1
|
van de Graaf SFJ, Paulusma CC, In Het Panhuis W. Getting in the zone: Metabolite transport across liver zones. Acta Physiol (Oxf) 2024; 240:e14239. [PMID: 39364668 DOI: 10.1111/apha.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The liver has many functions including the regulation of nutrient and metabolite levels in the systemic circulation through efficient transport into and out of hepatocytes. To sustain these functions, hepatocytes display large functional heterogeneity. This heterogeneity is reflected by zonation of metabolic processes that take place in different zones of the liver lobule, where nutrient-rich blood enters the liver in the periportal zone and flows through the mid-zone prior to drainage by a central vein in the pericentral zone. Metabolite transport plays a pivotal role in the division of labor across liver zones, being either transport into the hepatocyte or transport between hepatocytes through the blood. Signaling pathways that regulate zonation, such as Wnt/β-catenin, have been shown to play a causal role in the development of metabolic dysfunction-associated steatohepatitis (MASH) progression, but the (patho)physiological regulation of metabolite transport remains enigmatic. Despite the practical challenges to separately study individual liver zones, technological advancements in the recent years have greatly improved insight in spatially divided metabolite transport. This review summarizes the theories behind the regulation of zonation, diurnal rhythms and their effect on metabolic zonation, contemporary techniques used to study zonation and current technological challenges, and discusses the current view on spatial and temporal metabolite transport.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Wietse In Het Panhuis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Mihajlovic M, Pásztor-Jánoska DK, Cadenas J, Adrados CS, Andersen CY, Kristensen SG, Lind JU. 3D culture of ovarian follicles in granular and nanofibrillar hydrogels. BIOMATERIALS ADVANCES 2024; 164:213987. [PMID: 39128246 DOI: 10.1016/j.bioadv.2024.213987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/21/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
3D culture of ovarian follicles in hydrogel matrices is an important emerging tool for basic scientific studies as well as clinical applications such as fertility preservation. For optimizing and scaling 3D culture of preantral follicles, there is a need for identifying biomaterial matrices that simplifies and improves the current culture procedures. At present, microencapsulation of follicles in alginate beads is the most commonly used approach. However, this technique involves notable manual handling and is best suited for encapsulation of single or several follicles. As a potential alternative, we here explore the suitability of different particle-based hydrogel matrices, where follicles can easily be introduced in tunable 3D environments, in large numbers. Specifically, we study the growth of secondary murine follicles in microgranular alginate and nanofibrillar cellulose matrices, with and without cell-binding cues, and map follicle growth against the viscoelastic properties of the matrices. We cultured follicles within the particle-based hydrogels for 10 days and continuously monitored their size, survival, and tendency to extrude oocytes. Interestingly, we observed that the diameter of the growing follicles increased significantly in the particle-based matrices, as compared to state-of-the-art alginate micro-encapsulation. On the other hand, the follicles displayed an increased tendency for early oocyte extrusion in the granular matrices, leading to a notable reduction in the number of intact follicles. We propose that this may be caused by impaired diffusion of nutrients and oxygen through thicker matrices, attributable to our experimental setup. Still, our findings suggest that viscoelastic, granular hydrogels represent promising matrices for 3D culture of early-stage ovarian follicles. In particular, these materials may easily be implemented in advanced culturing devices such as micro-perfusion systems.
Collapse
Affiliation(s)
- Marko Mihajlovic
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Cristina Subiran Adrados
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, 2100 Copenhagen, Denmark; The Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Claus Yding Andersen
- The Fertility Clinic, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Johan Ulrik Lind
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Weitzberg E, Ingelman-Sundberg M, Lundberg JO, Engberg G, Schulte G, Lauschke VM. The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet-Examples of Recent Accomplishments and Future Perspectives. Pharmacol Rev 2024; 76:1089-1101. [PMID: 39414365 DOI: 10.1124/pharmrev.124.001433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come. SIGNIFICANCE STATEMENT: Pharmacological research at Karolinska Institutet has a long and successful history. Given the 75-year anniversary of the Department of Physiology and Pharmacology, this perspective provides an overview of recent departmental achievements and future trajectories. For these developments, interdisciplinary and intersectoral collaborations and a clear focus on result translation are key elements to continue its legacy of world-leading pharmacological research.
Collapse
Affiliation(s)
- Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
4
|
Mickols E, Meyer A, Handin N, Stüwe M, Eriksson J, Rudfeldt J, Blom K, Fryknäs M, Sellin ME, Lauschke VM, Karlgren M, Artursson P. OCT1 (SLC22A1) transporter kinetics and regulation in primary human hepatocyte 3D spheroids. Sci Rep 2024; 14:17334. [PMID: 39068198 PMCID: PMC11283471 DOI: 10.1038/s41598-024-67192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
3D spheroids of primary human hepatocytes (3D PHH) retain a differentiated phenotype with largely conserved metabolic function and proteomic fingerprint over weeks in culture. As a result, 3D PHH are gaining importance as a model for mechanistic liver homeostasis studies and in vitro to in vivo extrapolation (IVIVE) in drug discovery. However, the kinetics and regulation of drug transporters have not yet been assessed in 3D PHH. Here, we used organic cation transporter 1 (OCT1/SLC22A1) as a model to study both transport kinetics and the long-term regulation of transporter activity via relevant signalling pathways. The kinetics of the OCT1 transporter was studied using the fluorescent model substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) and known OCT1 inhibitors in individual 3D PHH. For long-term studies, 3D PHH were treated with xenobiotics for seven days, after which protein expression and OCT1 function were assessed. Global proteomic analysis was used to track hepatic phenotypes as well as prototypical changes in other regulated proteins, such as P-glycoprotein and Cytochrome P450 3A4. ASP+ kinetics indicated a fully functional OCT1 transporter with a Km value of 14 ± 4.0µM as the mean from three donors. Co-incubation with known OCT1 inhibitors decreased the uptake of ASP+ in the 3D PHH spheroids by 35-52%. The long-term exposure studies showed that OCT1 is relatively stable upon activation of nuclear receptor signalling or exposure to compounds that could induce inflammation, steatosis or liver injury. Our results demonstrate that 3D PHH spheroids express physiologically relevant levels of fully active OCT1 and that its transporter kinetics can be accurately studied in the 3D PHH configuration. We also confirm that OCT1 remains stable and functional during the activation of key metabolic pathways that alter the expression and function of other drug transporters and drug-metabolizing enzymes. These results will expand the range of studies that can be performed using 3D PHH.
Collapse
Affiliation(s)
| | - Alina Meyer
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Malin Stüwe
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jens Eriksson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jakob Rudfeldt
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Kristin Blom
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Centre of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Harrison SP, Baumgarten SF, Chollet ME, Stavik B, Bhattacharya A, Almaas R, Sullivan GJ. Parenteral nutrition emulsion inhibits CYP3A4 in an iPSC derived liver organoids testing platform. J Pediatr Gastroenterol Nutr 2024; 78:1047-1058. [PMID: 38529852 DOI: 10.1002/jpn3.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.
Collapse
Affiliation(s)
- Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira F Baumgarten
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria E Chollet
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Benedicte Stavik
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Anindita Bhattacharya
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Telles-Silva KA, Pacheco L, Chianca F, Komatsu S, Chiovatto C, Zatz M, Goulart E. iPSC-derived cells for whole liver bioengineering. Front Bioeng Biotechnol 2024; 12:1338762. [PMID: 38384436 PMCID: PMC10879941 DOI: 10.3389/fbioe.2024.1338762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024] Open
Abstract
Liver bioengineering stands as a prominent alternative to conventional hepatic transplantation. Through liver decellularization and/or bioprinting, researchers can generate acellular scaffolds to overcome immune rejection, genetic manipulation, and ethical concerns that often accompany traditional transplantation methods, in vivo regeneration, and xenotransplantation. Hepatic cell lines derived from induced pluripotent stem cells (iPSCs) can repopulate decellularized and bioprinted scaffolds, producing an increasingly functional organ potentially suitable for autologous use. In this mini-review, we overview recent advancements in vitro hepatocyte differentiation protocols, shedding light on their pivotal role in liver recellularization and bioprinting, thereby offering a novel source for hepatic transplantation. Finally, we identify future directions for liver bioengineering research that may allow the implementation of these systems for diverse applications, including drug screening and liver disease modeling.
Collapse
Affiliation(s)
- Kayque Alves Telles-Silva
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, Genentech Hall, University of California, San Francisco, San Francisco, CA, United States
| | - Lara Pacheco
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Chianca
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sabrina Komatsu
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline Chiovatto
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Kafili G, Kabir H, Jalali Kandeloos A, Golafshan E, Ghasemi S, Mashayekhan S, Taebnia N. Recent advances in soluble decellularized extracellular matrix for heart tissue engineering and organ modeling. J Biomater Appl 2023; 38:577-604. [PMID: 38006224 PMCID: PMC10676626 DOI: 10.1177/08853282231207216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Despite the advent of tissue engineering (TE) for the remodeling, restoring, and replacing damaged cardiovascular tissues, the progress is hindered by the optimal mechanical and chemical properties required to induce cardiac tissue-specific cellular behaviors including migration, adhesion, proliferation, and differentiation. Cardiac extracellular matrix (ECM) consists of numerous structural and functional molecules and tissue-specific cells, therefore it plays an important role in stimulating cell proliferation and differentiation, guiding cell migration, and activating regulatory signaling pathways. With the improvement and modification of cell removal methods, decellularized ECM (dECM) preserves biochemical complexity, and bio-inductive properties of the native matrix and improves the process of generating functional tissue. In this review, we first provide an overview of the latest advancements in the utilization of dECM in in vitro model systems for disease and tissue modeling, as well as drug screening. Then, we explore the role of dECM-based biomaterials in cardiovascular regenerative medicine (RM), including both invasive and non-invasive methods. In the next step, we elucidate the engineering and material considerations in the preparation of dECM-based biomaterials, namely various decellularization techniques, dECM sources, modulation, characterizations, and fabrication approaches. Finally, we discuss the limitations and future directions in fabrication of dECM-based biomaterials for cardiovascular modeling, RM, and clinical translation.
Collapse
Affiliation(s)
- Golara Kafili
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Hannaneh Kabir
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | - Elham Golafshan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Sara Ghasemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|