1
|
Yasui T, Mashiko M, Obi A, Mori H, Ito-Murata M, Hayakawa H, Kikuchi S, Hosaka M, Kubota C, Torii S, Gomi H. Insulin granule morphology and crinosome formation in mice lacking the pancreatic β cell-specific phogrin (PTPRN2) gene. Histochem Cell Biol 2024; 161:223-238. [PMID: 38150052 DOI: 10.1007/s00418-023-02256-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/28/2023]
Abstract
We recently reported that phogrin, also known as IA-2β or PTPRN2, forms a complex with the insulin receptor in pancreatic β cells upon glucose stimulation and stabilizes insulin receptor substrate 2. In β cells of systemic phogrin gene knockout (IA-2β-/-) mice, impaired glucose-induced insulin secretion, decreased insulin granule density, and an increase in the number and size of lysosomes have been reported. Since phogrin is expressed not only in β cells but also in various neuroendocrine cells, the precise impact of phogrin expressed in β cells on these cells remains unclear. In this study, we performed a comprehensive analysis of morphological changes in RIP-Cre+/-Phogrinflox/flox (βKO) mice with β cell-specific phogrin gene knockout. Compared to control RIP-Cre+/- Phogrin+/+ (Ctrl) mice, aged βKO mice exhibited a decreased density of insulin granules, which can be categorized into three subtypes. While no differences were observed in the density and size of lysosomes and crinosomes, organelles involved in insulin granule reduction, significant alterations in the regions of lysosomes responding positively to carbohydrate labeling were evident in young βKO mice. These alterations differed from those in Ctrl mice and continued to change with age. These electron microscopic findings suggest that phogrin expression in pancreatic β cells plays a role in insulin granule homeostasis and crinophagy during aging, potentially through insulin autocrine signaling and other mechanisms.
Collapse
Affiliation(s)
- Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mutsumi Mashiko
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Akihiro Obi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroyuki Mori
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Moeko Ito-Murata
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroki Hayakawa
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shota Kikuchi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-nishi, Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Chisato Kubota
- Center for Food Science and Wellness, Gunma University, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
- Takasaki University of Health and Welfare, 37-1 Nakaorui, Takasaki, Gunma, 370-0033, Japan
| | - Seiji Torii
- Center for Food Science and Wellness, Gunma University, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
2
|
Yasui T, Miyata K, Nakatsuka C, Tsukise A, Gomi H. Morphological and histochemical characterization of the secretory epithelium in the canine lacrimal gland. Eur J Histochem 2021; 65. [PMID: 34726360 PMCID: PMC8581551 DOI: 10.4081/ejh.2021.3320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
In the present study, the expression of secretory components and vesicular transport proteins in the canine lacrimal gland was examined and morphometric analysis was performed. The secretory epithelium consists of two types of secretory cells with different morphological features. The secretory cells constituting acinar units (type A cells) exhibited higher levels of glycoconjugates, including β-GlcNAc, than the other cell type constituting tubular units (type T cells). Immunoblot analysis revealed that antimicrobial proteins, such as lysozyme, lactoferrin and lactoperoxidase, Rab proteins (Rab3d, Rab27a and Rab27b) and soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins (VAMP2, VAMP4, VAMP8, syntaxin-1, syntaxin-4 and syntaxin-6), were expressed at various levels. We immunohistochemically demonstrated that the expression patterns of lysozyme, lactoferrin, Rab27a, Rab27b, VAMP4, VAMP8 and syntaxin-6 differed depending on the secretory cell type. Additionally, in type T cells, VAMP4 was confined to a subpopulation of secretory granules, while VAMP8 was detected in almost all of them. The present study displayed the morphological and histochemical characteristics of the secretory epithelium in the canine lacrimal gland. These findings will help elucidate the species-specific properties of this gland.
Collapse
Affiliation(s)
- Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Kenya Miyata
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Chie Nakatsuka
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Azuma Tsukise
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| |
Collapse
|
3
|
Madkour FA, Mohammed ESI. Histomorphological investigations on the lips of Rahmani sheep (Ovis aries): A scanning electron and light microscopic study. Microsc Res Tech 2020; 84:992-1002. [PMID: 33289210 DOI: 10.1002/jemt.23660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022]
Abstract
This study was conducted to provide comprehensive information on the anatomical and histological features of the upper (UL) and lower (LL) lips of Rahmani sheep by gross examination, morphometric analysis in addition to Light and scanning electron microscope (SEM). Samples from normal healthy adult male sheep heads were collected directly after slaughtering. UL and LL were dissected, and specimens were collected for both light and SEM. The UL was longer approximately by one-fold and thicker by one-fold at the median and the oral angle areas, and by one- and half-folds at the paramedian area than the LL. The free border of both lips was characterized rostrally by the presence of labial projections. By SEM the edges of the inner aspect of the lips and of the philtrum were distinguished by labial projections. These projections which surrounding the philtrum subdivided into polygonal areas with numerous keratinized scales especially at the apical parts which increased dorsally toward the nostril. Most of the openings of the upper labial salivary glands were volcanic crater-shaped while that of the lower labial salivary glands were various shapes; round folded margin, rosette and whirlpool shaped. Histologically, the shape of the projection or papillae differs at the median and paramedian areas of the UL than the LL. However, there was no differences near the oral angle area. In conclusion, the shape, size and amount of keratinization of the papillae may offer efficiency to the lips during feeding process.
Collapse
Affiliation(s)
- Fatma A Madkour
- Department of Anatomy and Embryology, South Valley University, Faculty of Veterinary Medicine, Qena, Egypt, 83523, Egypt
| | - Elsayed S I Mohammed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt, 83523, Egypt
| |
Collapse
|
4
|
Mahdy MAA, Mohamed SA, Abdalla KEH. Morphological investigations on the lips and cheeks of the goat (Capra hircus): A scanning electron and light microscopic study. Microsc Res Tech 2020; 83:1095-1102. [PMID: 32306484 DOI: 10.1002/jemt.23500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/13/2020] [Accepted: 04/06/2020] [Indexed: 11/07/2022]
Abstract
The current study was done to provide comprehensive information on the anatomical features of the lips and cheeks of the goat by gross examination and morphometric analysis in addition to scanning electron microscope (SEM). Samples from 12 normal healthy adult goat's heads of both sexes were collected directly after slaughtering. The lips and cheeks were dissected, and specimens were collected for both light and SEM. The lips of goat were soft and mobile. The free border of both lips was characterized rostrally by the presence of labial projections. The number, size, and arrangement of labial projections differed in the upper and lower lips. On the other hand, the buccal papillae were arranged into 6-8 longitudinal rows parallel to the cheek teeth. The length of these papillae decreased caudally while they were absent on the most caudal part of the cheek. Presence of several types and shapes of labial projections and papillae, and buccal papillae suggest a high degree of mechanical adaptation of the lips and cheeks of the goat. This study provides baseline data for clinical studies. This study is the first report to shed light on the morphology of the lips and cheeks of the goat by gross and scanning electron microscopy.
Collapse
Affiliation(s)
- Mohamed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Salma A Mohamed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Kamal E H Abdalla
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Gomi H, Osawa H, Uno R, Yasui T, Hosaka M, Torii S, Tsukise A. Canine Salivary Glands: Analysis of Rab and SNARE Protein Expression and SNARE Complex Formation With Diverse Tissue Properties. J Histochem Cytochem 2017; 65:637-653. [PMID: 28914590 DOI: 10.1369/0022155417732527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The comparative structure and expression of salivary components and vesicular transport proteins in the canine major salivary glands were investigated. Histochemical analysis revealed that the morphology of the five major salivary glands-parotid, submandibular, polystomatic sublingual, monostomatic sublingual, and zygomatic glands-was greatly diverse. Immunoblot analysis revealed that expression levels of α-amylase and antimicrobial proteins, such as lysozyme, lactoperoxidase, and lactoferrin, differed among the different glands. Similarly, Rab proteins (Rab3d, Rab11a, Rab11b, Rab27a, and Rab27b) and soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins VAMP4, VAMP8, syntaxin-2, syntaxin-3, syntaxin-4, and syntaxin-6 were expressed at various levels in individual glands. mmunohistochemistry of Rab3d, Rab11b, Rab27b, VAMP4, VAMP8, syntaxin-4, and syntaxin-6 revealed their predominant expression in serous acinar cells, demilunes, and ductal cells. The VAMP4/syntaxin-6 SNARE complex, which is thought to be involved in the maturation of secretory granules in the Golgi field, was found more predominantly in the monostomatic sublingual gland than in the parotid gland. These results suggest that protein expression profiles in canine salivary glands differ among individual glands and reflect the properties of their specialized functions.
Collapse
Affiliation(s)
- Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiromi Osawa
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Rie Uno
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Seiji Torii
- Laboratory of Secretion Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Azuma Tsukise
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|