1
|
Lyu S, Cai Z, Yang Q, Liu J, Yu Y, Pan F, Zhang T. Soybean meal peptide Gly-Thr-Tyr-Trp could protect mice from acute alcoholic liver damage: A study of protein-protein interaction and proteomic analysis. Food Chem 2024; 451:139337. [PMID: 38663243 DOI: 10.1016/j.foodchem.2024.139337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024]
Abstract
Alcoholic liver disease (ALD) is a serious health threat. Soybean meal peptide (SMP) supplementation may protect against this damage; however, the potential mechanism underlying the specific sequence of SMPs is unclear. Protein-protein interaction and proteomic analyses are effective methods for studying functional ingredients in diseases. This study aimed to investigate the potential mechanism of action of the peptide Gly-Thr-Tyr-Trp (GTYW) on ALD using protein-protein interaction and proteomic analyses. These results demonstrate that GTYW influenced the targets of glutathione metabolism (glutathione-disulfide reductase, glutathione S-transferase pi 1, and glutathione S-transferase mu 2). It also regulated the expression of targets related to energy metabolism and amino acid conversion (trypsin-2, cysteine dioxygenase type-1, and F6SJM7). Amino acid and lipid metabolisms were identified based on Gene Ontology annotation. These results indicate that GTYW might affect alcohol-related liver disease signaling pathways. This study provides evidence of the protective and nutritional benefits of SMPs in ALD treatment.
Collapse
Affiliation(s)
- Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhuanzhang Cai
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Fengguang Pan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
2
|
Moolenaar LR, de Waard NE, Heger M, de Haan LR, Slootmaekers CPJ, Nijboer WN, Tushuizen ME, van Golen RF. Liver Injury and Acute Liver Failure After Bariatric Surgery: An Overview of Potential Injury Mechanisms. J Clin Gastroenterol 2022; 56:311-323. [PMID: 35180151 DOI: 10.1097/mcg.0000000000001662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The obesity epidemic has caused a surge in the use of bariatric surgery. Although surgery-induced weight loss is an effective treatment of nonalcoholic fatty liver disease, it may precipitate severe hepatic complications under certain circumstances. Acute liver injury (ALI) and acute liver failure (ALF) following bariatric surgery have been reported in several case series. Although rare, ALI and ALF tend to emerge several months after bariatric surgery. If so, it can result in prolonged hospitalization, may necessitate liver transplantation, and in some cases prove fatal. However, little is known about the risk factors for developing ALI or ALF after bariatric surgery and the mechanisms of liver damage in this context are poorly defined. This review provides an account of the available data on ALI and ALF caused by bariatric surgery, with emphasis on potential injury mechanisms and the outcomes of liver transplantation for ALF after bariatric surgery.
Collapse
Affiliation(s)
- Laura R Moolenaar
- Departments of Gastroenterology and Hepatology
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, P.R. China
| | | | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, P.R. China
| | - Lianne R de Haan
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, P.R. China
| | - Caline P J Slootmaekers
- Department of Gastroenterology and Hepatology, Sint Franciscus Gasthuis, Rotterdam, The Netherlands
| | | | | | - Rowan F van Golen
- Departments of Gastroenterology and Hepatology
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, P.R. China
| |
Collapse
|
3
|
Gomes SP, da Silva AAP, Crisma AR, Borelli P, Hernandez-Blazquez FJ, de Melo MP, Bacci B, Loesch A, Coppi AA. Stereology shows that damaged liver recovers after protein refeeding. Nutrition 2017; 38:61-69. [PMID: 28526384 DOI: 10.1016/j.nut.2017.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/04/2017] [Accepted: 02/18/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the putative effects of a low-protein diet on the three-dimensional structure of hepatocytes and determine whether this scenario could be reversed by restoring the adequate levels of protein to the diet. METHODS Using design-based stereology, the total number and volume of hepatocytes were estimated in the liver of mice in healthy and altered (by protein malnutrition) conditions and after protein renutrition. RESULTS This study demonstrated a 65% decrease in the liver volume (3302 mm3 for the control for undernourished versus 1141 mm3 for the undernourished group) accompanied by a 46% reduction in the hepatocyte volume (8223 μm3 for the control for undernourished versus 4475 μm3 for the undernourished group) and a 90% increase in the total number of binucleate hepatocytes (1 549 393 for the control for undernourished versus 2 941 353 for the undernourished group). Reinstating a normoproteinic diet (12% casein) proved to be effective in restoring the size of hepatocytes, leading to an 85% increase in the total number of uninucleate hepatocytes (15 988 560 for the undernourished versus 29 600 520 for the renourished group), and partially reversed the liver atrophy. CONCLUSIONS Awareness of these data will add to a better morphologic understanding of malnutrition-induced hepatopathies and will help clinicians improve the diagnosis and treatment of this condition in humans and in veterinary practice.
Collapse
Affiliation(s)
- Silvio Pires Gomes
- Laboratory of Stochastic Stereology and Chemical Anatomy (LSSCA), Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | - Andréa Almeida Pinto da Silva
- Laboratory of Stochastic Stereology and Chemical Anatomy (LSSCA), Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | - Amanda Rabello Crisma
- Laboratory of Haematology, Department of Clinical and Toxicologic Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Primavera Borelli
- Laboratory of Haematology, Department of Clinical and Toxicologic Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Francisco Javier Hernandez-Blazquez
- Laboratory of Stochastic Stereology and Chemical Anatomy (LSSCA), Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | - Mariana P de Melo
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of Sao Paulo (USP), Lorena, Brazil
| | - Barbara Bacci
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Andrzej Loesch
- Division of Medicine, University College London School of Life and Medical Sciences, Royal Free Campus, United Kingdom
| | - A Augusto Coppi
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| |
Collapse
|
4
|
Zhang T, Wei W, Dirsch O, Krüger T, Kan C, Xie C, Kniemeyer O, Fang H, Settmacher U, Dahmen U. Identification of Proteins Interacting with Cytoplasmic High-Mobility Group Box 1 during the Hepatocellular Response to Ischemia Reperfusion Injury. Int J Mol Sci 2017; 18:ijms18010167. [PMID: 28275217 PMCID: PMC5297800 DOI: 10.3390/ijms18010167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) occurs inevitably in liver transplantations and frequently during major resections, and can lead to liver dysfunction as well as systemic disorders. High-mobility group box 1 (HMGB1) plays a pathogenic role in hepatic IRI. In the normal liver, HMGB1 is located in the nucleus of hepatocytes; after ischemia reperfusion, it translocates to the cytoplasm and it is further released to the extracellular space. Unlike the well-explored functions of nuclear and extracellular HMGB1, the role of cytoplasmic HMGB1 in hepatic IRI remains elusive. We hypothesized that cytoplasmic HMGB1 interacts with binding proteins involved in the hepatocellular response to IRI. In this study, binding proteins of cytoplasmic HMGB1 during hepatic IRI were identified. Liver tissues from rats with warm ischemia reperfusion (WI/R) injury and from normal rats were subjected to cytoplasmic protein extraction. Co-immunoprecipitation using these protein extracts was performed to enrich HMGB1-protein complexes. To separate and identify the immunoprecipitated proteins in eluates, 2-dimensional electrophoresis and subsequent mass spectrometry detection were performed. Two of the identified proteins were verified using Western blotting: betaine–homocysteine S-methyltransferase 1 (BHMT) and cystathionine γ-lyase (CTH). Therefore, our results revealed the binding of HMGB1 to BHMT and CTH in cytoplasm during hepatic WI/R. This finding may help to better understand the cellular response to IRI in the liver and to identify novel molecular targets for reducing ischemic injury.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| | - Weiwei Wei
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, 09116 Chemnitz, Germany.
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
| | - Chunyi Kan
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
- Department of Obstetrics and Gynecology, Wuhan Central Hospital, Wuhan 430014, China.
| | - Chichi Xie
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China.
| | - Utz Settmacher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
5
|
Rotimi OA, Rotimi SO, Oluwafemi F, Ademuyiwa O, Balogun EA. Coexistence of Aflatoxicosis with Protein Malnutrition Worsens Hepatic Oxidative Damage in Rats. J Biochem Mol Toxicol 2016; 30:269-76. [PMID: 26804159 DOI: 10.1002/jbt.21787] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To investigate the effects of the coexistence of aflatoxin B1 (AFB1) and protein malnutrition in rat liver, weanling rats were fed either normal protein diet (20% protein), low-protein (PEM) diet (5%), normal protein diet + 40 ppb AFB1, or low-protein diet + 40 ppb AFB1. After 8 weeks, biomarkers of hepatic functions and oxidative stress, caspase-3 activity, and tumor suppressor protein 53 (p53) were determined spectrophotometrically. Randomly amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) was employed to determine genomic alterations among the groups. Coexistence of aflatoxicosis and PEM significantly decreased glutathione, glutathione-S-transferase, glutathione peroxidase, and superoxide dismutase, while it increased peroxidase and catalase. RAPD-PCR showed genomic alterations that were associated with significant increases in p53 level and caspase-3 activity in rats fed PEM diet + AFB1. In conclusion, the coexistence of aflatoxicosis and protein malnutrition induced oxidative stress with concomitant genomic alterations in the liver of weanling rats.
Collapse
Affiliation(s)
| | - Solomon O Rotimi
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Flora Oluwafemi
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oladipo Ademuyiwa
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | | |
Collapse
|
6
|
Naik AA, Patro IK, Patro N. Slow Physical Growth, Delayed Reflex Ontogeny, and Permanent Behavioral as Well as Cognitive Impairments in Rats Following Intra-generational Protein Malnutrition. Front Neurosci 2015; 9:446. [PMID: 26696810 PMCID: PMC4672086 DOI: 10.3389/fnins.2015.00446] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023] Open
Abstract
Environmental stressors including protein malnutrition (PMN) during pre-, neo- and post-natal age have been documented to affect cognitive development and cause increased susceptibility to neuropsychiatric disorders. Most studies have addressed either of the three windows and that does not emulate the clinical conditions of intra-uterine growth restriction (IUGR). Such data fail to provide a complete picture of the behavioral alterations in the F1 generation. The present study thus addresses the larger window from gestation to F1 generation, a new model of intra-generational PMN. Naive Sprague Dawley (SD) dams pre-gestationally switched to LP (8% protein) or HP (20% protein) diets for 45 days were bred and maintained throughout gestation on same diets. Pups born (HP/LP dams) were maintained on the respective diets post-weaningly. The present study aimed to show the sex specific differences in the neurobehavioral evolution and behavioral phenotype of the HP/LP F1 generation pups. A battery of neurodevelopmental reflex tests, behavioral (Open field and forelimb gripstrength test), and cognitive [Elevated plus maze (EPM) and Morris water maze (MWM)] assays were performed. A decelerated growth curve with significantly restricted body and brain weight, delays in apparition of neuro-reflexes and poor performance in the LP group rats was recorded. Intra-generational PMN induced poor habituation-with-time in novel environment exploration, low anxiety and hyperactive like profile in open field test in young and adult rats. The study revealed poor forelimb neuromuscular strength in LP F1 pups till adulthood. Group occupancy plots in MWM test revealed hyperactivity with poor learning, impaired memory retention and integration, thus modeling the signs of early onset Alzehemier phenotype. In addition, a gender specific effect of LP diet with severity in males and favoring female sex was also noticed.
Collapse
Affiliation(s)
- Aijaz A Naik
- School of Studies in Neuroscience, Jiwaji University Gwalior, India ; School of Studies in Zoology, Jiwaji University Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University Gwalior, India ; School of Studies in Zoology, Jiwaji University Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University Gwalior, India
| |
Collapse
|