1
|
Adıgüzel E, Ülger TG. A marine-derived antioxidant astaxanthin as a potential neuroprotective and neurotherapeutic agent: A review of its efficacy on neurodegenerative conditions. Eur J Pharmacol 2024; 977:176706. [PMID: 38843946 DOI: 10.1016/j.ejphar.2024.176706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Astaxanthin is a potent lipid-soluble carotenoid produced by several different freshwater and marine microorganisms, including microalgae, bacteria, fungi, and yeast. The proven therapeutic effects of astaxanthin against different diseases have made this carotenoid popular in the nutraceutical market and among consumers. Recently, astaxanthin is also receiving attention for its effects in the co-adjuvant treatment or prevention of neurological pathologies. In this systematic review, studies evaluating the efficacy of astaxanthin against different neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebrovascular diseases, and spinal cord injury are analyzed. Based on the current literature, astaxanthin shows potential biological activity in both in vitro and in vivo models. In addition, its preventive and therapeutic activities against the above-mentioned diseases have been emphasized in studies with different experimental designs. In contrast, none of the 59 studies reviewed reported any safety concerns or adverse health effects as a result of astaxanthin supplementation. The preventive or therapeutic role of astaxanthin may vary depending on the dosage and route of administration. Although there is a consensus in the literature regarding its effectiveness against the specified diseases, it is important to determine the safe intake levels of synthetic and natural forms and to determine the most effective forms for oral intake.
Collapse
Affiliation(s)
- Emre Adıgüzel
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 70100, Karaman, Turkey.
| | - Taha Gökmen Ülger
- Bolu Abant İzzet Baysal University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Bolu, Turkey
| |
Collapse
|
2
|
Cong J, Li JY, Zou W. Mechanism and treatment of intracerebral hemorrhage focus on mitochondrial permeability transition pore. Front Mol Neurosci 2024; 17:1423132. [PMID: 39156127 PMCID: PMC11328408 DOI: 10.3389/fnmol.2024.1423132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, characterized by high mortality and a poor prognosis. Despite various treatment methods, there has been limited improvement in the prognosis of ICH over the past decades. Therefore, it is imperative to identify a feasible treatment strategy for ICH. Mitochondria are organelles present in most eukaryotic cells and serve as the primary sites for aerobic respiration and energy production. Under unfavorable cellular conditions, mitochondria can induce changes in permeability through the opening of the mitochondrial permeability transition pore (mPTP), ultimately leading to mitochondrial dysfunction and contributing to various diseases. Recent studies have demonstrated that mPTP plays a role in the pathological processes associated with several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke and ischemia-reperfusion injury, among others. However, there is limited research on mPTP involvement specifically in ICH. Therefore, this study comprehensively examines the pathological processes associated with mPTP in terms of oxidative stress, apoptosis, necrosis, autophagy, ferroptosis, and other related mechanisms to elucidate the potential mechanism underlying mPTP involvement in ICH. This research aims to provide novel insights for the treatment of secondary injury after ICH.
Collapse
Affiliation(s)
- Jing Cong
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing-Yi Li
- The Second School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Mittal AM, Nowicki KW, Mantena R, Cao C, Rochlin EK, Dembinski R, Lang MJ, Gross BA, Friedlander RM. Advances in biomarkers for vasospasm - Towards a future blood-based diagnostic test. World Neurosurg X 2024; 22:100343. [PMID: 38487683 PMCID: PMC10937316 DOI: 10.1016/j.wnsx.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Objective Cerebral vasospasm and the resultant delayed cerebral infarction is a significant source of mortality following aneurysmal SAH. Vasospasm is currently detected using invasive or expensive imaging at regular intervals in patients following SAH, thus posing a risk of complications following the procedure and financial burden on these patients. Currently, there is no blood-based test to detect vasospasm. Methods PubMed, Web of Science, and Embase databases were systematically searched to retrieve studies related to cerebral vasospasm, aneurysm rupture, and biomarkers. The study search dated from 1997 to 2022. Data from eligible studies was extracted and then summarized. Results Out of the 632 citations screened, only 217 abstracts were selected for further review. Out of those, only 59 full text articles met eligibility and another 13 were excluded. Conclusions We summarize the current literature on the mechanism of cerebral vasospasm and delayed cerebral ischemia, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future bloodbased test to detect vasospasm. Efforts should be focused on clinical-translational approaches to create such a test to improve treatment timing and prediction of vasospasm to reduce the incidence of delayed cerebral infarction.
Collapse
Affiliation(s)
- Aditya M. Mittal
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | | | - Rohit Mantena
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Catherine Cao
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Emma K. Rochlin
- Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Robert Dembinski
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Michael J. Lang
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Bradley A. Gross
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Robert M. Friedlander
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Yan T, Ding F, Zhang Y, Wang Y, Wang Y, Zhang Y, Zhu F, Zhang G, Zheng X, Jia G, Zhou F, Zhao Y, Zhao Y. Astaxanthin Inhibits H 2O 2-Induced Excessive Mitophagy and Apoptosis in SH-SY5Y Cells by Regulation of Akt/mTOR Activation. Mar Drugs 2024; 22:57. [PMID: 38393028 PMCID: PMC10890442 DOI: 10.3390/md22020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China; (T.Y.); (F.D.); (Y.Z.); (Y.W.); (Y.W.); (Y.Z.); (F.Z.); (G.Z.); (X.Z.); (G.J.); (F.Z.); (Y.Z.)
| |
Collapse
|
5
|
Lu X, Li W, Wang Q, Wang J, Qin S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules 2023; 28:5364. [PMID: 37513236 PMCID: PMC10385551 DOI: 10.3390/molecules28145364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Natural plant pigments are safe and have low toxicity, with various nutrients and biological activities. However, the extraction, preservation, and application of pigments are limited due to the instability of natural pigments. Therefore, it is necessary to examine the extraction and application processes of natural plant pigments in detail. This review discusses the classification, extraction methods, biological activities, and modification methods that could improve the stability of various pigments from plants, providing a reference for applying natural plant pigments in the industry and the cosmetics, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Xianwen Lu
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| |
Collapse
|
6
|
Cunha SA, Borges S, Baptista-Silva S, Ribeiro T, Oliveira-Silva P, Pintado M, Batista P. Astaxanthin impact on brain: health potential and market perspective. Crit Rev Food Sci Nutr 2023; 64:11067-11090. [PMID: 37417323 DOI: 10.1080/10408398.2023.2232866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nowadays, there is an emergent interest in new trend-driven biomolecules to improve health and wellbeing, which has become an interesting and promising field, considering their high value and biological potential. Astaxanthin is one of these promising biomolecules, with impressive high market growth, especially in the pharmaceutical and food industries. This biomolecule, obtained from natural sources (i.e., microalgae), has been reported in the literature to have several beneficial health effects due to its biological properties. These benefits seem to be mainly associated with Astaxanthin's high antioxidant and anti-inflammatory properties, which may act on several brain issues, thus attenuating symptoms. In this sense, several studies have demonstrated the impact of astaxanthin on a wide range of diseases, namely on brain disorders (such as Alzheimer's disease, Parkinson, depression, brain stroke and autism). Therefore, this review highlights its application in mental health and illness. Furthermore, a S.W.O.T. analysis was performed to display an approach from the market/commercial perspective. However, to bring the molecule to the market, there is still a need for more studies to increase deep knowledge regarding the real impact and mechanisms in the human brain.HIGHLIGHTSAstaxanthin has been mainly extracted from the algae Haematococcus pluvialisAstaxanthin, bioactive molecule with high antioxidant and anti-inflammatory propertiesAstaxanthin has an important protective effect on brain disordersAstaxanthin is highly marketable, mainly for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara A Cunha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sandra Borges
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Tânia Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Oliveira-Silva
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Batista
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| |
Collapse
|
7
|
Caicedo Chacon WD, Verruck S, Monteiro AR, Valencia GA. The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: A review. Food Res Int 2023; 168:112728. [PMID: 37120194 DOI: 10.1016/j.foodres.2023.112728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The anti-solvent precipitation method has been investigated to produce biopolymeric nanoparticles in recent years. Biopolymeric nanoparticles have better water solubility and stability when compared with unmodified biopolymers. This review article focuses on the analysis of the state of the art available in the last ten years about the production mechanism and biopolymer type, as well as the used of these nanomaterials to encapsulate biological compounds, and the potential applications of biopolymeric nanoparticles in food sector. The revised literature revealed the importance to understand the anti-solvent precipitation mechanism since biopolymer and solvent types, as well as anti-solvent and surfactants used, can alter the biopolymeric nanoparticles properties. In general, these nanoparticles have been produced using polysaccharides and proteins as biopolymers, especially starch, chitosan and zein. Finally, it was identified that those biopolymers produced by anti-solvent precipitation were used to stabilize essential oils, plant extracts, pigments, and nutraceutical compounds, promoting their application in functional foods.
Collapse
|
8
|
Tamakoshi K, Meguro K, Takahashi Y, Oshimi R, Iwasaki N. Comparison of motor function recovery and brain changes in intracerebral hemorrhagic and ischemic rats with similar brain damage. Neuroreport 2023; 34:332-337. [PMID: 36966806 DOI: 10.1097/wnr.0000000000001898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
In this study, we compared the mechanisms of brain recovery in intracerebral hemorrhage and ischemia, focusing on synapses, glial cells, and dopamine expression, which are considered fundamental for neural recovery after stroke. Male Wistar rats were divided into intracerebral hemorrhage, ischemia, and sham surgery (SHAM) groups. The intracerebral hemorrhage group was injected with a collagenase solution, the ischemia group was injected with an endothelin-1 solution, and the SHAM group was injected with physiological saline. The motor function of these rats was evaluated using a rotarod test on days 7, 14, 21, and 28 post-surgery. On postoperative day 29, lesion volume was analyzed using Nissl staining. In addition, the protein expression levels of NeuN, GFAP, tyrosine hydroxylase, and PSD95 were analyzed in the striatum and motor cortex. There was no significant difference between the ischemia and intracerebral hemorrhage groups in terms of lesion volume in the striatum; however, the motor recovery of the intracerebral hemorrhage group occurred more rapidly than that of the ischemia group, and the intracerebral hemorrhage group exhibited higher GFAP protein expression in the motor cortex. The rapid motor recovery in intracerebral hemorrhage rats relative to that in ischemia rats may be associated with changes in astrocytes in brain regions remote from the injury site.
Collapse
Affiliation(s)
- Keigo Tamakoshi
- Department of Physical Therapy, Niigata University of Health and Welfare
- Institute for Human Movement and Medical Sciences
| | - Kota Meguro
- Department of Rehabilitation, Kaetsu Hospital
| | | | - Ryu Oshimi
- Department of Rehabilitation, Saigata Medical Center, National Hospital Organization
| | - Natsuka Iwasaki
- Department of Rehabilitation, Azuma Neurosurgical Hospital, Niigata, Japan
| |
Collapse
|
9
|
BÜYÜK B, MALÇOK ÜA. Effect of miRs-17/20 on Vasospasm in Subarachnoid Hemorrhage Model of Rats. ACTA MEDICA ALANYA 2022. [DOI: 10.30565/medalanya.1152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the effects of melatonin and miRNA-17/20 administration on vasospasm and vascular damage on the bacillary artery in the Subarachnoid hemorrhage (SAH) model of rats.
Methods: Rats were divided into 6 groups: Sham,SAH,SAH+NegmiRNA,SAH+MEL,SAH-miRs-17/20 group,SAH+MEL+miRs-17/20.For creating the SAH model the skin was cut with a vertical incision in the anterior region of the head.120 µL of fresh non-heparinized autologous arterial blood collected from the tail artery was injected into the prechiasmatic cistern under aseptic conditions. All steps in the Sham were the same as in the SAH group, except for blood injection. In the SAH+NegmiRs-17/20, miRs-17/20 miRNA Mimic-Negative Control#1 was administered 1 hour after SAH operation. In the SAH+MEL,10 mg/kg melatonin was administered intraperitoneally 1 hour after the SAH operation. In the SAH-miRs-17/20,mimic-miR-17 and mimic-miR-20 were given intranasally 1 hour after the SAH operation.In the SAH+MEL+miRs-17/20,intranasal mimic-miR-17 and intraperitoneal melatonin were administered 1 hour after the SAH operation. Brain samples, including the bacillary artery, were taken and subjected to routine tissue processing procedures. Vessel samples were evaluated and graded in histological sections stained with the H-E method in terms of vasospasm, edema in the tunica media, and folding of the lamina elastica interna.
Results: The co-administration of melatonin and miRs-17/20 reduced the vasospasm and edema formation in the vessel wall. It has also been demonstrated that the application of miRs-17/20 after SAH alone reduces the development of edema in the vessel wall and folding of the internasal lamina elastica due to vasospasm.
Conclusion:It has been shown that miRs-17/20 can reduce vasospasm in the vessel wall and prevent vessel damage by reducing edema.
Collapse
|
10
|
Huang C, Li Z, Qu W, Guo W. Astaxanthin-folic acid combined treatment potentiates neuronal regeneration and functional recovery after brachial plexus avulsion and reimplantation. Front Neurosci 2022; 16:923750. [PMID: 36300168 PMCID: PMC9589430 DOI: 10.3389/fnins.2022.923750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Brachial plexus avulsion (BPA), which commonly occurs in neonatal birth injuries and car accidents, severely disrupts spinal cord segments and nerve roots. Avulsion is usually located in the transitional zone at the junction of spinal nerve roots and starting point of the spinal cord, which places heavy disability burdens on patients due to sensory and motor function loss in the innervated areas. Primary mechanical injuries and secondary pathogenesis, such as inflammatory infiltration and oxidative stress, lead to inefficient management and poor prognosis. Astaxanthin (AST) has a strong ability to bleach singlet oxygen and capture free radicals, quench singlet oxygen and trap free radicals, and folic acid (FC) can effectively inhibit the inflammatory response. This study aimed to investigate the therapeutic effects of AST and FC on BPA. The 24 h after BPA was considered the acute phase of the injury, and the combination of AST and FC had the best therapeutic effect due to the synergistic effect of AST’s antioxidant and FC’s anti-inflammatory properties. At 6 weeks after BPA, AST-FC promoted the recovery of biceps motor functions, increased myofiber diameter, enlarged the amplitude of musculocutaneous nerve-biceps compound action potential, and improved Terzis grooming test (TGT) scores. Meanwhile, more functional ventral horn motor neurons in the spinal cord were maintained. In conclusion, AST-FC combined therapy has a potential role in the clinical management of BPA since it can effectively alleviate oxidative stress and the inflammatory response in the acute phase of BPA, increase the survival rate of neurons, and promote neuronal regeneration and recovery of motor functions in the late stage of BPA.
Collapse
|
11
|
Si P, Zhu C. Biological and neurological activities of astaxanthin (Review). Mol Med Rep 2022; 26:300. [PMID: 35946443 PMCID: PMC9435021 DOI: 10.3892/mmr.2022.12816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
Astaxanthin is a lipid‑soluble carotenoid produced by various microorganisms and marine animals, including bacteria, yeast, fungi, microalgae, shrimps and lobsters. Astaxanthin has antioxidant, anti‑inflammatory and anti‑apoptotic properties. These characteristics suggest that astaxanthin has health benefits and protects against various diseases. Owing to its ability to cross the blood‑brain barrier, astaxanthin has received attention for its protective effects against neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, cerebral ischemia/reperfusion, subarachnoid hemorrhage, traumatic brain injury, spinal cord injury, cognitive impairment and neuropathic pain. Previous studies on the neurological effects of astaxanthin are mostly based on animal models and cellular experiments. Thus, the biological effects of astaxanthin on humans and its underlying mechanisms are still not fully understood. The present review summarizes the neuroprotective effects of astaxanthin, explores its mechanisms of action and draws attention to its potential clinical implications as a therapeutic agent.
Collapse
Affiliation(s)
- Pan Si
- Department of Neurology Intervention, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Chenkai Zhu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
12
|
Zhang Z, Zhang A, Liu Y, Hu X, Fang Y, Wang X, Luo Y, Lenahan C, Chen S. New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria. Curr Neuropharmacol 2022; 20:1278-1296. [PMID: 34720082 PMCID: PMC9881073 DOI: 10.2174/1570159x19666211101103646] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for 5-10% of all strokes and is a subtype of hemorrhagic stroke that places a heavy burden on health care. Despite great progress in surgical clipping and endovascular treatment for ruptured aneurysms, cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) threaten the long-term outcomes of patients with SAH. Moreover, there are limited drugs available to reduce the risk of DCI and adverse outcomes in SAH patients. New insight suggests that early brain injury (EBI), which occurs within 72 h after the onset of SAH, may lay the foundation for further DCI development and poor outcomes. The mechanisms of EBI mainly include excitotoxicity, oxidative stress, neuroinflammation, blood-brain barrier (BBB) destruction, and cellular death. Mitochondria are a double-membrane organelle, and they play an important role in energy production, cell growth, differentiation, apoptosis, and survival. Mitochondrial dysfunction, which can lead to mitochondrial membrane potential (Δψm) collapse, overproduction of reactive oxygen species (ROS), release of apoptogenic proteins, disorders of mitochondrial dynamics, and activation of mitochondria-related inflammation, is considered a novel mechanism of EBI related to DCI as well as post-SAH outcomes. In addition, mitophagy is activated after SAH. In this review, we discuss the latest perspectives on the role of mitochondria in EBI and DCI after SAH. We emphasize the potential of mitochondria as therapeutic targets and summarize the promising therapeutic strategies targeting mitochondria for SAH.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital, Taizhou, Zhejiang Province, China;
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,Address correspondence to this author at the Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Tel: +86-571-87784815; Fax: +86-571-87784755; E-mail:
| |
Collapse
|
13
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
15
|
Chen MH, Hong CL, Wang YT, Wang TJ, Chen JR. The Effect of Astaxanthin Treatment on the Rat Model of Fetal Alcohol Spectrum Disorders (FASD). Brain Res Bull 2022; 183:57-72. [DOI: 10.1016/j.brainresbull.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
|
16
|
Xia D, Qiu W, Wang X, Liu J. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar Drugs 2021; 19:703. [PMID: 34940702 PMCID: PMC8703604 DOI: 10.3390/md19120703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Microalgal cells serve as solar-powered factories that produce pharmaceuticals, recombinant proteins (vaccines and drugs), and valuable natural byproducts that possess medicinal properties. The main advantages of microalgae as cell factories can be summarized as follows: they are fueled by photosynthesis, are carbon dioxide-neutral, have rapid growth rates, are robust, have low-cost cultivation, are easily scalable, pose no risk of human pathogenic contamination, and their valuable natural byproducts can be further processed. Despite their potential, there are many technical hurdles that need to be overcome before the commercial production of microalgal pharmaceuticals, and extensive studies regarding their impact on human health must still be conducted and the results evaluated. Clearly, much work remains to be done before microalgae can be used in the large-scale commercial production of pharmaceuticals. This review focuses on recent advancements in microalgal biotechnology and its future perspectives.
Collapse
Affiliation(s)
- Donghua Xia
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
| | - Wen Qiu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Xianxian Wang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Junying Liu
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
- Pharmaceutical Manufacturing Technology Centre (PMTC), Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
17
|
Chen Y, Yu T, Deuster P. Astaxanthin Protects Against Heat-induced Mitochondrial Alterations in Mouse Hypothalamus. Neuroscience 2021; 476:12-20. [PMID: 34543676 DOI: 10.1016/j.neuroscience.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
The hypothalamus plays an essential role in regulating whole-body energy and temperature homeostasis when adapting to environmental changes. We previously reported that heat exposure causes mitochondrial dysfunction and apoptosis in mouse skeletal muscle, and pretreatment with astaxanthin (AST), an antioxidant, prevents this effect. How the hypothalamus responds to heat stress remains largely unexplored. In this study, we investigated the effects of heat exposure on hypothalamic mitochondria in mice with and without AST pretreatment. During heat exposure, both vehicle and AST-treated mice had a hyperthermic response though no significant differences in peak core body temperature were noted between the two groups. Heat exposure induced mitochondrial fission in the hypothalamus, as manifested by increased mitochondrial fragmentation and expression of both total and phosphorylated dynamin-related protein 1. In addition, transmission electron microscopy revealed damaged and degraded mitochondria in the hypothalamus of heat-exposed mice. Heat induced apoptosis and mitophagy were further confirmed by increased formation of reactive oxygen species, activation of caspase 3/7 and expression of LC3 proteins. Moreover, heat exposure increased the expression of PINK1 and Parkin in mouse hypothalamus. In contrast, pretreatment with AST reduced these effects. These results demonstrate that heat stress-induced hypothalamic apoptosis is associated with altered mitochondrial dynamics favoring fission and mitophagy. AST protects the hypothalamus against heat-induced injury by preserving redox homeostasis and mitochondrial integrity.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
| | - Tianzheng Yu
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Patricia Deuster
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
18
|
Cai W, Wu Q, Yan ZZ, He WZ, Zhou XM, Zhou LJ, Zhang JY, Zhang X. Neuroprotective Effect of Ultrasound Triggered Astaxanthin Release Nanoparticles on Early Brain Injury After Subarachnoid Hemorrhage. Front Chem 2021; 9:775274. [PMID: 34778220 PMCID: PMC8581801 DOI: 10.3389/fchem.2021.775274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a fatal disease. Within 72 h of SAH, the intracranial blood-brain barrier (BBB) is destroyed, and the nerve cells have responses such as autophagy, apoptosis, and oxidative stress. Antioxidation is an essential treatment of SAH. Astaxanthin (ATX) induces cells' antioxidant behaviors by regulating related signal pathways to reduce the damage of brain oxidative stress, inflammation, and apoptosis. Because of its easy degradability and low bioavailability, ATX is mainly encapsulated with stimulus-responsive nanocarriers to improve its stability, making it rapidly release in the brain and efficiently enter the lesion tissue. In this study, the ultrasonic cavitation agent perfluorocarbon (PFH), ATX, and fluorescent dye IR780 were loaded with polydopamine (PDA) to prepare a US triggered release nanoparticles (AUT NPs). The core-shell structure of AUT NPs formed a physical barrier to improve the bioavailability of ATX. AUT NPs have high ATX loading capacity and US responsiveness. The experimental results show that the AUT NPs have high stability in the physiological environment. Both US and pH stimuli can trigger the release. Under US, PFH breaks through the rigid shell. The structure of AUT NPs is destroyed in situ, releasing the loaded drugs into neuronal cells to realize the antioxidant and antiapoptotic effects. The in vivo experiment results show that the AUT NPs have good biosafety. They release the drugs in the brain under stimuli. The in vivo treatment results also show that AUT NPs have an excellent therapeutic effect. This approach presents an experimental basis for the establishment of Innovative SAH treatments.
Collapse
Affiliation(s)
- Wei Cai
- Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi Zhong Yan
- Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Neurosurgery, The 904th Hospital of the Joint Logistics Support Force of Chinese People’s Liberation Army, Wuxi, China
| | - Wei-Zhen He
- Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Long-Jiang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jian-Yong Zhang
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Astaxanthin-s-allyl cysteine diester against high glucose-induced neuronal toxicity in vitro and diabetes-associated cognitive decline in vivo: Effect on p53, oxidative stress and mitochondrial function. Neurotoxicology 2021; 86:114-124. [PMID: 34339762 DOI: 10.1016/j.neuro.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Neuroprotective effect of astaxanthin-s-allyl cysteine diester (AST-SAC) against high glucose (HG)-induced oxidative stress in in vitro and cognitive decline under diabetes conditions in in vivo has been explored. Pretreatment of AST-SAC (5, 10 and 15 μM) dose-dependently preserved the neuronal cells (SH-SY5Y) viability against HG toxicity through i) decreasing oxidative stress (decreasing reactive oxygen species generation and increasing endogenous antioxidants level); ii) protecting mitochondrial function [oxidative phosphorylation (OXPHOS) complexes activity and mitochondrial membrane potential (MMP)]; and iii) decreasing p53 level thereby subsequently decreasing the level of apoptotic marker proteins. Male Spraque-Dawley rats were orally administered AST-SAC (1 mg/kg/day) for 45 days in streptozotocin-induced diabetes mellitus (DM) rats. AST-SAC administration prevented the loss of spatial memory in DM rats as determined using the novel object location test. AST-SAC administration alleviated the DM-induced injury in brain such as increased cholinesterases activity, elevated oxidative stress and mitochondrial dysfunction. Altogether, the results from the present study demonstrated that AST-SAC averted the neuronal apoptosis and preserved the cognitive function against HG toxicity under DM conditions.
Collapse
|
20
|
Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int 2021; 149:105124. [PMID: 34245808 DOI: 10.1016/j.neuint.2021.105124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Brain and neuronal circuits constitute the most complex organ networks in human body. They not only control and coordinate functions of all other organs, but also represent one of the most-affected systems with stress, lifestyle and age. With global increase in aging populations, these neuropathologies have emerged as major concern for maintaining quality of life. Recent era has witnessed a surge in nutritional remediation of brain dysfunctions primarily by "nutraceuticals" that refer to functional foods and supplements with pharmacological potential. Specific dietary patterns with a balanced intake of carbohydrates, fatty acids, vitamins and micronutrients have also been ascertained to promote brain health. Dietary herbs and their phytochemicals with wide range of biological and pharmacological activities and minimal adverse effects have gained remarkable attention as neuro-nutraceuticals. Neuro-nutraceutical potentials of herbs are often expressed as effects on cognitive response, circadian rhythm, neuromodulatory, antioxidant and anti-inflammatory activities that are mediated by effects on gene expression, epigenetics, protein synthesis along with their turnover and metabolic pathways. Epidemiological and experimental evidence have implicated enormous applications of herbal supplementation in neurodegenerative and psychiatric disorders. The present review highlights the identification, experimental evidence and applications of some herbs including Bacopa monniera, Withania somnifera, Curcuma longa, Helicteres angustifolia, Undaria pinnatifida, Haematococcus pluvialis, and Vitis vinifera, as neuro-nutraceuticals.
Collapse
|
21
|
Norihito Shimamura, Katagai T, Fujiwara N, Ueno K, Watanabe R, Fumoto T, Naraoka M, Ohkuma H. Intra-arterial anti-oxidant power negatively correlates with white matter injury, and oxidative stress positively correlates with disability in daily activities. Exp Neurol 2020; 336:113539. [PMID: 33249032 DOI: 10.1016/j.expneurol.2020.113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
Oxidative stress influences many kinds of diseases. Our hypothesis is that oxidative stress and antioxidant potentials correlate with cognitive function, activities of daily life and white matter injury. (UMIN-CTR R000016770) Thirty-two consecutive patients participated to this study after informed consent. A routine biochemical analysis, modified-Rankin Scale (m-RS), revised Hasegawa Dementia Scale (HDS-R), Mini-Mental State Examination (MMSE) and fluid-attenuated-inversion-recovery imaging (FLAIR) were performed before admission. Derivatives of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) were measured photometrically using arterial blood. Statistical analyses were done by analysis variance or logistic regression analysis. Median age was 72 (IQR: 64.3 -- 75.8). The d-ROMS were 367 ± 55.4, and BAP was 1967 ± 284. HDS-R and m-RS deteriorated with d-ROMs elevation (p < 0.05). Uric acid and creatinine decreased with d-ROMs elevation (p < 0.05). Both periventricular hyperintensity grade and deep and subcortical white matter hyperintensity grade worsened with BAP reduction (p < 0.05). Oxidative stress correlates negatively with cognitive function and activities of daily life. Low antioxidative potentials correlate with aggravation of white matter injury. We should control both oxidative stress and antioxidative potential to maintain healthy lives.
Collapse
Affiliation(s)
- Norihito Shimamura
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Japan.
| | - Takeshi Katagai
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Japan
| | - Nozomi Fujiwara
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Japan
| | - Kouta Ueno
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Japan
| | - Ryouta Watanabe
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Japan
| | - Toshio Fumoto
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Japan
| | - Masato Naraoka
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Japan
| |
Collapse
|
22
|
Fleischmann C, Shohami E, Trembovler V, Heled Y, Horowitz M. Cognitive Effects of Astaxanthin Pretreatment on Recovery From Traumatic Brain Injury. Front Neurol 2020; 11:999. [PMID: 33178093 PMCID: PMC7593578 DOI: 10.3389/fneur.2020.00999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI), caused by mechanical impact to the brain, is a leading cause of death and disability among young adults, with slow and often incomplete recovery. Preemptive treatment strategies may increase the injury resilience of high-risk populations such as soldiers and athletes. In this work, the xanthophyll carotenoid Astaxanthin was examined as a potential nutritional preconditioning method in mice (sabra strain) to increase their resilience prior to TBI in a closed head injury (CHI) model. The effect of Astaxanthin pretreatment on heat shock protein (HSP) dynamics and functional outcome after CHI was explored by gavage or free eating (in pellet form) for 2 weeks before CHI. Assessment of neuromotor function by the neurological severity score (NSS) revealed significant improvement in the Astaxanthin gavage-treated group (100 mg/kg, ATX) during recovery compared to the gavage-treated olive oil group (OIL), beginning at 24 h post-CHI and lasting throughout 28 days (p < 0.007). Astaxanthin pretreatment in pellet form produced a smaller improvement in NSS vs. posttreatment at 7 days post-CHI (p < 0.05). Cognitive and behavioral evaluation using the novel object recognition test (ORT) and the Y Maze test revealed an advantage for Astaxanthin administration via free eating vs. standard chow during recovery post-CHI (ORT at 3 days, p < 0.035; improvement in Y Maze score from 2 to 29 days, p < 0.02). HSP profile and anxiety (open field test) were not significantly affected by Astaxanthin. In conclusion, astaxanthin pretreatment may contribute to improved recovery post-TBI in mice and is influenced by the form of administration.
Collapse
Affiliation(s)
- Chen Fleischmann
- The Institute of Military Physiology, IDF Medical Corps, Tel-Hashomer, Israel.,Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Laboratory of Environmental Physiology, Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Victoria Trembovler
- Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Yuval Heled
- Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Kibbutzim College, Tel Aviv, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hebrew University, Jerusalem, Israel
| |
Collapse
|
23
|
Astaxanthin-loaded polymer-lipid hybrid nanoparticles (ATX-LPN): assessment of potential otoprotective effects. J Nanobiotechnology 2020; 18:53. [PMID: 32192504 PMCID: PMC7081530 DOI: 10.1186/s12951-020-00600-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background Ototoxicity is one of the major side effects of platinum-based chemotherapy, especially cisplatin therapy. To date, no FDA approved agents to alleviate or prevent this ototoxicity are available. However, ototoxicity is generally believed to be produced by excessive generation of reactive oxygen species (ROS) in the inner ear, thus leading to the development of various antioxidants, which act as otoprotective agents. Astaxanthin (ATX) is an interesting candidate in the development of new therapies for preventing and treating oxidative stress-related pathologies, owing to its unique antioxidant capacity. Methods and results In this study, we aimed to evaluate the potential antioxidant properties of ATX in the inner ear by using the HEI-OC1 cell line, zebrafish, and guinea pigs. Because ATX has poor solubility and cannot pass through round window membranes (RWM), we established lipid-polymer hybrid nanoparticles (LPN) for loading ATX. The LPN enabled ATX to penetrate RWM and maintain concentrations in the perilymph in the inner ear for 24 h after a single injection. ATX-LPN were found to have favorable biocompatibility and to strongly affect cisplatin-induced generation of ROS, on the basis of DCFHDA staining in HEI-OC1 cells. JC-1 and MitoTracker Green staining suggested that ATX-LPN successfully reversed the decrease in mitochondrial membrane potential induced by cisplatin in vitro and rescued cells from early stages of apoptosis, as demonstrated by FACS stained with Annexin V-FITC/PI. Moreover, ATX-LPN successfully attenuated OHC losses in cultured organ of Corti and animal models (zebrafish and guinea pigs) in vivo. In investigating the protective mechanism of ATX-LPN, we found that ATX-LPN decreased the expression of pro-apoptotic proteins (caspase 3/9 and cytochrome-c) and increased expression of the anti-apoptotic protein Bcl-2. In addition, the activation of JNK induced by CDDP was up-regulated and then decreased after the administration of ATX-LPN, while P38 stayed unchanged. Conclusions To best of our knowledge, this is first study concluded that ATX-LPN as a new therapeutic agent for the prevention of cisplatin-induced ototoxicity.![]()
Collapse
|
24
|
Duan LH, Li M, Wang CB, Wang QM, Liu QQ, Shang WF, Shen YJ, Lin ZH, Sun TY, Wu ZZ, Li YH, Wang YL, Luo X. Protective effects of organic extracts of Alpinia oxyphylla against hydrogen peroxide-induced cytotoxicity in PC12 cells. Neural Regen Res 2020; 15:682-689. [PMID: 31638092 PMCID: PMC6975140 DOI: 10.4103/1673-5374.266918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alpinia oxyphylla, a traditional herb, is widely used for its neuroprotective, antioxidant and memory-improving effects. However, the neuroprotective mechanisms of action of its active ingredients are unclear. In this study, we investigated the neuroprotective effects of various organic extracts of Alpinia oxyphylla on PC12 cells exposed to hydrogen peroxide-induced oxidative injury in vitro. Alpinia oxyphylla was extracted three times with 95% ethanol (representing extracts 1–3). The third 95% ethanol extract was dried and resuspended in water, and then extracted successively with petroleum ether, ethyl acetate and n-butanol (representing extracts 4–6). The cell counting kit-8 assay and microscopy were used to evaluate cell viability and observe the morphology of PC12 cells. The protective effect of the three ethanol extracts (at tested concentrations of 50, 100 and 200 µg/mL) against cytotoxicity to PC12 cells increased in a concentration-dependent manner. The ethyl acetate, petroleum ether and n-butanol extracts (each tested at 100, 150 and 200 μg/mL) had neuroprotective effects as well. The optimum effective concentration ranged from 50–200 μg/mL, and the protective effect of the ethyl acetate extract was comparatively robust. These results demonstrate that organic extracts of Alpinia oxyphylla protect PC12 cells against apoptosis induced by hydrogen peroxide. Our findings should help identify the bioactive neuroprotective components in Alpinia oxyphylla.
Collapse
Affiliation(s)
- Li-Hong Duan
- Shenzhen Institute of Geriatrics; Department of Rehabilitation, the Second People's Hospital of Shenzhen; Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region; Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Meng Li
- Shenzhen Institute of Geriatrics, Shenzhen, Guangdong Province, China
| | - Chun-Bao Wang
- Shenzhen Institute of Geriatrics; Department of Rehabilitation, the Second People's Hospital of Shenzhen; Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University, Shenzhen; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong Province; School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region; Mingkai Smart Medical Robot Co., Ltd., Shenzhen, Guangdong Province, China
| | - Qing-Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Quan-Quan Liu
- Shenzhen Institute of Geriatrics; Department of Rehabilitation, the Second People's Hospital of Shenzhen; Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University; Mingkai Smart Medical Robot Co., Ltd., Shenzhen, Guangdong Province, China
| | - Wan-Feng Shang
- Shenzhen Institute of Geriatrics; Department of Rehabilitation, the Second People's Hospital of Shenzhen; Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Ya-Jin Shen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhuo-Hua Lin
- Mingkai Smart Medical Robot Co., Ltd., Shenzhen, Guangdong Province, China
| | - Tong-Yang Sun
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Zheng-Zhi Wu
- Shenzhen Institute of Geriatrics; Department of Rehabilitation, the Second People's Hospital of Shenzhen; Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Ying-Hong Li
- Shenzhen Institute of Geriatrics; Department of Rehabilitation, the Second People's Hospital of Shenzhen; Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Yu-Long Wang
- Department of Rehabilitation, the Second People's Hospital of Shenzhen; Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, Guangdong Province, China
| |
Collapse
|
25
|
Evaluation of the platelet volume index as a prognostic factor after aneurysmal subarachnoid hemorrhage. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.567491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective. Molecules 2019; 24:molecules24142640. [PMID: 31330843 PMCID: PMC6680436 DOI: 10.3390/molecules24142640] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered.
Collapse
|
27
|
Afzal S, Garg S, Ishida Y, Terao K, Kaul SC, Wadhwa R. Rat Glioma Cell-Based Functional Characterization of Anti-Stress and Protein Deaggregation Activities in the Marine Carotenoids, Astaxanthin and Fucoxanthin. Mar Drugs 2019; 17:E189. [PMID: 30909572 PMCID: PMC6470788 DOI: 10.3390/md17030189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Stress, protein aggregation, and loss of functional properties of cells have been shown to contribute to several deleterious pathologies including cancer and neurodegeneration. The incidence of these pathologies has also been shown to increase with age and are often presented as evidence to the cumulative effect of stress and protein aggregation. Prevention or delay of onset of these diseases may prove to be unprecedentedly beneficial. In this study, we explored the anti-stress and differentiation-inducing potential of two marine bioactive carotenoids (astaxanthin and fucoxanthin) using rat glioma cells as a model. We found that the low (nontoxic) doses of both protected cells against UV-induced DNA damage, heavy metal, and heat-induced protein misfolding and aggregation of proteins. Their long-term treatment in glioma cells caused the induction of physiological differentiation into astrocytes. These phenotypes were supported by upregulation of proteins that regulate cell proliferation, DNA damage repair mechanism, and glial differentiation, suggesting their potential for prevention and treatment of stress, protein aggregation, and age-related pathologies.
Collapse
Affiliation(s)
- Sajal Afzal
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Sukant Garg
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|