1
|
Grund SC, Wu XX, Müller D, Wennemuth G, Grümmer R. Impact of endometrial claudin-3 deletion on murine implantation, decidualization and embryo development. Biol Reprod 2022; 107:984-997. [PMID: 35863769 DOI: 10.1093/biolre/ioac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
The composition of cell contacts in the endometrium plays an important role in the process of embryo implantation and the establishment of pregnancy. In previous studies, we showed an induction of the tight junction protein claudin-3 in the developing decidua from 6.5 dpc onwards. To evaluate the role if this specific claudin-3 distribution, we here evaluated the effect of an endometrial claudin-3 deletion in implantation and embryo development in claudin-3 knockout mice. Claudin-3 KO mice were fertile but revealed a slightly reduced amount of implantation sites as well as of litter size. Though implantation sites showed morphologically regularly developed embryos and deciduas, depth of ectoplacental cone invasion was reduced in tendency compared to controls. The weight of the implantation sites on 6.5 and 8.5 dpc as well as the weight of the embryos on 17.5 dpc, but not of the placentas, was significantly reduced in claudin-3 KO mice due to a maternal effect. This could be due to an impairment of decidualization as substantiated by a downregulation of the transcription of various decidua-associated genes in the early implantation sites of claudin-3 KO mice. The fact that claudin-3 KO mice are nevertheless fertile possibly may be compensated by the presence of other claudins like claudin-4 and claudin-10.
Collapse
Affiliation(s)
- Susanne C Grund
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xin Xin Wu
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ruth Grümmer
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
2
|
Rudolf Vegas A, Podico G, Canisso IF, Bollwein H, Almiñana C, Bauersachs S. Spatiotemporal endometrial transcriptome analysis revealed the luminal epithelium as key player during initial maternal recognition of pregnancy in the mare. Sci Rep 2021; 11:22293. [PMID: 34785745 PMCID: PMC8595723 DOI: 10.1038/s41598-021-01785-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
During the period of maternal recognition of pregnancy (MRP) in the mare, the embryo needs to signal its presence to the endometrium to prevent regression of the corpus luteum and prepare for establishment of pregnancy. This is achieved by mechanical stimuli and release of various signaling molecules by the equine embryo while migrating through the uterus. We hypothesized that embryo's signals induce changes in the endometrial gene expression in a highly cell type-specific manner. A spatiotemporal transcriptomics approach was applied combining laser capture microdissection and low-input-RNA sequencing of luminal and glandular epithelium (LE, GE), and stroma of biopsy samples collected from days 10-13 of pregnancy and the estrous cycle. Two comparisons were performed, samples derived from pregnancies with conceptuses ≥ 8 mm in diameter (comparison 1) and conceptuses ≤ 8 mm (comparison 2) versus samples from cyclic controls. The majority of gene expression changes was identified in LE and much lower numbers of differentially expressed genes (DEGs) in GE and stroma. While 1253 DEGs were found for LE in comparison 1, only 248 were found in comparison 2. Data mining mainly focused on DEGs in LE and revealed regulation of genes related to prostaglandin transport, metabolism, and signaling, as well as transcription factor families that could be involved in MRP. In comparison to other mammalian species, differences in regulation of genes involved in epithelial barrier formation and conceptus attachment and implantation reflected the unique features of equine reproduction at the time of MRP at the molecular level.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Institute of Veterinary Anatomy and Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland.
| |
Collapse
|
3
|
Endometrial gene expression profiling of recurrent implantation failure after in vitro fertilization. Mol Biol Rep 2021; 48:5075-5082. [PMID: 34216338 DOI: 10.1007/s11033-021-06502-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Recurrent implantation failure (RIF) is diagnosed when good-quality embryos repeatedly fail to implant after transfer in several in vitro fertilization (IVF) treatment cycles. Different expression profiles in maternal mRNAs could be referring to many diseases including RIF. This study aimed to reveal significantly dysregulated selected genes expression between healthy fertile women and RIF patients in the implantation window days of the natural menstrual cycle. MME, WWC1, TNC, and FOXP3 genes were chosen as target genes regarding their possible relations with the implantation process. Pathways with these genes were identified and the relationship between these pathways and RIF was investigated. In this study, the endometrial biopsy samples were collected in the secretory phase (cycle day 20-24) of the menstrual cycle from RIF patients (n = 34) and healthy fertile controls (n = 34). After "Pathway and network-oriented GWAS analysis" (PANOGA) and "Kyoto Encyclopedia of Genes and Genomes" (KEGG) pathway analysis; "Membrane Metalloendopeptidase" (MME), "WW and C2 Domain Containing 1" (WWC1), "Tenascin C" (TNC) and "Forkhead Box P3" (FOXP3) genes were chosen as target genes by regarding their possible relation with implantation process. Detection of differences in mRNA expressions between the control group and RIF patients has been performed with the droplet digital PCR (ddPCR) method. Results of the study showed that MME and WWC1 genes expression levels are significantly (p < 0,05) up-regulated 4.9 and 5.2 times respectively and TNC gene expression level is significantly (p < 0,05) down-regulated 9 times in the RIF samples compared to the control group. However, no statistically significant difference was observed between the patient group and the control group in the expression of the FOXP3 gene (p < 0.05). Changes are observed in the expression of the renin-angiotensin system pathway in which the MME gene is involved in the implantation process. The increase in MME gene expression can be speculated to cause implantation failure by restricting the invasion of trophoblast cells. Increasing WWC1 gene expression in the Hippo signaling pathway inhibits "Yes-associated protein 1" (YAP) expression, which is a transcriptional cofactor. Inhibition of YAP protein expression may impair the implantation process by causing the failure of endometrial decidualization. The TNC gene is located in the focal adhesion pathway and this pathway reduces cell adhesion on the endometrial surface to facilitate the attachment of the embryo to the endometrium. The reason for implantation failure might be that the intercellular connections are not suitable for implantation as a result of decreased expression of the focal adhesion pathway in which the TNC gene is effective. Considering the relations between the pathways of the target genes and the implantation process, changes in the expression of target genes might be a cause of RIF.
Collapse
|
4
|
Poh QH, Rai A, Carmichael II, Salamonsen LA, Greening DW. Proteome reprogramming of endometrial epithelial cells by human trophectodermal small extracellular vesicles reveals key insights into embryo implantation. Proteomics 2021; 21:e2000210. [PMID: 33860638 DOI: 10.1002/pmic.202000210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023]
Abstract
Embryo implantation into the receptive endometrium is critical in pregnancy establishment, initially requiring reciprocal signalling between outer layer of the blastocyst (trophectoderm cells) and endometrial epithelium; however, factors regulating this crosstalk remain poorly understood. Although endometrial extracellular vesicles (EVs) are known to signal to the embryo during implantation, the role of embryo-derived EVs remains largely unknown. Here, we provide a comprehensive proteomic characterisation of a major class of EVs, termed small EVs (sEVs), released by human trophectoderm cells (Tsc-sEVs) and their capacity to reprogram protein landscape of endometrial epithelium in vitro. Highly purified Tsc-sEVs (30-200 nm, ALIX+ , TSG101+ , CD9/63/81+ ) were enriched in known players of implantation (LIFR, ICAM1, TAGLN2, WNT5A, FZD7, ROR2, PRICKLE2), antioxidant activity (SOD1, PRDX1/4/6), tissue integrity (EZR, RAC1, RHOA, TNC), and focal adhesions (FAK, ITGA2/V, ITGB1/3). Functionally, Tsc-sEVs were taken up by endometrial cells, altered transepithelial electrical resistance, and upregulated proteins implicated in embryo attachment (ITGA2/V, ITGB1/3), immune regulation (CD59, CD276, LGALS3), and antioxidant activity (GPX1/3/4, PRDX1/2/4/5/6): processes that are critical for successful implantation. Collectively, we provide critical insights into Tsc-sEV-mediated regulation of endometrial function that contributes to our understanding of the molecular basis of implantation.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Irena Iśka Carmichael
- Monash Micro Imaging, Monash, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Peng J, Li X, Zhang Y, Hu J, Shang Y, Yin Y, Xiao Z. Par3/integrin β1 regulates embryo adhesion via changing endometrial luminal epithelium polarity†. Biol Reprod 2021; 104:1228-1238. [PMID: 33675651 DOI: 10.1093/biolre/ioab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 03/04/2021] [Indexed: 11/14/2022] Open
Abstract
The objective is to investigate the pathophysiological significance of Par3 and integrin β1 with regard to the functionality of the endometrial luminal epithelium (LE). Design: laboratory study; setting: university research laboratory. Analysis involved endometrial aspirates and endometrial adenocarcinoma cells (HEC-1A) and endometrial carcinoma cells (RL95-2). We first examined the expression and localization of Par3 and integrin β1 in HEC-1A cells and RL95-2 cells. Then we knocked down Par3 and integrin β1 in HEC-1A cells and RL95-2 cells, respectively, and found that Par3/integrin β1 affected embryo adhesion by regulating the intercellular tight junctions' (TJs') structure and thus the polarity of the endometrial LE. These findings were also confirmed in the endometrium specimens from human and mice. The main outcome measures were the expression and localization of Par3 and integrin β1 in the endometrial epithelial cell lines and endometrium specimens and the regulations of Par3 and integrin β1 on TJs, polarity, and embryo adhesion. Following the knockdown of Par3 in HEC-1A cells, there was a reduction in the complexity of the TJs and cell polarity, and the adhered blastocysts number was significantly increased. However, the reduction of integrin β1 in RL95-2 cells resulted in effects that directly opposed those following the knockdown of Par3 in HEC-1A cells. Estrogen and progesterone reduced the expression of Par3 and promoted the expression of integrin β1 in HEC-1A cells. Par3/integrin β1 regulates embryo adhesion by regulating intercellular TJs' structure and polarity of endometrial LE under the action of ovarian hormones.
Collapse
Affiliation(s)
- Jiali Peng
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoling Li
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Zhang
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian Hu
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunjie Shang
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuchen Yin
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhuoni Xiao
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Rab13 and Desmosome Redistribution in Uterine Epithelial Cells During Early Pregnancy. Reprod Sci 2021; 28:1981-1988. [PMID: 33527312 DOI: 10.1007/s43032-021-00478-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
The luminal uterine epithelial cells are the first point of contact with the implanting blastocyst. Dramatic changes occur in the structure and function of these cells at the time of receptivity including changes in the lateral junctional complex. While these morphological changes are important for uterine receptivity, currently there is no known mechanism of regulation of the lateral junctional complexes. Rab13, a member of the Rab (Ras-related in the brain) family of GTPases has a critical role in endosomal trafficking to the lateral plasma membrane and is involved in modulation of the tight junction in several cell types. The aim of this study is to investigate the role of Rab13 in changes to the lateral junctional complex at the time of receptivity. Immunofluorescence microscopy demonstrated no association between Rab13 and ZO-1 (a tight junction protein) or Rab13 and E-cadherin (an integral component of adherens junctions). Co-localisation was demonstrated between Rab 13 and desmoglein-2 at the time of fertilization and also at receptivity suggesting involvement of Rab13 in relocalisation of desmoglein-2 and formation of giant desmosomes in the apical part of the lateral plasma membrane at the time of uterine receptivity. We suggest that despite the loss of the adherens junction at the time of receptivity, the presently reported redistribution of desmosomes regulated by Rab13 allows the uterine epithelium to maintain structural integrity.
Collapse
|
7
|
Claudins: New Players in Human Fertility and Reproductive System Cancers. Cancers (Basel) 2020; 12:cancers12030711. [PMID: 32197343 PMCID: PMC7140004 DOI: 10.3390/cancers12030711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Claudins are major integral proteins of tight junctions (TJs), the apical cell-cell adhesions that enable maintaining polarity of epithelial cells, their differentiation, and cell signaling. A number of studies have indicated that claudins might play a crucial role in both physiology and pathogenesis. Their tissue-specific expression was originally linked to the development of different types of cancer and triggered a hope to use them as diagnostic or prognostic markers. However, it seems that their expression is more complex than that, and undoubtedly, claudins participate in one of the most important molecular events in cells. This review summarizes the recent research evaluating the role of claudins in fertility and the most common endocrine-dependent cancers in the reproductive system and highlights the crucial role of claudins both in human fertility and the most common cancers.
Collapse
|
8
|
Jalali BM, Lukasik K, Witek K, Baclawska A, Skarzynski DJ. Changes in the expression and distribution of junction and polarity proteins in the porcine endometrium during early pregnancy period. Theriogenology 2020; 142:196-206. [PMID: 31606658 DOI: 10.1016/j.theriogenology.2019.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/27/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
The maternal endometrium undergoes transformations during early pregnancy period to regulate the paracellular permeability across the epithelium and to enable adhesion between the trophoblast and endometrial epithelial cells. These transformations, under the influence of ovarian hormones, are associated with a partial loss in polarity of epithelial cell that is regulated by tight junctions (TJ), adherens junctions (AJ) and associated polarity protein complexes. This study examined the change in expression and distribution of proteins associated with TJs, AJs and apical partition defective (PAR) complex in porcine endometrium on Days 10, 13 and 16 of estrous cycle and pregnancy. Moreover, effect of hormones, progesterone (P4) and 17-β estradiol (E2) on polar phenotype of endometrial epithelial cells was also investigated in vitro. There was pregnancy induced increase in gene and protein expression of TJ associated claudin-1 (CLDN1) on Day 13 of pregnancy as compared to corresponding day of estrous cycle and a decrease in TJ protein, zona occludens-1 (ZO-1) and PAR complex associated PAR6 expression levels on Day 16 of pregnancy (P < 0.05). Immunofluorescence studies revealed that on Days 10 and 13, TJ proteins occludin (OCLN) and ZO-1were primarily present in the apical region of lateral epithelial membrane. On Day 16 of pregnancy, whereas, OCLN redistributed into cytoplasm, ZO-1 decreased apically but was found to localize in the basal epithelium. The AJ proteins cadherin and β-catenin were located at the apical epithelium on Day 10 of estrous cycle and pregnancy and Day 13 of estrous cycle. On Days 13 and 16 of pregnancy both proteins were expressed in the lateral membrane and co-localization between these proteins was observed on Day 16. On Day 10, PAR complex proteins PAR3, cell division control protein 42 (CDC42) and atypical protein kinase C (aPKC) ζ were observed in apical epithelium and in lateral membrane and CDC42 was also present in the cytoplasm of epithelium. Pregnancy induced redistribution of aPKCζ to cytoplasm and CDC42 to apical surface of luminal epithelium was observed on Days 13 and 16. The in vitro P4 and E2 treatment of epithelial cells mimicked in vivo results. These results indicate that P4 and E2 regulate alterations in epithelium that may facilitate embryo implantation and given the role of cadherin, catenin and CDC42 in embryo invasion, change in distribution of these proteins may limit the invasiveness of porcine conceptuses into the stroma.
Collapse
Affiliation(s)
- Beenu Moza Jalali
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Karolina Lukasik
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Krzysztof Witek
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Agnieszka Baclawska
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Dariusz J Skarzynski
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
9
|
Liman N, Ateş N. Abundances and localizations of Claudin-1 and Claudin-5 in the domestic cat (Felis catus) ovary during the estrous cycle. Anim Reprod Sci 2019; 212:106247. [PMID: 31864490 DOI: 10.1016/j.anireprosci.2019.106247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023]
Abstract
Claudins (CLDNs) are major Ca2+-independent cell adhesion molecules functioning at tight junctions (TJ). The presence and localization of cell adhesion molecules are important for understanding the mechanisms associated with follicular and luteal development in the ovary. In this study, there was an examination of whether CLDN-1 and CLDN-5 are present in a cell- and stage-specific manner during follicular and luteal development in the domestic cat ovary using immunohistochemistry and Western blot analysis. While results from immunoblot analyses revealed there were relatively similar abundances of CLDN-5 protein in three phases of the ovarian cycle, the abundance of CLDN-1 in the luteal phase was greater than those measured in the follicular and anestrous phases (P < 0.01). Results with immunohistochemistry indicate CLDN-1 and -5 are mainly localized in the cell nuclei and cytoplasm of all tissues of the cat ovary. In follicles, throughout the development from primordial to large antral follicles, CLDN-1 and -5 were present in oocytes, and the granulosa and theca cell layers. In follicles at all stages of atresia, there were cell-type and stage-specific protein distributions with immunostaining present in granulosa, thecal interstitial, and fibroblast-like cells. In corpora lutea, both small and large luteal cells stained positively for both claudins. In conclusion, the specific presence and localization patterns of CLDN-1 and -5 in the cat ovary is suggestive that these TJ proteins could have local functions in the regulation of most ovarian functions such as follicle development and atresia, ovulation, and corpus luteum formation and regression.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38090, Kayseri, Turkey.
| | - Nermin Ateş
- Republic of Turkey Minister of Agriculture and Forestry, 13700, Bitlis, Turkey
| |
Collapse
|
10
|
Martínez-Peña AA, Peña-Castillo A, Parra-Forero LY, Hernández-Ochoa I, Hernández-Barrientos LR, Morimoto S, Mendoza-Rodríguez CA. Parental perinatal exposure to bisphenol A reduces the threshold to disrupt blastocyst implantation via decreasing talin, occudin and E-cadherin levels. Reprod Toxicol 2019; 86:86-97. [PMID: 31028817 DOI: 10.1016/j.reprotox.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 11/29/2022]
Abstract
The aim was to evaluate the effect of perinatal BPA exposure of one or both parents on the implantation index and expression of talin, occludin and E-cadherin in the uterine epithelial cells (UEC) of the offspring. Pregnant Wistar dams (F0) received BPA or vehicle from gestational day (GD) 6 to lactation day 21. F1 animals were mated forming four groups: Control dam-Control sire (C♀-C♂), BPA dam -Control sire (B♀-C♂), Control dam -BPA sire (C♀-B♂), BPA dam -BPA sire (B♀-B♂). F1 dams were sacrificed at GD 6. Significantly decreased number of implantation sites was observed in the B♀-B♂ group as compared to the C♀-C♂ group, which correlated with decreased talin apical/basal expression ratio, occludin apical expression, and E-cadherin apical/lateral expression ratio in the UEC. Furthermore, decreased E-cadherin expression in the blastocyst was observed. Our data suggest that reduced protein expressions in F1 BPA offspring could result from decreased progesterone serum levels.
Collapse
Affiliation(s)
- Annia A Martínez-Peña
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Andrea Peña-Castillo
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - L Yuliana Parra-Forero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Ciudad de México 07360, Mexico
| | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Ciudad de México 07360, Mexico
| | - Luis R Hernández-Barrientos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Sumiko Morimoto
- Instituto Nacional de Ciencias Médicas y de la Nutrición Salvador Zubirán, Ciudad de Mexico 14080, Mexico
| | - C Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico.
| |
Collapse
|
11
|
Buddle AL, Thompson MB, Lindsay LA, Murphy CR, Whittington CM, McAllan BM. Dynamic changes to claudins in the uterine epithelial cells of the marsupial
Sminthopsis crassicaudata
(Dasyuridae) during pregnancy. Mol Reprod Dev 2019; 86:639-649. [DOI: 10.1002/mrd.23140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Alice L. Buddle
- School of Life and Environmental Sciences University of Sydney Sydney Australia
| | - Michael B. Thompson
- School of Life and Environmental Sciences University of Sydney Sydney Australia
| | - Laura A. Lindsay
- School of Medical Sciences and Bosch Institute University of Sydney Sydney Australia
| | - Christopher R. Murphy
- School of Medical Sciences and Bosch Institute University of Sydney Sydney Australia
| | - Camilla M. Whittington
- School of Life and Environmental Sciences University of Sydney Sydney Australia
- Sydney School of Veterinary Science University of Sydney Sydney Australia
| | - Bronwyn M. McAllan
- School of Medical Sciences and Bosch Institute University of Sydney Sydney Australia
| |
Collapse
|
12
|
Direct Cell⁻Cell Interactions in the Endometrium and in Endometrial Pathophysiology. Int J Mol Sci 2018; 19:ijms19082227. [PMID: 30061539 PMCID: PMC6121364 DOI: 10.3390/ijms19082227] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cell contacts exhibit a considerable influence on tissue physiology and homeostasis by controlling paracellular and intercellular transport processes, as well as by affecting signaling pathways. Since they maintain cell polarity, they play an important role in cell plasticity. The knowledge about the junctional protein families and their interactions has increased considerably during recent years. In contrast to most other tissues, the endometrium undergoes extensive physiological changes and reveals an extraordinary plasticity due to its crucial role in the establishment and maintenance of pregnancy. These complex changes are accompanied by changes in direct cell–cell contacts to meet the various requirements in the respective developmental stage. Impairment of this sophisticated differentiation process may lead to failure of implantation and embryo development and may be involved in the pathogenesis of endometrial diseases. In this article, we focus on the knowledge about the distribution and regulation of the different junctional proteins in the endometrium during cycling and pregnancy, as well as in pathologic conditions such as endometriosis and cancer. Decoding these sophisticated interactions should improve our understanding of endometrial physiology as well as of the mechanisms involved in pathological conditions.
Collapse
|
13
|
Shahzad H, Giribabu N, Karim K, Kassim N, Muniandy S, Kumar KE, Salleh N. Quercetin interferes with the fluid volume and receptivity development of the uterus in rats during the peri-implantation period. Reprod Toxicol 2017; 71:42-54. [DOI: 10.1016/j.reprotox.2017.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
|
14
|
Martínez-Peña AA, Rivera-Baños J, Méndez-Carrillo LL, Ramírez-Solano MI, Galindo-Bustamante A, Páez-Franco JC, Morimoto S, González-Mariscal L, Cruz ME, Mendoza-Rodríguez CA. Perinatal administration of bisphenol A alters the expression of tight junction proteins in the uterus and reduces the implantation rate. Reprod Toxicol 2017; 69:106-120. [PMID: 28216266 DOI: 10.1016/j.reprotox.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 11/24/2022]
Abstract
We studied the effect of bisphenol-A (BPA) administration to rats, during the perinatal period, on the fertility of F1 generation and on the expression of tight junction (TJ) proteins in the uterus during early pregnancy. Pregnant Wistar dams (F0) received: BPA-L (0.05mg/kg/day), BPA-H (20mg/kg/day) or vehicle, from gestational day (GD) 6 to lactation day 21. F1 female pups were mated at 3 months of age and sacrificed at GD 1, 3, 6, and 7. Serum hormonal levels, ovulation rate, number of implantation sites and expression of TJ proteins in the uterus of F1 females were evaluated. BPA treatment induced no change in ovulation rate, but induced alterations in progesterone (P4) and estradiol (E2) serum levels, and in implantation rate. With regards to TJ proteins, BPA-H increased claudin-1 during all GDs; eliminated the peaks of claudins -3 and -4 at GD 3 and 6, respectively; and decreased claudin-7 at GD 6, ZO-1 from GD 1-6, and claudin-3 at GD 7 in stromal cells. BPA-L instead, eliminated claudin-3 peak at GD 3, increased claudin-4 and decreased claudin-7 from GD 1-6, decreased claudin-1 at GD 3 and 7 and claudin-4 at GD 7 in stromal cells. BPA-L also decreased ZO-1 at GDs 1 and 3 and increased ZO-1 at GD 6. Thus, BPA treatment during perinatal period perturbed, when the animals reached adulthood and became pregnant, the particular expression of TJ proteins in the uterine epithelium and reduced in consequence the number of implantation sites.
Collapse
Affiliation(s)
- Annia A Martínez-Peña
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Jorge Rivera-Baños
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Laura L Méndez-Carrillo
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Marcos I Ramírez-Solano
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Aarón Galindo-Bustamante
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - J Carlos Páez-Franco
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Sumiko Morimoto
- Instituto Nacional de Ciencias Médicas y de la Nutrición Salvador Zubirán, Mexico, D.F. 14080, Mexico
| | - Lorenza González-Mariscal
- Centro de Investigación y Estudios Avanzados (CINVESTAV), Departamento de Fisiología, Biofísica y Neurociencias, Mexico, D.F. 07360, Mexico
| | - M Esther Cruz
- Facultad de Estudios Superiores Zaragoza, Laboratorio de Neuroendocrinología, Universidad Nacional Autónoma de Mexico, Mexico, D.F. 15000, Mexico
| | - C Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico.
| |
Collapse
|
15
|
Poon CE, Madawala RJ, Dowland SN, Murphy CR. Nectin-3 Is Increased in the Cell Junctions of the Uterine Epithelium at Implantation. Reprod Sci 2016; 23:1580-1592. [DOI: 10.1177/1933719116648216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Connie E. Poon
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Romanthi J. Madawala
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Samson N. Dowland
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R. Murphy
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Kielgast F, Schmidt H, Braubach P, Winkelmann VE, Thompson KE, Frick M, Dietl P, Wittekindt OH. Glucocorticoids Regulate Tight Junction Permeability of Lung Epithelia by Modulating Claudin 8. Am J Respir Cell Mol Biol 2016; 54:707-17. [DOI: 10.1165/rcmb.2015-0071oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Morthorst JE, Korsgaard B, Bjerregaard P. Severe malformations of eelpout (Zoarces viviparus) fry are induced by maternal estrogenic exposure during early embryogenesis. MARINE ENVIRONMENTAL RESEARCH 2016; 113:80-87. [PMID: 26613261 DOI: 10.1016/j.marenvres.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Pregnant eelpout were exposed via the water to known endocrine disrupting compounds (EDCs) to clarify if EDCs could be causing the increased eelpout fry malformation frequencies observed in coastal areas receiving high anthropogenic input. The presence of a teratogenic window for estrogen-induced malformations was also investigated by starting the exposure at different times during eelpout pregnancy. Both 17α-ethinylestradiol (EE2) (17.8 ng/L) and pyrene (0.5 μg/L) significantly increased fry malformation frequency whereas 4-t-octylphenol (4-t-OP) up to 14.3 μg/L did not. Vitellogenin was significantly induced by EE2 (5.7 and 17.8 ng/L) but not by 4-t-OP and pyrene. A critical period for estrogen-induced fry malformations was identified and closed between 14 and 22 days post fertilization (dpf). Exposure to 17β-estradiol (E2) between 0 and 14 dpf caused severe malformations and severity increased the closer exposure start was to fertilization, whereas malformations were absent by exposure starting later than 14 dpf. Data on ovarian fluid volume and larval length supported the suggested teratogenic window. Larval mortality also increased when exposure started right after fertilization.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| | - Bodil Korsgaard
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| | - Poul Bjerregaard
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| |
Collapse
|
18
|
Madawala RJ, Poon CE, Dowland SN, Murphy CR. Actin crosslinking protein filamin A during early pregnancy in the rat uterus. Reprod Fertil Dev 2016; 28:960-968. [DOI: 10.1071/rd14240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/13/2014] [Indexed: 02/01/2023] Open
Abstract
During early pregnancy the endometrium undergoes a major transformation in order for it to become receptive to blastocyst implantation. The actin cytoskeleton and plasma membrane of luminal uterine epithelial cells (UECs) and the underlying stromal cells undergo dramatic remodelling to facilitate these changes. Filamin A (FLNA), a protein that crosslinks actin filaments and also mediates the anchorage of membrane proteins to the actin cytoskeleton, was investigated in the rat uterus at fertilisation (Day 1) and implantation (Day 6) to determine the role of FLNA in actin cytoskeletal remodelling of UECs and decidua during early pregnancy. Localisation of FLNA in UECs at the time of fertilisation was cytoplasmic, whilst at implantation it was distributed apically; its localisation is under the influence of progesterone. FLNA was also concentrated to the first two to three stromal cell layers at the time of fertilisation and shifted to the primary decidualisation zone at the time of implantation. This shift in localisation was found to be dependent on the decidualisation reaction. Protein abundance of the FLNA 280-kDa monomer and calpain-cleaved fragment (240 kDa) did not change during early pregnancy in UECs. Since major actin cytoskeletal remodelling occurs during early pregnancy in UECs and in decidual cells, the changing localisation of FLNA suggests that it may be an important regulator of cytoskeletal remodelling of these cells to allow uterine receptivity and decidualisation necessary for implantation in the rat.
Collapse
|
19
|
Claudin-3, claudin-7, and claudin-10 show different distribution patterns during decidualization and trophoblast invasion in mouse and human. Histochem Cell Biol 2015; 144:571-85. [PMID: 26340953 DOI: 10.1007/s00418-015-1361-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 12/18/2022]
Abstract
Implantation of the mammalian embryo requires profound endometrial changes for successful pregnancy, including epithelial-mesenchymal transition of the luminal epithelium and stromal-epithelial transition of the stromal cells resulting in decidualization. Claudins (Cldn) determine the variability in tight junction paracellular permeability and may play a role during these epithelial and decidual changes. We here localized Cldn3, Cldn7 and Cldn10 proteins in the different compartments of murine endometrium up to day 8.5 of pregnancy (dpc) as well as in human endometrium and first trimester decidua. In murine estrous endometrium, luminal and glandular epithelium exhibited Cldn3 and Cldn7, whereas Cldn10 was only detectable in glandular epithelium. At 4.5 dpc, Cldn3 protein shifted to an apical localization, whereas Cldn7 vanished in the epithelium of the implantation chamber. At this stage, there was no stromal signal for Cldn3 and Cldn7, but a strong induction of Cldn10 in the primary decidual zone. Cldn3 proteins emerged at 5.5 dpc spreading considerably from 6.5 dpc onward in the endothelial cells of the decidual blood sinusoids and in the decidual cells of the compact antimesometrial region. In addition to Cldn3, Cldn10 was identified in human endometrial epithelia. Both proteins were not detected in human first trimester decidual cells. Cldn3 was shown in murine trophoblast giant cells as well as in human extravillous trophoblast cells and thus may have an impact on trophoblast invasion in both species. We here showed a specific claudin signature during early decidualization pointing to a role in decidual angiogenesis and regulation of trophoblast invasion.
Collapse
|
20
|
Tu Z, Wang Q, Cui T, Wang J, Ran H, Bao H, Lu J, Wang B, Lydon JP, DeMayo F, Zhang S, Kong S, Wu X, Wang H. Uterine RAC1 via Pak1-ERM signaling directs normal luminal epithelial integrity conducive to on-time embryo implantation in mice. Cell Death Differ 2015; 23:169-81. [PMID: 26184908 DOI: 10.1038/cdd.2015.98] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
Successful embryo implantation requires functional luminal epithelia to establish uterine receptivity and blastocyst-uterine adhesion. During the configuration of uterine receptivity from prereceptive phase, the luminal epithelium undergoes dynamic membrane reorganization and depolarization. This timely regulated epithelial membrane maturation and precisely maintained epithelial integrity are critical for embryo implantation in both humans and mice. However, it remained largely unexplored with respect to potential signaling cascades governing this functional epithelial transformation prior to implantation. Using multiple genetic and cellular approaches combined with uterine conditional Rac1 deletion mouse model, we demonstrated herein that Rac1, a small GTPase, is spatiotemporally expressed in the periimplantation uterus, and uterine depletion of Rac1 induces premature decrease of epithelial apical-basal polarity and defective junction remodeling, leading to disrupted uterine receptivity and implantation failure. Further investigations identified Pak1-ERM as a downstream signaling cascade upon Rac1 activation in the luminal epithelium necessary for uterine receptivity. In addition, we also demonstrated that Rac1 via P38 MAPK signaling ensures timely epithelial apoptotic death at postimplantation. Besides uncovering a potentially important molecule machinery governing uterine luminal integrity for embryo implantation, our finding has high clinical relevance, because Rac1 is essential for normal endometrial functions in women.
Collapse
Affiliation(s)
- Z Tu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - Q Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - T Cui
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - J Wang
- Department of Pharmacology, Zhejiang University, Hangzhou 310058, PR China
| | - H Ran
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100039, PR China
| | - H Bao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100039, PR China
| | - J Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - B Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - J P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - F DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - S Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - S Kong
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - X Wu
- Department of Pharmacology, Zhejiang University, Hangzhou 310058, PR China
| | - H Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
21
|
Chen Q, Zhang A, Yu F, Gao J, Liu Y, Yu C, Zhou H, Xu C. Label-free proteomics uncovers energy metabolism and focal adhesion regulations responsive for endometrium receptivity. J Proteome Res 2015; 14:1831-42. [PMID: 25728905 DOI: 10.1021/acs.jproteome.5b00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The menstrual cycle of the female uterus leads to periodic changes of the endometrium. These changes are important for developing the endometrial receptivity and for achieving competency of embryo implantation. However, the molecular events underlying the endometrial receptivity process remain poorly understood. Here we applied an LC-MS-based label-free quantitative proteomic approach to compare the endometrial tissues in the midsecretory (receptive) phase with the endometrial tissues in the proliferative phase from age-matched woman (n = 6/group). The proteomes of endometrial tissues were extracted using an SDS-based detergent, digested by the filter-aided sample preparation procedures, and subsequently analyzed by nano-LC-MS/MS (Orbitrap XL) with a 4 h gradient. Reliable protein expression profiles were reproducibly obtained from the endometrial tissues in the receptive and proliferative phases. A total of 2138 protein groups were quantified under highly stringent criteria with a false discovery rate of <1% for peptide and protein groups. Among these proteins, 317 proteins had differences in expression that were statistically significant between the receptive and proliferative phases. Direct protein-protein interaction network analyses of these significantly changed proteins showed that the up-regulation of creatine kinase B-type (CKB) in the receptive phase may be related to endometrium receptivity. The interaction network also showed that proteins related to cell-cell adhesion were down-regulated. Moreover, the results from KEGG pathway analyses are consistent with the protein-protein interaction results. The proteins, including alpha-actinin (ACTN), extracellular matrix proteins, integrin alpha-V, and so on, that are involved in the focal adhesion pathway were down-regulated in the receptive phase compared with the proliferative phase, which may facilitate the implantation of the fertilized ovum. Selected proteins were validated by Western blot analysis and indirect immunofluorescence, including the up-regulation of CKB and down-regulation ACTN in the receptive phase. In summary, our proteomic analysis study shows potential for predicting the endometrial remodeling from the proliferative to the receptivity phase in women, and these results also reveal the key biological mechanisms (such as energy metabolism and focal adhesion) underlying human endometrial receptivity.
Collapse
Affiliation(s)
- Qian Chen
- †Department of Human Anatomy, Histology and Embryology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,‡Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aijun Zhang
- ‡Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Yu
- §CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jing Gao
- §CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yue Liu
- †Department of Human Anatomy, Histology and Embryology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengli Yu
- §CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hu Zhou
- §CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China.,∥E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Xu
- †Department of Human Anatomy, Histology and Embryology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
22
|
Morthorst JE, Brande-Lavridsen N, Korsgaard B, Bjerregaard P. 17β-estradiol causes abnormal development in embryos of the viviparous eelpout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14668-14676. [PMID: 25380199 DOI: 10.1021/es5046698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Elevated frequencies of malformations among the offspring of Baltic eelpout (Zoarces viviparus) have been observed in aquatic environments receiving high anthropogenic input suggesting that manmade chemicals could be the causative agent. However, causal links between exposure to chemicals and abnormal development have never been confirmed in laboratory experiments. The purpose of this study was to investigate if exposure to 17β-estradiol (E2) causes abnormal development in larvae of the viviparous eelpout. Wild female eelpout were collected immediately after fertilization and exposed to E2 concentrations ranging from 5.7 to 133 ng L(-1) for 6 weeks in a flow through test system. The experiment shows that E2 concentrations of 53.6 and 133 ng L(-1) cause severe abnormal development among eelpout embryos. Reduced amount of ovarian fluid and increased weight of the ovarian sac indicate disturbance of ovarian function. Female plasma concentrations of E2 and vitellogenin increase in a monotonic concentration-response relationship with significant induction in the low concentration range. Our findings support the plausibility that the abnormal development among eelpout embryos encountered in monitoring programs may actually be caused by exposure to chemicals in the environment.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Biology, University of Southern Denmark , Campusvej 55, Odense M, DK-5230, Denmark
| | | | | | | |
Collapse
|
23
|
Poon CE, Madawala RJ, Day ML, Murphy CR. EpCAM is decreased but is still present in uterine epithelial cells during early pregnancy in the rat: potential mechanism for maintenance of mucosal integrity during implantation. Cell Tissue Res 2014; 359:655-664. [PMID: 25367431 DOI: 10.1007/s00441-014-2017-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/24/2014] [Indexed: 11/30/2022]
Abstract
The non-receptive uterine luminal epithelium forms a polarised epithelial barrier, protective against potential pathogenic assault from the external environment and invasion by the blastocyst. However, during the window of implantation, the uterine luminal epithelial cells (UECs) transition to a receptive state by dismantling many of their intercellular and cell-matrix adhesions in preparation for epithelial detachment and subsequent blastocyst implantation. The present study investigated the presence and regulation of the intercellular adhesion protein, Epithelial Cell Adhesion Molecule (EpCAM) during early pregnancy in the rat to understand its role in the transition to receptivity. Immunofluorescence and western blotting analysis were used to study EpCAM expression in normal pregnancy, hormone replacement studies and pseudopregnancy. EpCAM was abundantly expressed and localised to the uterine luminal and glandular epithelium during the non-receptive state but decreased to lower but still observable levels around the time of implantation. This decrease was not dependent on ovarian hormones or the blastocyst. Further, EpCAM colocalised with but did not associate with its frequent binding partner, Tumour necrosis factor α (TNFα)-converting enzyme, also known as A Disintegrin And Metalloprotease 17 (TACE/ADAM17), at the time of fertilisation. These results suggest that, prior to implantation, EpCAM mediates intercellular adhesion in the uterine epithelium, but that, during implantation when UECs lose the majority of their intercellular and cell-matrix adhesions, EpCAM levels are decreased but still present for the maintenance of mucosal integrity.
Collapse
Affiliation(s)
- Connie E Poon
- Cell & Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy & Histology) and The Bosch Institute, Anderson Stuart Building, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Romanthi J Madawala
- Cell & Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy & Histology) and The Bosch Institute, Anderson Stuart Building, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Margot L Day
- Laboratory of Developmental Physiology, School of Medical Sciences (Discipline of Physiology) and The Bosch Institute, The Medical Foundation Building, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Christopher R Murphy
- Cell & Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy & Histology) and The Bosch Institute, Anderson Stuart Building, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
24
|
Firestone GL, Kapadia BJ. Minireview: Steroid/nuclear receptor-regulated dynamics of occluding and anchoring junctions. Mol Endocrinol 2014; 28:1769-84. [PMID: 25203673 DOI: 10.1210/me.2014-1037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A diverse set of physiological signals control intercellular interactions by regulating the structure and function of occluding junctions (tight junctions) and anchoring junctions (adherens junctions and desmosomes). These plasma membrane junctions are comprised of multiprotein complexes of transmembrane and cytoplasmic peripheral plasma membrane proteins. Evidence from many hormone-responsive tissues has shown that expression, modification, molecular interactions, stability, and localization of junctional complex-associated proteins can be targeted by nuclear hormone receptors and their ligands through transcriptional and nontranscriptional mechanisms. The focus of this minireview is to discuss molecular, cellular, and physiological studies that directly link nuclear receptor- and ligand-triggered signaling pathways to the regulation of occluding and anchoring junction dynamics.
Collapse
Affiliation(s)
- Gary L Firestone
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720-3200
| | | |
Collapse
|
25
|
Lindsay LA, Murphy CR. Ovarian hyperstimulation affects fluid transporters in the uterus: a potential mechanism in uterine receptivity. Reprod Fertil Dev 2014; 26:982-90. [DOI: 10.1071/rd12396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
Controlled ovarian hyperstimulation is commonly used in fertility treatment. Evidence suggests that this could alter the endometrial environment and influence implantation rate. However, the mechanisms underlying this disruption are unknown. A recently developed rat ovarian hyperstimulation (OH) model found alterations in the localisation and expression of several molecules associated with implantation, as well as an increase in luminal fluid at the time of implantation. The present study investigated the effects of OH in rats on the expression of fluid-transporting molecules aquaporin 5 (AQP5) and claudin 4. The expression of these proteins was investigated in uterine luminal epithelial cells of rats undergoing OH and compared with normal pregnancy. There was a significant increase in AQP5 protein in OH rats at the time of implantation, along with a loss of the mesometrial staining gradient, which is thought to contribute to implantation position. At the same time, there was a significant decrease in claudin 4 protein. These results suggest that OH in rats causes a dysregulation in uterine fluid dynamics through modifications to fluid-transporting molecules, resulting in an unfavourable implantation environment for the blastocyst.
Collapse
|
26
|
Poon CE, Lecce L, Day ML, Murphy CR. Mucin 15 is lost but mucin 13 remains in uterine luminal epithelial cells and the blastocyst at the time of implantation in the rat. Reprod Fertil Dev 2014; 26:421-31. [DOI: 10.1071/rd12313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/18/2013] [Indexed: 01/28/2023] Open
Abstract
The glycocalyx of the uterine luminal epithelium in the rat undergoes considerable reduction before implantation. In particular, the reduction of some mucins is necessary to facilitate blastocyst adhesion and subsequent implantation. The present study investigated the localisation, abundance and hormonal control of two mucin proteins, Muc13 and Muc15, in rat uterine epithelial cells during early pregnancy to determine whether they are likely to play a role in uterine receptivity for implantation. Muc13 and Muc15 are localised to the uterine luminal epithelium but show a presence and an absence, respectively, at the apical cell surface at the time of implantation. This localisation corresponds to changes in the molecular weights of Muc13 and Muc15, as shown with western blotting analysis. Furthermore, the localisation of Muc13 and Muc15 was shown to be controlled by the ovarian hormones, oestrogen and progesterone, and they were also localised in preimplantation rat blastocysts. Our results suggest that Muc15 may operate in an anti-adhesive capacity to prevent implantation while Muc13 potentially functions in either an adhesive or cell-signalling role in the events of implantation.
Collapse
|
27
|
Hu YJ, Wang YD, Tan FQ, Yang WX. Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep 2013; 40:6123-42. [PMID: 24062072 DOI: 10.1007/s11033-013-2724-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 09/14/2013] [Indexed: 12/20/2022]
Abstract
Epithelial permeability is composed of transcellular permeability and paracellular permeability. Paracellular permeability is controlled by tight junctions (TJs). Claudins and occludin are two major transmembrane proteins in TJs, which directly determine the paracellular permeability to different ions or large molecules. Intracellular signaling pathways including Rho/Rho-associated protein kinase, protein kinase Cs, and mitogen-activated protein kinase, modulate the TJ proteins to affect paracellular permeability in response for diverse stimuli. Cytokines, growth factors and hormones in organism can regulate the paracellular permeability via signaling pathway. The transcellular transporters such as Na-K-ATPase, Na(+)-coupled transporters and chloride channels, can interact with paracellular transport and regulate the TJs. In this review, we summarized the factors affecting paracellular permeability and new progressions of the related mechanism in recent studies, and pointed out further research areas.
Collapse
Affiliation(s)
- Yan-Jun Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Hernández-Monge J, Garay E, Raya-Sandino A, Vargas-Sierra O, Díaz-Chávez J, Popoca-Cuaya M, Lambert PF, González-Mariscal L, Gariglio P. Papillomavirus E6 oncoprotein up-regulates occludin and ZO-2 expression in ovariectomized mice epidermis. Exp Cell Res 2013; 319:2588-603. [PMID: 23948304 DOI: 10.1016/j.yexcr.2013.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 01/08/2023]
Abstract
We have studied the expression of the tight junction proteins (TJ) occludin, claudin-1 and ZO-2 in the epidermis of female mice. We observed a peak of expression of these proteins at postnatal day 7 and a decrease in 6 week-old mice to values similar to those found in newborn animals. We explored if the expression of the E6 oncoprotein from high-risk human papilloma virus type 16 (HPV16) in the skin of transgenic female mice (K14E6), altered TJ protein expression in a manner sensitive to ovarian hormones. We observed that in ovariectomized mice E6 up-regulates the expression of occludin and ZO-2 in the epidermis and that this effect was canceled by 17β-estradiol. Progesterone instead induced occludin and ZO-2 over-expression. However, the decreased expression of occludin and ZO-2 induced by 17β-estradiol in the epidermis was not overturned by E6 or progesterone. In addition, we employed MDCK cells transfected with E6, and observed that ZO-2 delocalizes from TJs and accumulates in the cell nuclei due to a decrease in the turnover rate of the protein. These results reinforce the view of 17β-estradiol and E6 as risk factors for the development of cancer through effects on expression and mislocalization of TJ proteins.
Collapse
Affiliation(s)
- Jesús Hernández-Monge
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Altmäe S, Reimand J, Hovatta O, Zhang P, Kere J, Laisk T, Saare M, Peters M, Vilo J, Stavreus-Evers A, Salumets A. Research resource: interactome of human embryo implantation: identification of gene expression pathways, regulation, and integrated regulatory networks. Mol Endocrinol 2011; 26:203-17. [PMID: 22074951 DOI: 10.1210/me.2011-1196] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A prerequisite for successful embryo implantation is adequate preparation of receptive endometrium and the establishment and maintenance of a viable embryo. The success of implantation further relies upon a two-way dialogue between the embryo and uterus. However, molecular bases of these preimplantation and implantation processes in humans are not well known. We performed genome expression analyses of human embryos (n = 128) and human endometria (n = 8). We integrated these data with protein-protein interactions in order to identify molecular networks within the endometrium and the embryo, and potential embryo-endometrium interactions at the time of implantation. For that, we applied a novel network profiling algorithm HyperModules, which combines topological module identification and functional enrichment analysis. We found a major wave of transcriptional down-regulation in preimplantation embryos. In receptive-stage endometrium, several genes and signaling pathways were identified, including JAK-STAT signaling and inflammatory pathways. The main curated embryo-endometrium interaction network highlighted the importance of cell adhesion molecules in the implantation process. We also identified cytokine-cytokine receptor interactions involved in implantation, where osteopontin (SPP1), leukemia inhibitory factor (LIF) and leptin (LEP) pathways were intertwining. Further, we identified a number of novel players in human embryo-endometrium interactions, such as apolipoprotein D (APOD), endothelin 1 (END1), fibroblast growth factor 7 (FGF7), gastrin (GAST), kringle containing trnasmembrane protein 1 (KREMEN1), neuropilin 1 (NRP1), serpin peptidase inhibitor clade A member 3 (SERPINA3), versican (VCAN), and others. Our findings provide a fundamental resource for better understanding of the genetic network that leads to successful embryo implantation. We demonstrate the first systems biology approach into the complex molecular network of the implantation process in humans.
Collapse
Affiliation(s)
- Signe Altmäe
- Department of Clinical Science Intervention, and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kobayashi K, Miwa H, Yasui M. Progesterone maintains amniotic tight junctions during midpregnancy in mice. Mol Cell Endocrinol 2011; 337:36-42. [PMID: 21291956 DOI: 10.1016/j.mce.2011.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 01/01/2023]
Abstract
The amniotic epithelium is in direct contact with the amniotic fluid and restricts fluid flux via the paracellular pathway by means of tight junctions (TJs). Several factors affect TJs to modulate the paracellular flux. Progesterone contributes to the antenatal formation and disappearance of TJs in uterine and mammary epithelial tissues. In this study, we investigated whether progesterone positively or negatively influences amniotic TJs. The administration of RU-486, a progesterone receptor (PR) antagonist, into pregnant mice adversely affects the localization and expression of claudin-3 and claudin-4 in the amniotic epithelium. RU-486 administration also increased the permeability of the amniotic membrane. In organ-cultured amniotic membranes, progesterone induced increases in claudin-3 and claudin-4 expression in a dose-dependent manner but did not influence their localization. PRs were also present in the amniotic epithelium during midpregnancy but they disappeared during late pregnancy. These results indicate that the progesterone/PR pathway maintains TJs in the amniotic epithelium during midpregnancy.
Collapse
Affiliation(s)
- Ken Kobayashi
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | |
Collapse
|