1
|
Cao L, Qin R, Liu J. Farnesoid X receptor protects against lipopolysaccharide-induced endometritis by inhibiting ferroptosis and inflammatory response. Int Immunopharmacol 2023; 118:110080. [PMID: 37001382 DOI: 10.1016/j.intimp.2023.110080] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Endometritis is an inflammatory condition that affects the endometrium; it is induced by bacterial infection and often leads to infertility and repeated abortions. Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that mediates a variety of inflammatory diseases. In the present study, we determined the protective effects of FXR on lipopolysaccharide (LPS)-induced endometritis in mice and the underlying mechanisms. The results showed that LPS administration reduced the expression of FXR in the uterus, and treatment with the FXR agonist GW4064 and fexaramine significantly alleviated the endometritis induced by LPS. In addition, compared with wild-type (WT) mice, FXR-knockout mice had more severe inflammatory responses in their uteri after LPS treatment. Moreover, ferroptosis was increased during LPS-induced endometritis, as shown by increased levels of malondialdehyde (MDA) and iron, and decreased levels of superoxide dismutase (SOD), glutathione (GSH), GXP4 and SLC7A11. In addition, inhibition of ferroptosis by treatment with ferrostation-1 (Fer-1) and liproxstatin (Lip-1) alleviated LPS-induced endometritis. Additionally, FXR-knockout mice were used to determine the relationship between FXR and ferroptosis. The results showed that knockout of FXR induced ferroptosis, and an FXR agonist inhibited LPS-induced ferroptosis. Finally, the regulatory effects of obeticholic acid (OCA) on FXR/ferroptosis and endometritis were assessed. The results showed that treatment with OCA increased the expression of FXR, decreased the levels of ferroptosis, and inhibited the endometritis induced by LPS. In conclusion, the results showed that activation of FXR can alleviate LPS-induced endometritis by inhibiting ferroptosis, and FXR may be a potential therapeutic target for treating endometritis.
Collapse
Affiliation(s)
- Lu Cao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China
| | - Rui Qin
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
2
|
Huang X, Wang B, Chen R, Zhong S, Gao F, Zhang Y, Niu Y, Li C, Shi G. The Nuclear Farnesoid X Receptor Reduces p53 Ubiquitination and Inhibits Cervical Cancer Cell Proliferation. Front Cell Dev Biol 2021; 9:583146. [PMID: 33889569 PMCID: PMC8056046 DOI: 10.3389/fcell.2021.583146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/10/2021] [Indexed: 02/05/2023] Open
Abstract
The role of farnesoid X receptor (FXR) in cervical cancer and the underlying molecular mechanism remain largely unknown. Therefore, this study aimed to assess the mechanism of FXR in cervical cancer. Western blot, qRT-PCR, and immunohistochemistry demonstrated that FXR was significantly reduced in squamous cell carcinoma tissues, although there were no associations of metastasis and TNM stage with FXR. In Lenti-FXR cells obtained by lentiviral transfection, the overexpression of FXR reduced cell viability and colony formation. Compared with the Lenti-Vector groups, the overexpression of FXR induced early and late apoptosis and promoted G1 arrest. With time, early apoptosis decreased, and late apoptosis increased. In tumor xenograft experiments, overexpression of FXR upregulated small heterodimer partner (SHP), murine double minute-2 (MDM2), and p53 in the nucleus. Co-immunoprecipitation (Co-IP) showed that SHP directly interacted with MDM2, which is important to protect p53 from ubiquitination. Nutlin3a increased MDM2 and p53 amounts in the Lenti-Vector groups, without effects in the Lenti-FXR groups. Silencing SHP reduced MDM2 and p53 levels in the Lenti-FXR groups, and Nutlin3a counteracted these effects. Taken together, these findings suggest that FXR inhibits cervical cancer via upregulation of SHP, MDM2, and p53.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Runji Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Congzhu Li
- Department of Gynecology, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| |
Collapse
|
3
|
Méndez-Tepepa M, Zepeda-Pérez D, Espindola-Lozano M, Rodríguez-Castelán J, Arroyo-Helguera O, Pacheco P, Nicolás-Toledo L, Cuevas-Romero E. Hypothyroidism modifies differentially the content of lipids and glycogen, lipid receptors, and intraepithelial lymphocytes among oviductal regions of rabbits. Reprod Biol 2020; 20:247-253. [PMID: 32089504 DOI: 10.1016/j.repbio.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022]
Abstract
Hypothyroidism affects the content of triacylglycerol (TAG), total cholesterol (TC), oxidized lipids, glycogen, and infiltration of immune cells into the ovary and uterus. This study aimed to analyze the impact of hypothyroidism on the lipid content of different regions of the oviduct. Control (n = 6) and hypothyroid (n = 6; 10 mg/kg/day of methimazole in the drinking water for 30 days) adult rabbits were used. In the fimbriae/infundibulum (FIM/INF), ampulla, (AMP), isthmus (IST), and utero-tubal junction (UTJ), the TAG and TC concentrations, presence of oxidized lipid, relative expressions of perilipin A (PLIN A), peroxisome proliferator-activated receptor γ (PPARγ), CAAT/enhancer-binding protein α (C/EBPα), and farnesoid X receptor (FXRα) were analyzed. The content of glycogen and glycans, as well as the infiltration of lymphocytes, were also quantified. In the FIM/INF, hypothyroidism reduced the content of TC, expression of C/EBPα, and presence of glycans while increased the number of intraepithelial lymphocytes. In the AMP and IST-UTJ regions, hypothyroidism increased the content of TAG, oxidized lipids, expression of PPARγ, and glycogen content but decreased the expression of PLIN-A. The FXRα expression in secretory cells of IST-UTJ was higher in the hypothyroid rabbits compared to controls. Additionally, hypothyroidism reduced the C/EBPα expression and the number of intraepithelial lymphocytes in the AMP and IST-UTJ regions, respectively. We demonstrated that the effect of hypothyroidism depends on the oviductal region, possibly associated with different physiological functions specific to each region. These alterations may be related to infertility, tubal disturbances, and ectopic pregnancy observed in hypothyroid women.
Collapse
Affiliation(s)
- Maribel Méndez-Tepepa
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Dafne Zepeda-Pérez
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Julia Rodríguez-Castelán
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Pablo Pacheco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| |
Collapse
|
4
|
Differential expression and immunoreactivity of thyroid hormone transporters MCT8 and OATP1C1 in rat ovary. Acta Histochem 2019; 121:151440. [PMID: 31561916 DOI: 10.1016/j.acthis.2019.151440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022]
Abstract
Thyroid hormones (THs) regulate several physiological processes in female mammals, many of which are related to reproduction such as steroidogenesis in the ovary, oocyte and granulosa cells maturation, follicular development and differentiation, and ovulation. THs actions require the presence of THs transporters to facilitate their cellular uptake and efflux. MCT8 and OATP1C1 are the principal THs transporters. The aim of the present study was to determine the gene expression and cellular localization of MCT8 and OATP1C1 in the rat ovary during the diestrus-II cycle phase. Ovaries of virgin adult rats were histologically processed. Reverse Transcription-PCR and immunohistochemistry analyses for MCT8 and OATP1C1 were done. MCT8 gene expression level was significantly higher (P ≤ 0.01) than that of OATP1C1 in the rat ovary. MCT8 and OATP1C1 were found in all types of ovarian cells but with different immunoreactivity. MCT8 showed stronger immunoreactivity in tertiary and Graafian follicles, corpus luteum and blood vessels, whereas OATP1C1's immunoreactivity was stronger in stroma cells, tunica albuginea, and blood vessels. Our results provide evidence that THs and their transporters are both necessary for ovarian function and that any alteration in these transporters could interfere with reproductive processes such as ovulation and steroidogenesis, compromising fertility.
Collapse
|
5
|
Takae K, Nakata M, Watanabe T, Sasada H, Fujii H, Tomioka I. Evidence for the involvement of FXR signaling in ovarian granulosa cell function. J Reprod Dev 2018; 65:47-55. [PMID: 30449821 PMCID: PMC6379767 DOI: 10.1262/jrd.2018-054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Farnesoid X receptor (FXR) is mainly present in enterohepatic tissues and regulates cholesterol, lipid, and glucose homeostasis in coordination with target genes such as
SHP and FABP6. Although FXR has been revealed to be expressed in reproductive tissues, FXR function and expression levels in the ovary remain unknown. In
this study, we investigated FXR expression in mouse ovaries and its target genes in ovarian granulosa cells. In situ hybridization and immunohistochemical staining showed
that FXR was mainly distributed in secondary and tertiary follicles. The agonist-induced activation of FXR in cultured granulosa cells induced the expression of SHP and
FABP6, while siRNA targeting of FXR decreased CYP19a1 and HSD17b1 expression. Upon examination of the roles of SHP and
FABP6 in granulosa cells, we found that SHP overexpression significantly decreased StAR, CYP11a1, and HSD3b gene
expression. In addition, siRNA targeting of FABP6 decreased CYP19a1 and HSD17b1 expression, while FABP6 overexpression
increased CYP19a1 expression. In conclusion, the present study demonstrates the presence of FXR signaling in the ovary and reveals that FXR signaling may have a role in
function of granulosa cells.
Collapse
Affiliation(s)
- Kentaro Takae
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Mizuho Nakata
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Takafumi Watanabe
- Laboratory of Animal Functional Anatomy, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Hiroshi Sasada
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Hiroshi Fujii
- Laboratory of Biochemistry, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Ikuo Tomioka
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| |
Collapse
|
6
|
Malivindi R, Santoro M, De Rose D, Panza S, Gervasi S, Rago V, Aquila S. Activated-farnesoid X receptor (FXR) expressed in human sperm alters its fertilising ability. Reproduction 2018; 156:249-259. [DOI: 10.1530/rep-18-0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
The farnesoid X receptor alpha (FXR) is a bile acid sensor activated by binding to endogenous bile acids including chenodeoxycholic acid (CDCA). Although, FXR is expressed in male reproductive tissue, the relevance of the receptor on reproduction is scarcely known. Here, we demonstrated the FXR presence and its action on several human sperm features. Western blot and immunofluorescence assays evidenced the FXR expression in human spermatozoa and the localisation in the middle piece. CDCA increasing concentrations and GW4064, synthetic ligand of FXR, were used to study the FXR influence on sperm motility, survival, capacitation, acrosome reaction and on glucose as well as lipid metabolism. Interestingly, our data showed that increasing concentrations of CDCA negatively affected sperm parameters, while the receptor blockage by (Z)-Guggulsterone and by the anti-FXR Ab reversed the effects. Intriguingly, elevated CDCA levels increased triglyceride content, while lipase and G6PDH activities were reduced with respect to untreated samples, thus impeding the metabolic reprogramming typical of the capacitated sperm. In conclusion, in this study, we demonstrated for the first time a novel target for FXR and that the activated receptor alters the acquisition of sperm fertilising ability. We showed that sperm itself express the FXR and it is responsive to specific ligands of the receptor; therefore, bile acids influence this cell both in male and in female genital tracts. It might be hypothesized that bile acid levels could be involved in infertility with idiopathic origin as these compounds are not systematically measured in men undergoing medically assisted procreation.
Collapse
|
7
|
Mazuy C, Helleboid A, Staels B, Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci 2015; 72:1631-50. [PMID: 25511198 PMCID: PMC11113650 DOI: 10.1007/s00018-014-1805-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/16/2022]
Abstract
Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways.
Collapse
Affiliation(s)
- Claire Mazuy
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Audrey Helleboid
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| |
Collapse
|