1
|
Anatskaya OV, Vinogradov AE. Polyploidy Promotes Hypertranscription, Apoptosis Resistance, and Ciliogenesis in Cancer Cells and Mesenchymal Stem Cells of Various Origins: Comparative Transcriptome In Silico Study. Int J Mol Sci 2024; 25:4185. [PMID: 38673782 PMCID: PMC11050069 DOI: 10.3390/ijms25084185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSC) attract an increasing amount of attention due to their unique therapeutic properties. Yet, MSC can undergo undesirable genetic and epigenetic changes during their propagation in vitro. In this study, we investigated whether polyploidy can compromise MSC oncological safety and therapeutic properties. For this purpose, we compared the impact of polyploidy on the transcriptome of cancer cells and MSC of various origins (bone marrow, placenta, and heart). First, we identified genes that are consistently ploidy-induced or ploidy-repressed through all comparisons. Then, we selected the master regulators using the protein interaction enrichment analysis (PIEA). The obtained ploidy-related gene signatures were verified using the data gained from polyploid and diploid populations of early cardiomyocytes (CARD) originating from iPSC. The multistep bioinformatic analysis applied to the cancer cells, MSC, and CARD indicated that polyploidy plays a pivotal role in driving the cell into hypertranscription. It was evident from the upregulation of gene modules implicated in housekeeping functions, stemness, unicellularity, DNA repair, and chromatin opening by means of histone acetylation operating via DNA damage associated with the NUA4/TIP60 complex. These features were complemented by the activation of the pathways implicated in centrosome maintenance and ciliogenesis and by the impairment of the pathways related to apoptosis, the circadian clock, and immunity. Overall, our findings suggest that, although polyploidy does not induce oncologic transformation of MSC, it might compromise their therapeutic properties because of global epigenetic changes and alterations in fundamental biological processes. The obtained results can contribute to the development and implementation of approaches enhancing the therapeutic properties of MSC by removing polyploid cells from the cell population.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Institute of Cytology Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
2
|
Yang S, Liu C, Jiang M, Liu X, Geng L, Zhang Y, Sun S, Wang K, Yin J, Ma S, Wang S, Belmonte JCI, Zhang W, Qu J, Liu GH. A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes. Protein Cell 2024; 15:98-120. [PMID: 37378670 PMCID: PMC10833472 DOI: 10.1093/procel/pwad039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell-cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Chengyu Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
3
|
Broughton K, Esquer C, Echeagaray O, Firouzi F, Shain G, Ebeid D, Monsanto M, Yaareb D, Golgolab L, Gude N, Sussman MA. Surface Lin28A expression consistent with cellular stress parallels indicators of senescence. Cardiovasc Res 2023; 119:743-758. [PMID: 35880724 PMCID: PMC10409908 DOI: 10.1093/cvr/cvac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Declining cellular functional capacity resulting from stress or ageing is a primary contributor to impairment of myocardial performance. Molecular pathway regulation of biological processes in cardiac interstitial cells (CICs) is pivotal in stress and ageing responses. Altered localization of the RNA-binding protein Lin28A has been reported in response to environmental stress, but the role of Lin28A in response to stress in CICs has not been explored. Surface Lin28A redistribution is indicative of stress response in CIC associated with ageing and senescence. METHODS AND RESULTS Localization of Lin28A was assessed by multiple experimental analyses and treatment conditions and correlated to oxidative stress, senescence, and ploidy in adult murine CICs. Surface Lin28A expression is present on 5% of fresh CICs and maintained through Passage 2, increasing to 21% in hyperoxic conditions but lowered to 14% in physiologic normoxia. Surface Lin28A is coincident with elevated senescence marker p16 and beta-galactosidase (β-gal) expression in CICs expanded in hyperoxia, and also increases with polyploidization and binucleation of CICs regardless of oxygen culture. Transcriptional profiling of CICs using single-cell RNA-Seq reveals up-regulation of pathways associated with oxidative stress in CICs exhibiting surface Lin28A. Induction of surface Lin28A by oxidative stress is blunted by treatment of cells with the antioxidant Trolox in a dose-dependent manner, with 300 μM Trolox exposure maintaining characteristics of freshly isolated CICs possessing low expression of surface Lin28A and β-gal with predominantly diploid content. CONCLUSION Surface Lin28A is a marker of environmental oxidative stress in CICs and antioxidant treatment antagonizes this phenotype. The biological significance of Lin28 surface expression and consequences for myocardial responses may provide important insights regarding mitigation of cardiac stress and ageing.
Collapse
Affiliation(s)
- Kathleen Broughton
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Carolina Esquer
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Oscar Echeagaray
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Fareheh Firouzi
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Grant Shain
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - David Ebeid
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Megan Monsanto
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Dena Yaareb
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Leila Golgolab
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Natalie Gude
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
4
|
Anatskaya OV, Runov AL, Ponomartsev SV, Vonsky MS, Elmuratov AU, Vinogradov AE. Long-Term Transcriptomic Changes and Cardiomyocyte Hyperpolyploidy after Lactose Intolerance in Neonatal Rats. Int J Mol Sci 2023; 24:7063. [PMID: 37108224 PMCID: PMC10138443 DOI: 10.3390/ijms24087063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Many cardiovascular diseases originate from growth retardation, inflammation, and malnutrition during early postnatal development. The nature of this phenomenon is not completely understood. Here we aimed to verify the hypothesis that systemic inflammation triggered by neonatal lactose intolerance (NLI) may exert long-term pathologic effects on cardiac developmental programs and cardiomyocyte transcriptome regulation. Using the rat model of NLI triggered by lactase overloading with lactose and the methods of cytophotometry, image analysis, and mRNA-seq, we evaluated cardiomyocyte ploidy, signs of DNA damage, and NLI-associated long-term transcriptomic changes of genes and gene modules that differed qualitatively (i.e., were switched on or switched off) in the experiment vs. the control. Our data indicated that NLI triggers the long-term animal growth retardation, cardiomyocyte hyperpolyploidy, and extensive transcriptomic rearrangements. Many of these rearrangements are known as manifestations of heart pathologies, including DNA and telomere instability, inflammation, fibrosis, and reactivation of fetal gene program. Moreover, bioinformatic analysis identified possible causes of these pathologic traits, including the impaired signaling via thyroid hormone, calcium, and glutathione. We also found transcriptomic manifestations of increased cardiomyocyte polyploidy, such as the induction of gene modules related to open chromatin, e.g., "negative regulation of chromosome organization", "transcription" and "ribosome biogenesis". These findings suggest that ploidy-related epigenetic alterations acquired in the neonatal period permanently rewire gene regulatory networks and alter cardiomyocyte transcriptome. Here we provided first evidence indicating that NLI can be an important trigger of developmental programming of adult cardiovascular disease. The obtained results can help to develop preventive strategies for reducing the NLI-associated adverse effects of inflammation on the developing cardiovascular system.
Collapse
Affiliation(s)
| | - Andrey L. Runov
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | | | - Maxim S. Vonsky
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | - Artem U. Elmuratov
- Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, Moscow 105120, Russia
| | | |
Collapse
|
5
|
Polyploidy and Myc Proto-Oncogenes Promote Stress Adaptation via Epigenetic Plasticity and Gene Regulatory Network Rewiring. Int J Mol Sci 2022; 23:ijms23179691. [PMID: 36077092 PMCID: PMC9456078 DOI: 10.3390/ijms23179691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.
Collapse
|
6
|
The Effect of Low-Energy Laser-Driven Ultrashort Pulsed Electron Beam Irradiation on Erythropoiesis and Oxidative Stress in Rats. Int J Mol Sci 2022; 23:ijms23126692. [PMID: 35743135 PMCID: PMC9223873 DOI: 10.3390/ijms23126692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Anemia is a commonly observed consequence of whole-body exposure to a dose of X-ray or gamma irradiation of the order of the mean lethal dose in mammals, and it is an important factor for the determination of the survival of animals. The aim of this study was to unravel the effect of laser-driven ultrashort pulsed electron beam (UPEB) irradiation on the process of erythropoiesis and the redox state in the organism. Wistar rats were exposed to laser-driven UPEB irradiation, after which the level of oxidative stress and the activities of different antioxidant enzymes, as well as blood smears, bone marrow imprints and sections, erythroblastic islets, hemoglobin and hematocrit, hepatic iron, DNA, and erythropoietin levels, were assessed on the 1st, 3rd, 7th, 14th, and 28th days after irradiation. Despite the fact that laser-driven UPEB irradiation requires quite low doses and repetition rates to achieve the LD50 in rats, our findings suggest that whole-body exposure with this new type of irradiation causes relatively mild anemia in rats, with subsequent fast recovery up to the 28th day. Moreover, this novel type of irradiation causes highly intense processes of oxidative stress, which, despite being relatively extinguished, did not reach the physiologically stable level even at the 28th day after irradiation due to the violations in the antioxidant system of the organism.
Collapse
|
7
|
Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int J Mol Sci 2022; 23:ijms23073542. [PMID: 35408902 PMCID: PMC8998937 DOI: 10.3390/ijms23073542] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Collapse
|
8
|
Anatskaya OV, Vinogradov AE. Whole-Genome Duplications in Evolution, Ontogeny, and Pathology: Complexity and Emergency Reserves. Mol Biol 2021. [DOI: 10.1134/s0026893321050022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Anatskaya OV, Vinogradov AE, Vainshelbaum NM, Giuliani A, Erenpreisa J. Phylostratic Shift of Whole-Genome Duplications in Normal Mammalian Tissues towards Unicellularity Is Driven by Developmental Bivalent Genes and Reveals a Link to Cancer. Int J Mol Sci 2020; 21:ijms21228759. [PMID: 33228223 PMCID: PMC7699474 DOI: 10.3390/ijms21228759] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Tumours were recently revealed to undergo a phylostratic and phenotypic shift to unicellularity. As well, aggressive tumours are characterized by an increased proportion of polyploid cells. In order to investigate a possible shared causation of these two features, we performed a comparative phylostratigraphic analysis of ploidy-related genes, obtained from transcriptomic data for polyploid and diploid human and mouse tissues using pairwise cross-species transcriptome comparison and principal component analysis. Our results indicate that polyploidy shifts the evolutionary age balance of the expressed genes from the late metazoan phylostrata towards the upregulation of unicellular and early metazoan phylostrata. The up-regulation of unicellular metabolic and drug-resistance pathways and the downregulation of pathways related to circadian clock were identified. This evolutionary shift was associated with the enrichment of ploidy with bivalent genes (p < 10−16). The protein interactome of activated bivalent genes revealed the increase of the connectivity of unicellulars and (early) multicellulars, while circadian regulators were depressed. The mutual polyploidy-c-MYC-bivalent genes-associated protein network was organized by gene-hubs engaged in both embryonic development and metastatic cancer including driver (proto)-oncogenes of viral origin. Our data suggest that, in cancer, the atavistic shift goes hand-in-hand with polyploidy and is driven by epigenetic mechanisms impinging on development-related bivalent genes.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Alexander E. Vinogradov
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Ninel M. Vainshelbaum
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Faculty of Biology, University of Latvia, LV-1586 Riga, Latvia
| | | | - Jekaterina Erenpreisa
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| |
Collapse
|
10
|
Liu W, Yuan X, Yuan S, Dai L, Dong S, Liu J, Peng L, Wang M, Tang Y, Xiao Y. Optimal reference genes for gene expression analysis in polyploid of Cyprinus carpio and Carassius auratus. BMC Genet 2020; 21:107. [PMID: 32943013 PMCID: PMC7499967 DOI: 10.1186/s12863-020-00915-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Reference genes are usually stably expressed in various cells and tissues. However, it was reported that the expression of some reference genes may be distinct in different species. In this study, we intend to answer whether the expression of reported traditional reference genes changes or not in the polyploid fish RESULTS: By retrieving the mRNA sequencing data of three different ploidy fish from the NCBI SRA database, we selected 12 candidate reference genes, and examined their expression levels in the 10 tissues and in the four cell lines of three different ploidy fish by real-time PCR. Then, the expression profiles of these 12 candidate reference genes were systematically evaluated by using the software platforms: BestKeeper, NormFinder and geNorm. CONCLUSION The 28S ribosomal protein S5 gene (RPS5) and the ribosomal protein S18 gene (RPS18) are the most suitable reference genes for the polyploid of Cyprinus carpio and Carassius auratus, demonstrated by both of the tissues and the cultured cells.
Collapse
Affiliation(s)
- Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Xiudan Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shuli Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Liuye Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shenghua Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Minmeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yi Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.
| |
Collapse
|
11
|
Broughton KM, Sussman MA. Adult Cardiomyocyte Cell Cycle Detour: Off-ramp to Quiescent Destinations. Trends Endocrinol Metab 2019; 30:557-567. [PMID: 31262545 PMCID: PMC6703820 DOI: 10.1016/j.tem.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Ability to promote completion of mitotic cycling of adult mammalian cardiomyocytes remains an intractable and vexing challenge, despite being one of the most sought after 'holy grails' of cardiovascular research. While some of the struggle is attributable to adult cardiomyocytes themselves that are notoriously post-mitotic, another contributory factor rests with difficulty in definitive tracking of adult cardiomyocyte cell cycle and lack of rigorous measures to track proliferation in situ. This review summarizes past, present, and future directions to promote adult mammalian cardiomyocyte cell cycle progression, proliferation, and renewal. Establishing relationship(s) between cardiomyocyte cell cycle progression and cellular biological properties is sorely needed to understand the mechanistic basis for cardiomyocyte cell cycle withdrawal to enhance cardiomyocyte cell cycle progression and mitosis.
Collapse
Affiliation(s)
- Kathleen M Broughton
- San Diego State University, Department of Biology and Integrated Regenerative Research Institute, San Diego, CA 92182, USA
| | - Mark A Sussman
- San Diego State University, Department of Biology and Integrated Regenerative Research Institute, San Diego, CA 92182, USA.
| |
Collapse
|
12
|
Broughton KM, Khieu T, Nguyen N, Rosa M, Mohsin S, Quijada P, Wang BJ, Echeagaray OH, Kubli DA, Kim T, Firouzi F, Monsanto MM, Gude NA, Adamson RM, Dembitsky WP, Davis ME, Sussman MA. Cardiac interstitial tetraploid cells can escape replicative senescence in rodents but not large mammals. Commun Biol 2019; 2:205. [PMID: 31231694 PMCID: PMC6565746 DOI: 10.1038/s42003-019-0453-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocyte ploidy has been described but remains obscure in cardiac interstitial cells. Ploidy of c-kit+ cardiac interstitial cells was assessed using confocal, karyotypic, and flow cytometric technique. Notable differences were found between rodent (rat, mouse) c-kit+ cardiac interstitial cells possessing mononuclear tetraploid (4n) content, compared to large mammals (human, swine) with mononuclear diploid (2n) content. In-situ analysis, confirmed with fresh isolates, revealed diploid content in human c-kit+ cardiac interstitial cells and a mixture of diploid and tetraploid content in mouse. Downregulation of the p53 signaling pathway provides evidence why rodent, but not human, c-kit+ cardiac interstitial cells escape replicative senescence. Single cell transcriptional profiling reveals distinctions between diploid versus tetraploid populations in mouse c-kit+ cardiac interstitial cells, alluding to functional divergences. Collectively, these data reveal notable species-specific biological differences in c-kit+ cardiac interstitial cells, which could account for challenges in extrapolation of myocardial from preclinical studies to clinical trials.
Collapse
Affiliation(s)
- Kathleen M. Broughton
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Tiffany Khieu
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Nicky Nguyen
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Michael Rosa
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Temple University, 3500 N. Broad St., Philadelphia, 19140 PA USA
| | - Pearl Quijada
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Bingyan J. Wang
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Oscar H. Echeagaray
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Dieter A. Kubli
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Taeyong Kim
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Fareheh Firouzi
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Megan M. Monsanto
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Natalie A. Gude
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Robert M. Adamson
- Division of Cardiology, Sharp Memorial Hospital, 8010 Frost St., San Diego, 92123 CA USA
| | - Walter P. Dembitsky
- Division of Cardiology, Sharp Memorial Hospital, 8010 Frost St., San Diego, 92123 CA USA
| | - Michael E. Davis
- Biomedical Engineering and Medicine, Emory University, 1760 Haygood Dr., Atlanta, 30322 GA USA
| | - Mark A. Sussman
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| |
Collapse
|