1
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Luan X, Chen P, Miao L, Yuan X, Yu C, Di G. Ferroptosis in organ ischemia-reperfusion injuries: recent advancements and strategies. Mol Cell Biochem 2025; 480:19-41. [PMID: 38556592 DOI: 10.1007/s11010-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/24/2024] [Indexed: 04/02/2024]
Abstract
Ferroptosis is a newly discovered type of regulated cell death participated in multiple diseases. Different from other classical cell death programs such as necrosis and apoptosis, ferroptosis involving iron-catalyzed lipid peroxidation is characterized by Fe2+ accumulation and mitochondria alterations. The phenomenon of oxidative stress following organ ischemia-reperfusion (I/R) has recently garnered attention for its connection to the onset of ferroptosis and subsequent reperfusion injuries. This article provides a comprehensive overview underlying the mechanisms of ferroptosis, with a further focus on the latest research progress regarding interference with ferroptotic pathways in organ I/R injuries, such as intestine, lung, heart, kidney, liver, and brain. Understanding the links between ferroptosis and I/R injury may inform potential therapeutic strategies and targeted agents.
Collapse
Affiliation(s)
- Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Ding J, Wang BY, Yang YF, Kuai LY, Wan JJ, Zhang M, Xia HY, Wang Y, Zheng Z, Meng XW, Peng K, Ji FH. Ciprofol Ameliorates Myocardial Ischemia/Reperfusion Injury by Inhibiting Ferroptosis Through Upregulating HIF-1α. Drug Des Devel Ther 2024; 18:6115-6132. [PMID: 39711877 PMCID: PMC11663391 DOI: 10.2147/dddt.s480514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
Purpose Ciprofol is a novel intravenous anesthetic that has been increasingly used in clinical anesthesia and sedation. Studies suggested that ciprofol reduced oxidative stress and inflammatory responses to alleviate cerebral ischemia/reperfusion (I/R) injury, but whether ciprofol protects the heart against I/R injury and the mechanisms are unknown. Herein, we assessed the effects of ciprofol on ferroptosis during myocardial I/R injury. Methods Experimental models of myocardial I/R injury in mice (ischemia for 30 min and reperfusion for 24 h) and hypoxia/reoxygenation (H/R) injury in H9c2 cardiomyocytes (hypoxia for 6 h followed by 6 h of reoxygenation) were established. Ciprofol was used prior to ischemia or hypoxia. Echocardiography, myocardial TTC staining, HE staining, DAB-enhanced Perl's staining, transmission electron microscopy, FerroOrange staining, Liperfluo staining, JC-1 staining, Rhodamine-123 staining, DCFH-DA staining, and Western blot were performed. Cell viability, serum cardiac enzymes, and oxidative- and ferroptosis-related biomarkers were measured. HIF-1α siRNA transfection and the specific inhibitor BAY87-2243 were utilized for mechanistic investigation. Results Ciprofol treatment reduced myocardial infarct area and myocardium damage, alleviated oxidative stress and mitochondrial injury, suppressed Fe2+ accumulation and ferroptosis, and improved cardiac function in mice with myocardial I/R injury. Ciprofol also increased cell viability, attenuated mitochondrial damage, and reduced intracellular Fe2+ and lipid peroxidation in cardiomyocytes with H/R injury. Ciprofol enhanced the protein expression of HIF-1α and GPX4 and reduced the expression of ACSL4. Specifically, the protective effects of ciprofol against I/R or H/R injury were abolished by downregulating the expression of HIF-1α using siRNA transfection or the inhibitor BAY87-2243. Conclusion Ciprofol ameliorated myocardial I/R injury in mice and H/R injury in cardiomyocytes by inhibiting ferroptosis via the upregulation of HIF-1α expression.
Collapse
Affiliation(s)
- Jun Ding
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Department of Anesthesiology, Taicang First People’s Hospital, Taicang, Jiangsu, People’s Republic of China
| | - Bi-Ying Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Yu-Fan Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Ling-Yu Kuai
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jing-jie Wan
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Mian Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Hai-Yan Xia
- Department of Anesthesiology, Taicang First People’s Hospital, Taicang, Jiangsu, People’s Republic of China
| | - Yao Wang
- Department of Anesthesiology, Taicang First People’s Hospital, Taicang, Jiangsu, People’s Republic of China
| | - Zhong Zheng
- Department of Anesthesiology, Taicang First People’s Hospital, Taicang, Jiangsu, People’s Republic of China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Zhou X, Wang H, Yan B, Nie X, Chen Q, Yang X, Lei M, Guo X, Ouyang C, Ren Z. Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07642-5. [PMID: 39641901 DOI: 10.1007/s10557-024-07642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Cardiovascular diseases (CVDs) are major public health problems that threaten the lives and health of individuals. The article has reviewed recent progresses about ferroptosis and ferroptosis-related intervention approaches for the treatment of CVDs and provided more references and strategies for targeting ferroptosis to prevent and treat CVDs. METHODS A comprehensive review was conducted using the literature researches. RESULTS AND DISCUSSION Many ferroptosis-targeted compounds and ferroptosis-related genes may be prospective targets for treating CVDs and our review provides a solid foundation for further studies about the detailed pathological mechanisms of CVDs. CONCLUSION There are challenges and limitations about the translation of ferroptosis-targeted potential therapies from experimental research to clinical practice. It warrants further exploration to pursure safer and more effective ferroptosis-targeted thereapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Xianpeng Zhou
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Hao Wang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Biao Yan
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xinwen Nie
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Qingjie Chen
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaosong Yang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Min Lei
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiying Guo
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Changhan Ouyang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Zhanhong Ren
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Xu L, Yang J, Cao X, Chen J, Liu Z, Cai L, Yu Y, Huang H. Sequential system based on ferritin delivery system and cell therapy for modulating the pathological microenvironment and promoting recovery. Int J Pharm 2024; 664:124607. [PMID: 39159856 DOI: 10.1016/j.ijpharm.2024.124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The vicious crosstalk among capillarization of hepatic sinusoidal endothelial cells (LSECs), activation of hepatic stellate cells (aHSCs), and hepatocyte damage poses a significant impediment to the successful treatment of liver fibrosis. In this study, we propose a sequential combination therapy aimed at disrupting the malignant crosstalk and reshaping the benign microenvironment while repairing damaged hepatocytes to achieve effective treatment of liver fibrosis. Firstly, H-subunit apoferrin (Ferritin) was adopted to load platycodonin D (PLD) and MnO2, forming ferritin@MnO2/PLD (FMP) nanoparticles, which exploited the high affinity of ferritin for the highly expressed transferrin receptor 1 (TfR1) to achieve the precise targeted delivery of FMP in the liver. Upon PLD intervention, restoration of the fenestration pores in capillarized LSECs was facilitated by modulating the phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT) and Kruppel Like Factor 2 (KLF2) signaling pathways both in vitro and in vivo, enabling efficient entry of FMP into the Disse space. Subsequently, FMP NPs effectively inhibited HSC activation by modulating the TLR2/TLR4/NF-κB-p65 signaling pathway. Moreover, FMP NPs efficiently scavenged reactive oxygen species (ROS) and mitigated the expression of inflammatory mediators, thereby reshaping the microenvironment to support hepatocyte repair. Finally, administration of bone marrow mesenchymal stem cells (BMMSCs) was employed to promote the regeneration and functional recovery of damaged hepatocytes. In conclusion, the combined sequential therapy involving FMP and BMMSCs effectively attenuated liver fibrosis induced by CCl4 administration, resulting in significant amelioration of the fibrotic condition. The therapeutic strategy outlined in this study underscores the significance of disrupting the deleterious cellular interactions and remodeling the microenvironment, thereby presenting a promising avenue for clinical intervention in liver fibrosis.
Collapse
Affiliation(s)
- Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jie Yang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Haimen People's Hospital, Nantong 226100, China
| | - Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiayi Chen
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zhikuan Liu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Liangliang Cai
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Pharmacy School of Nantong University, Nantong 226001, China.
| | - Yanyan Yu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
7
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Jin B, Zhang Z, Zhang Y, Yang M, Wang C, Xu J, Zhu Y, Mi Y, Jiang J, Sun Z. Ferroptosis and myocardial ischemia-reperfusion: mechanistic insights and new therapeutic perspectives. Front Pharmacol 2024; 15:1482986. [PMID: 39411064 PMCID: PMC11473306 DOI: 10.3389/fphar.2024.1482986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant factor in the development of cardiac dysfunction following a myocardial infarction. Ferroptosis, a type of regulated cell death driven by iron and marked by lipid peroxidation, has garnered growing interest for its crucial involvement in the pathogenesis of MIRI.This review comprehensively examines the mechanisms of ferroptosis, focusing on its regulation through iron metabolism, lipid peroxidation, VDAC signaling, and antioxidant system dysregulation. We also compare ferroptosis with other forms of cell death to highlight its distinct characteristics. Furthermore, the involvement of ferroptosis in MIRI is examined with a focus on recent discoveries concerning ROS generation, mitochondrial impairment, autophagic processes, ER stress, and non-coding RNA regulation. Lastly, emerging therapeutic strategies that inhibit ferroptosis to mitigate MIRI are reviewed, providing new insights into potential clinical applications.
Collapse
Affiliation(s)
- Binwei Jin
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhiming Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Minjun Yang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Wang
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jiayi Xu
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Yu Zhu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
9
|
Zhou M, Jia X, Liu H, Xue Y, Wang Y, Li Z, Wu Y, Rui Y. Bibliometric analysis of skeletal muscle ischemia/reperfusion (I/R) research from 1986 to 2022. Heliyon 2024; 10:e37492. [PMID: 39309867 PMCID: PMC11416534 DOI: 10.1016/j.heliyon.2024.e37492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Tissue damage due to ischemia and reperfusion is a critical medical problem worldwide. Studies in this field have made remarkable advances in understanding the pathogenesis of ischemia/reperfusion (I/R) injury and its treatment with new and known drugs. However, no bibliometric analysis exists in this area of research. Methods Research articles and reviews related to skeletal muscle I/R from 1986 to 2022 were retrieved from the Web of Science Core Collection. Bibliometric analysis was performed using Microsoft Excel 2019, VOSviewer (version 1.6.19), Bibliometrix (R-Tool for R-Studio), and CiteSpace (version 6.1.R5). Results A total of 3682 research articles and reviews from 2846 institutions in 83 countries were considered in this study. Most studies were conducted in the USA. Hobson RW (UMDNJ-New Jersey Medical School) had the highest publication, and Korthuis RJ (Louisiana State University) had the highest co-citations. Our analysis showed that, though the Journal of Surgical Research was most favored, the Journal of Biological Chemistry had the highest number of co-citations. The pathophysiology, interventions, and molecular mechanisms of skeletal muscle I/R injury emerged as the primary research areas, with "apoptosis," "signaling pathway," and "oxidative stress" as the main keywords of research hotspots. Conclusions This study provides a thorough overview of research trends and focal points in skeletal muscle I/R injury by applying bibliometric and visualization techniques. The insights gained from our findings offer a profound understanding of the evolving landscape of skeletal muscle I/R injury research, thereby functioning as a valuable reference and roadmap for future investigations.
Collapse
Affiliation(s)
| | | | | | - Yuan Xue
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yapeng Wang
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Zeqing Li
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yongwei Wu
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yongjun Rui
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| |
Collapse
|
10
|
Wang Y, Li S, Li W, Wu J, Hu X, Tang T, Liu X. Cardiac-targeted and ROS-responsive liposomes containing puerarin for attenuating myocardial ischemia-reperfusion injury. Nanomedicine (Lond) 2024; 19:2335-2355. [PMID: 39316570 PMCID: PMC11492708 DOI: 10.1080/17435889.2024.2402678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: This study aimed to construct an ischemic cardiomyocyte-targeted and ROS-responsive drug release system to reduce myocardial ischemia-reperfusion injury (MI/RI).Methods: We constructed thioketal (TK) and cardiac homing peptide (CHP) dual-modified liposomes loaded with puerarin (PUE@TK/CHP-L), which were expected to deliver drugs precisely into ischemic cardiomyocytes and release drugs in response to the presence of high intracellular ROS levels. The advantages of PUE@TK/CHP-L were assessed by cellular pharmacodynamics, in vivo fluorescence imaging and animal pharmacodynamics.Results: PUE@TK/CHP-L significantly inhibited apoptosis and ferroptosis in H/R-injured cardiomyocytes and also actively targeted ischemic myocardium. Based on these advantages, PUE@TK/CHP-L could significantly enhance the drug's ability to attenuate MI/RI.Conclusion: PUE@TK/CHP-L had potential clinical value in the precise treatment of MI/RI.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| |
Collapse
|
11
|
Li Q, Lv H, Chen Y, Shen J, Shi J, Zhou C. Dose-Dependent Relationship between Iron Metabolism and Perioperative Myocardial Injury in Cardiac Surgery with Cardiopulmonary Bypass: A Retrospective Analysis. Cardiology 2024:1-9. [PMID: 39284297 DOI: 10.1159/000541213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/24/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION We sought to comprehensively explore the potential linear and nonlinear relationship between preoperative iron metabolism and perioperative myocardial injury (PMI) following cardiac surgery with cardiopulmonary bypass (CPB). METHODS Patients who underwent cardiac surgery with CPB between December 2018 and April 2021 were retrospectively collected. The measurements of iron metabolism included serum iron (SI), serum ferritin (SF), transferrin (TRF), transferrin saturation (TS), and total iron-binding capacity (TIBC). Logistic regression and restricted cubic spline (RCS) models were used for linear and nonlinear analysis. The primary outcome was PMI with a 100× upper reference limit. RESULTS Of 2,420 patients screened, 744 eligible patients were enrolled for the final analysis. The incidence of PMI was 25.7%. No significant linear relationship was observed. In the RCS models adjusted with age (median: 56), female, and history of diabetes, a statistically significant difference was detected between TRF (p for nonlinear 0.0152) or TIBC (p for nonlinear 0.0477) and PMI. The gentle U-shaped relationship observed between TRF, TIBC, and PMI suggests that when TRF and TIBC increase, the risk decreases, reaching its lowest point when TRF = 2.4 and TIBC = 54. Nevertheless, as TRF and TIBC continue to increase, the risk starts to rise again. Subgroup analyses yielded consistent findings, with a notable emphasis on older patients who were more susceptible to variations in iron metabolism. CONCLUSION Iron metabolism, including TRF, and TIBC, exhibited a nonlinear relationship with PMI by the RCS model adjusted by age, gender, and history of diabetes.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Lv
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuye Chen
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjia Shen
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Shi
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Zhang Z, Liu Y, Huang D, Huang Z. Single-Cell WGCNA Combined with Transcriptome Sequencing to Study the Molecular Mechanisms of Inflammation-Related Ferroptosis in Myocardial Ischemia-Reperfusion Injury. J Inflamm Res 2024; 17:6203-6227. [PMID: 39281774 PMCID: PMC11397271 DOI: 10.2147/jir.s476456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Myocardial ischemia-reperfusion injury (MIRI) is characterized by inflammation and ferroptosis, but the precise mechanisms remain unknown. This study used single-cell transcriptomics technology to investigate the changes in various cell subtypes during MIRI and the regulatory network of ferroptosis-related genes and immune infiltration. Methods Datasets GSE146285, GSE83472, GSE61592, and GSE160516 were obtained from Gene Expression Omnibus. Each cell subtype in the tissue samples was documented. The Seurat package was used for data preprocessing, standardization, and clustering. Cellphonedb was used to investigate the ligand-receptor interactions between cells. The hdWGCNA analysis was used to create a gene co-expression network. GSVA and GSEA were combined to perform functional enrichment and pathway analysis on the gene set. Furthermore, characteristic genes of the disease were identified using Lasso regression and SVM algorithms. Immune cell infiltration analysis was also performed. MIRI rat models were created, and samples were taken for RT-qPCR and Western blot validation. Results The proportion of MIRI samples in the C2, C6, and C11 subtypes was significantly higher than that of control samples. Three genes associated with ferroptosis (CD44, Cfl1, and Zfp36) were identified as MIRI core genes. The expression of these core genes was significantly correlated with mast cells and monocyte immune infiltrating cells. The experimental validation confirmed the upregulation of Cd44 and Zfp36 expression levels in MIRI, consistent with current study trends. Conclusion This study used single-cell transcriptomics technology to investigate the molecular mechanisms underpinning MIRI. Numerous important cell subtypes, gene regulatory networks, and disease-associated immune infiltration were also discovered. These findings provide new information and potential therapeutic targets for MIRI diagnosis and treatment.
Collapse
Affiliation(s)
- Zhuohua Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Yan Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Da Huang
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Zhaohe Huang
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
- Affiliated Southwest Hospital, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| |
Collapse
|
13
|
Jiang M, Wu S, Xie K, Zhou G, Zhou W, Bao P. The significance of ferroptosis in renal diseases and its therapeutic potential. Heliyon 2024; 10:e35882. [PMID: 39220983 PMCID: PMC11363859 DOI: 10.1016/j.heliyon.2024.e35882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Kidney diseases are significant global public health concern, with increasing prevalence and substantial economic impact. Developing novel therapeutic approaches are essential for delaying disease progression and improving patient quality of life. Cell death signifying the termination of cellular life, could facilitate appropriate bodily development and internal homeostasis. Recently, regulated cell death (RCD) forms such as ferroptosis, characterized by iron-dependent lipid peroxidation, has garnered attention in diverse renal diseases and other pathological conditions. This review offers a comprehensive examination of ferroptosis, encompassing an analysis of the involvement of iron and lipid metabolism, the System Xc - /glutathione/glutathione peroxidase 4 signaling, and additional associated pathways. Meanwhile, the review delves into the potential of targeting ferroptosis as a therapeutic approach in the management of acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy, and renal tumors. Furthermore, it emphasizes the significance of ferroptosis in the transition from AKI to CKD and further accentuates the potential for repurposing drug and utilizing traditional medicine in targeting ferroptosis-related pathways for clinical applications. The integrated review provides valuable insights into the role of ferroptosis in kidney diseases and highlights the potential for targeting ferroptosis as a therapeutic strategy.
Collapse
Affiliation(s)
- Mingzhu Jiang
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shujun Wu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| | - Kun Xie
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Gang Zhou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wei Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ping Bao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Hu T, Hu FJ, Huang H, Zhang ZY, Qiao YM, Huang WX, Wang YC, Tang XY, Lai SQ. Epigallocatechin-3-gallate confers protection against myocardial ischemia/reperfusion injury by inhibiting ferroptosis, apoptosis, and autophagy via modulation of 14-3-3η. Biomed Pharmacother 2024; 174:116542. [PMID: 38574620 DOI: 10.1016/j.biopha.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
Previous studies have demonstrated that the underlying mechanisms of myocardial ischemia/reperfusion injury (MIRI) are complex and involve multiple types of regulatory cell death, including ferroptosis, apoptosis, and autophagy. Thus, we aimed to identify the mechanisms underlying MIRI and validate the protective role of epigallocatechin-3-gallate (EGCG) and its related mechanisms in MIRI. An in vivo and in vitro models of MIRI were constructed. The results showed that pretreatment with EGCG could attenuate MIRI, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) activity and apoptosis, inhibited iron overload, abnormal lipid metabolism, preserved mitochondrial function, decreased infarct size, maintained cardiac function, decreased reactive oxygen species (ROS) level, and reduced TUNEL-positive cells. Additionally, EGCG pretreatment could attenuate ferroptosis, apoptosis, and autophagy induced by MIRI via upregulating 14-3-3η protein levels. Furthermore, the protective effects of EGCG could be abolished with pAd/14-3-3η-shRNA or Compound C11 (a 14-3-3η inhibitor) but not pAd/NC-shRNA. In conclusion, EGCG pretreatment attenuated ferroptosis, apoptosis, and autophagy by mediating 14-3-3η and protected cardiomyocytes against MIRI.
Collapse
Affiliation(s)
- Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Fa-Jia Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ze-Yu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Ya-Mei Qiao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wen-Xiong Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yi-Cheng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xin-Yi Tang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
16
|
Yan J, Li Z, Liang Y, Yang C, Ou W, Mo H, Tang M, Chen D, Zhong C, Que D, Feng L, Xiao H, Song X, Yang P. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway. Food Funct 2023; 14:10052-10068. [PMID: 37861458 DOI: 10.1039/d3fo02633g] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Background: Myocardial ischemia and reperfusion injury (MIRI) is a severe complication of revascularization therapy in patients with myocardial infarction. Therefore, there is an urgent requirement to find more therapeutic solutions for MIRI. Recently, ferroptosis, which is characterized by lipid peroxidation, was considered a critical contributor to MIRI. Fucoxanthin (FX), a natural antioxidant carotenoid, which is abundant in brown seaweed, exerts protective effects under various pathological conditions. However, whether FX alleviates MIRI is unclear. This study aims to clarify the effects of FX on MIRI. Methods: Mice with left anterior descending artery ligation and reperfusion were used as in vivo models. Neonatal rat cardiomyocytes (NRCs) induced with hypoxia and reperfusion were used as in vitro models. TTC-Evans blue staining was performed to validate the infarction size. Transmission electron microscopy was employed to detect mitochondrial injury in cardiomyocytes. In addition, 4 weeks after MIRI, echocardiography was performed to measure cardiac function; fluorescent probes and western blots were used to detect ferroptosis. Results: TTC-Evans blue staining showed that FX reduced the infarction size induced by MIRI. Transmission electron microscopy showed that FX ameliorated the MIRI-induced myofibril loss and mitochondrion shrinkage. Furthermore, FX improved LVEF and LVFS and inhibited myocardial hypertrophy and fibrosis after 4 weeks in mice with MIRI. In the in vitro study, calcein AM/PI staining and TUNEL staining showed that FX reduced cell death caused by hypoxia and reperfusion treatment. DCFH-DA and MitoSOX probes indicated that FX inhibited cellular and mitochondrial reactive oxygen species (ROS). Moreover, C11-BODIPY 581/591 staining, ferro-orange staining, MDA assay, Fe2+ assay, 4-hydroxynonenal enzyme-linked immunosorbent assay, and western blot were performed and the results revealed that FX ameliorated ferroptosis in vitro and in vivo, as indicated by inhibiting lipid ROS and Fe2+ release, as well as by modulating ferroptosis hallmark FTH, TFRC, and GPX4 expression. Additionally, the protective effects of FX were eliminated by the NRF2 inhibitor brusatol, as observed from western blotting, C11-BODIPY 581/591 staining, and calcein AM/PI staining, indicating that FX exerted cardio-protective effects on MIRI through the NRF2 pathway. Conclusion: Our study showed that FX alleviated MIRI through the inhibition of ferroptosis via the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Zehua Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Yu Liang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Huaqiang Mo
- Department of Cardiology, Shenzhen People's Hospital, the Second Affiliated Hospital, Jinan University, Guangdong, China
| | - Min Tang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Deshu Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chongbin Zhong
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Dongdong Que
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Liyun Feng
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Hua Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| |
Collapse
|
17
|
Chai X, Liang Z, Zhang J, Ding J, Zhang Q, Lv S, Deng Y, Zhang R, Lu D. Chlorogenic acid protects against myocardial ischemia-reperfusion injury in mice by inhibiting Lnc Neat1/NLRP3 inflammasome-mediated pyroptosis. Sci Rep 2023; 13:17803. [PMID: 37853132 PMCID: PMC10584886 DOI: 10.1038/s41598-023-45017-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
Increasing evidences demonstrate that chlorogenic acid (CGA), a polyphenol with multiple effects such as anti-inflammatory and anti-oxidation, protects against myocardial ischemia-reperfusion injury (MIRI) in vitro and in vivo. But its detailed cardiac protection mechanism is still unclear. The MIRI mice model was established by ligating the left anterior descending branch (LAD) of the left coronary artery in C57BL/6 mice. Sixty C57BL/6 mice were randomly divided into four groups. CGA group and CGA + I/R group (each group n = 15) were gavaged with 30 mg/kg/day CGA for 4 weeks. Sham group and I/R group mice (each group n = 15) were administered equal volumes of saline. In vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. The results showed that CGA pretreatment reduced myocardial infarction size and cTnT contents in serum, simultaneously reduced the levels of Lnc Neat1 expression and attenuated NLRP3 inflammasome-mediated pyroptosis in myocardial tissue. Consistent with in vivo results, the pretreatment of 0.2 μM and 2 μM CGA for 12 h in HL-1 cardiomyocytes depressed hypoxia/reoxygenation-induced Lnc Neat1 expression, NLRP3 inflammasome activation and pyroptosis. Lnc Neat1 shRNA transfection mediated by lentivirus in HL-1 cardiomyocytes significantly reduced activation of NLRP3 inflammasome and pyroptosis. Our findings suggest that CGA protects against MIRI by depressing Lnc Neat1 expression and NLRP3 inflammasome-mediated pyrotosis. Inhibiting the levels of Lnc Neat1 expression may be a therapeutic strategy for MIRI.
Collapse
Affiliation(s)
- Xin Chai
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Zhengwei Liang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Junshi Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Jing Ding
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Qian Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Sha Lv
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Yazhu Deng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Rongrui Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Deqin Lu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
18
|
Qi Y, Hu M, Wang Z, Shang W. Mitochondrial iron regulation as an emerging target in ischemia/reperfusion injury during kidney transplantation. Biochem Pharmacol 2023; 215:115725. [PMID: 37524207 DOI: 10.1016/j.bcp.2023.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The injury caused by ischemia and subsequent reperfusion (I/R) is inevitable during kidney transplantation and its current management remains unsatisfactory. Iron is considered to play a remarkable pathologic role in the initiation or progression of tissue damage induced by I/R, whereas the effects of iron-related therapy remain controversial owing to the complicated nature of iron's involvement in multiple biological processes. A significant portion of the cellular iron is located in the mitochondria, which exerts a central role in the development and progression of I/R injury. Recent studies of iron regulation associated with mitochondrial function represents a unique opportunity to improve our knowledge on the pathophysiology of I/R injury. However, the molecular mechanisms linking mitochondria to the iron homeostasis remain unclear. In this review, we provide a comprehensive analysis of the alterations to iron metabolism in I/R injury during kidney transplantation, analyze the current understanding of mitochondrial regulation of iron homeostasis and discussed its potential application in I/R injury. The elucidation of regulatory mechanisms regulating mitochondrial iron homeostasis will offer valuable insights into potential therapeutic targets for alleviating I/R injury with the ultimate aim of improving kidney graft outcomes, with potential implications that could also extend to acute kidney injury or other I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|