming Immunosuppressive Microenvironment. Int J Nanomedicine 2023; 18:4329-4346. [PMID: 37545872 PMCID: PMC10403052 DOI: 10.2147/ijn.s418100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose Immune checkpoint inhibitors (ICI) have received the most attention for triple negative breast cancer (TNBC), while the response rate to ICI remains limited due to insufficient T cell infiltration. It is therefore essential that alternative strategies are developed to improve the therapeutic outcomes of ICI in non-responsive TNBC cases. The efficacy of pH-responsive nanomicelles (P/A/B@NM) co-loaded with paclitaxel (PTX), CXCR4 antagonist AMD3100, and PD-1/PD-L1 inhibitor BMS-1 activating the T cell-mediated antitumor immune response were evaluated using a 4T1 antiPD-1-resistance breast tumor model. Methods In vitro, pH-responsive antitumor effect of P/A/B@NM was investigated by assessing cell viability, migration and invasion. In vivo, the distribution of P/A/B@NM was visualized in 4T1 orthotopic TNBC model using an IVIS spectrum imaging instrument. The efficacy of the co-delivery nanocarriers was evaluated by monitoring mouse survival, tumor growth and metastasis, cancer-associated fibroblasts (CAFs)-mediated tumor stroma and immunosuppressive microenvironment components, and the recruitment and infiltration of CD8+ T cells. Results The prepared P/A/B@NM in acid microenvironment demonstrates remarkable cytotoxicity against MDA-MB-231 cells, with an IC50 of 105 μg/mL. Additionally, it exhibits substantial inhibition of tumor cell migration and invasion. The P/A/B@NM based on co-delivery nanocarriers efficiently accumulate at the tumor site and release the drugs in a pH-responsive controlled manner. The nanomedicine-PTX, AMD3100, and BMS-1 formulation significantly inhibits tumor growth and lung/liver metastasis by inducing antitumor immune responses via CXCL12/CXCR4 axis blockade, and immunogenic cell death to reprogramme both tumor stroma and immunosuppressive microenvironment. As a result, CD8+ T cell infiltration is triggered into the tumor site, boosting the efficacy of ICI therapy synergistically. Conclusion These results demonstrate that combination therapy using P/A/B@NM reshapes CAFs-mediated tumor stroma and immunosuppressive microenvironment, which can enhance the infiltration of CD8+ T cells, thereby reactivating anti-tumor immunity for non-responsive TNBC cases.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Xue Han
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Ke Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Da Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Xiaoyun Ding
- Oncology Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Zhiqiang Hu
- Oncology Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Jing Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, 750004, People’s Republic of China
| |
Collapse
|
16
|
Zhang Y, Dong P, Yang L. The role of nanotherapy in head and neck squamous cell carcinoma by targeting tumor microenvironment. Front Immunol 2023; 14:1189323. [PMID: 37292204 PMCID: PMC10244756 DOI: 10.3389/fimmu.2023.1189323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) refers to a group of highly malignant and pathogenically complex tumors. Traditional treatment methods include surgery, radiotherapy, and chemotherapy. However, with advancements in genetics, molecular medicine, and nanotherapy, more effective and safer treatments have been developed. Nanotherapy, in particular, has the potential to be an alternative therapeutic option for HNSCC patients, given its advantageous targeting capabilities, low toxicity and modifiability. Recent research has highlighted the important role of the tumor microenvironment (TME) in the development of HNSCC. The TME is composed of various cellular components, such as fibroblasts, vascular endothelial cells, and immune cells, as well as non-cellular agents such as cytokines, chemokines, growth factors, extracellular matrix (ECM), and extracellular vesicles (EVs). These components greatly influence the prognosis and therapeutic efficacy of HNSCC, making the TME a potential target for treatment using nanotherapy. By regulating angiogenesis, immune response, tumor metastasis and other factors, nanotherapy can potentially alleviate HNSCC symptoms. This review aims to summarize and discuss the application of nanotherapy that targets HNSCC's TME. We highlight the therapeutic value of nanotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Pengbo Dong
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|