1
|
López-Martín E, Sueiro-Benavides R, Leiro-Vidal JM, Rodríguez-González JA, Ares-Pena FJ. Redox cell signalling triggered by black carbon and/or radiofrequency electromagnetic fields: Influence on cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176023. [PMID: 39244061 DOI: 10.1016/j.scitotenv.2024.176023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The capacity of environmental pollutants to generate oxidative stress is known to affect the development and progression of chronic diseases. This scientific review identifies previously published experimental studies using preclinical models of exposure to environmental stress agents, such as black carbon and/or RF-EMF, which produce cellular oxidative damage and can lead to different types of cell death. We summarize in vivo and in vitro studies, which are grouped according to the mechanisms and pathways of redox activation triggered by exposure to BC and/or EMF and leading to apoptosis, necrosis, necroptosis, pyroptosis, autophagy, ferroptosis and cuproptosis. The possible mechanisms are considered in relation to the organ, cell type and cellular-subcellular interaction with the oxidative toxicity caused by BC and/or EMF at the molecular level. The actions of these environmental pollutants, which affect everyday life, are considered separately and together in experimental preclinical models. However, for overall interpretation of the data, toxicological studies must first be conducted in humans, to enable possible risks to human health to be established in relation to the progression of chronic diseases. Further actions should take pollution levels into account, focusing on the most vulnerable populations and future generations.
Collapse
Affiliation(s)
- Elena López-Martín
- Department of Morphological Sciences, Santiago de Compostela, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rosana Sueiro-Benavides
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José M Leiro-Vidal
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan A Rodríguez-González
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Shojaedini M, Hemadi M, Saki G, Fakhredini F, Khodayar MJ, Khorsandi L. Thymoquinone effects on autophagy, apoptosis, and oxidative stress in cisplatin-induced testicular damage in mice. J Assist Reprod Genet 2024; 41:1881-1891. [PMID: 38568464 PMCID: PMC11263301 DOI: 10.1007/s10815-024-03097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/12/2024] [Indexed: 07/23/2024] Open
Abstract
PURPOSE In this study, the effect of thymoquinone (TQ) on CP-induced spermatogenesis defects in mice has been investigated. METHODS Sperm parameters, serum testosterone concentration, histology, Bax/Bcl-2 ratio, and expression of autophagy-related biomarkers have been assessed. Total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) in testicular tissue were examined for the evaluation of oxidative stress levels. RESULTS CP has induced histological changes and significantly increased the Bax/Bcl-2 ratio, decreased testosterone concentration, testicular weight, and sperm quality. CP induced oxidative stress by elevating OSI in the testicular tissue (p < 0.05). Expression of the autophagy-inducer genes (ATG7, ATG5, and Beclin-1) and ratio of LC3B/LC3A proteins were significantly decreased, while mTOR expression was increased in the CP group. TQ pretreatment dose-dependently decreased the Bax/Bcl-2 ratio and mTOR gene expression while increasing the expression of ATG5 and ATG7 genes, LC3B/LC3A ratio, and Beclin-1 proteins. TQ could also dose-dependently reverse the histology, testosterone level, and sperm quality of the CP-intoxicated mice. CONCLUSIONS These findings show that TQ pretreatment can enhance sperm production by inducing autophagy and reducing apoptosis and oxidative stress in the CP-intoxicated mouse testicles.
Collapse
Affiliation(s)
- Mina Shojaedini
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Hemadi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshtehsadat Fakhredini
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Cui YH, Ma L, Hai DM, Chi YN, Dong WJ, Lan XB, Wei W, Tian MM, Peng XD, Yu JQ, Liu N. Asperosaponin VI protects against spermatogenic dysfunction in mice by regulating testicular cell proliferation and sex hormone disruption. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117463. [PMID: 37981113 DOI: 10.1016/j.jep.2023.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Studies have found that the causes of male infertility are complex, and spermatogenic dysfunction accounts for 30%-65% of male infertility causes, which is the main cause of male infertility. Asperosaponin VI (ASVI) is a saponin extracted from the traditional Chinese herb Dipsacus asperoides C.Y.Cheng & T.M.Ai. However, the precise protective impact and underlying mechanism of ASVI in the therapy of spermatogenic dysfunction remain unknown. AIM OF THE STUDY To investigate the impact of ASVI on the spermatogenic dysfunction induced by cytoxan (CTX) in mice, as well as explore any potential mechanisms. MATERIALS AND METHODS Potential ASVI targets were screened using the Pharmapper and Uniprot databases, while genes related to spermatogenic dysfunction were collected from the GeneCards database. The String and Cytoscape databases were then used for PPI analysis for the common targets of ASVI and spermatogenic dysfunction. Meanwhile, the Metascape database was used for KEGG and GO analysis. In vivo experiments, spermatogenic dysfunction was induced in male mice by intraperitoneal administration of CTX (80 mg/kg). To demonstrate the possible protective effects of ASVI on reproductive organs, CTX-induced spermatogenic dysfunction mice with different dosages of ASVI (0.8, 4, 20 mg/kg per day) treatment were collected and gonad weight was detected. The testis and epididymis were detected again by H&E. To assess the impact of ASVI on fertility in male mice, we analyzed sperm quality, serum hormones, sexual behavior, and fertility. The mechanism was investigated using WB, IF, IHC, and Co-IP technology. RESULTS The ASVI exhibited interactions with 239 associated targets. Furthermore, 1555 targets associated with spermatogenic dysfunction were predicted, and further PPI analysis identified 6 key targets. Among them, the EGFR gene exhibited the highest degree of connection and was at the core of the network. Based on the GO and KEGG enrichment analysis, ASVI may affect spermatogenic dysfunction through the EGFR pathway. In vivo experiments, ASVI significantly improved CTX-induced damage to male fertility and reproductive organs, increasing sperm quality. At the same time, ASVI can resist CTX-induced testicular cell damage by increasing p-EGFR, p-ERK, PCNA, and p-Rb in the testis and by promoting the interaction of CyclinD1 with CDK4. In addition, ASVI can also regulate sex hormone disorders and protect male fertility. CONCLUSIONS ASVI improves CTX-induced spermatogenesis dysfunction by activating the EGFR signaling pathway and regulating sex hormone homeostasis, which may be a new potential protective agent for male spermatogenic dysfunction.
Collapse
Affiliation(s)
- Yan-Hong Cui
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Dong-Mei Hai
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Yan-Nan Chi
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Wen-Jing Dong
- Ningxia Pharmaceutical Inspection and Research Institute, Yinchuan, 750004, China
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Wei
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiao-Dong Peng
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
4
|
Gautam R, Pardhiya S, Nirala JP, Sarsaiya P, Rajamani P. Effects of 4G mobile phone radiation exposure on reproductive, hepatic, renal, and hematological parameters of male Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4384-4399. [PMID: 38102429 DOI: 10.1007/s11356-023-31367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Mobile phones have become a vital part of human life. Due to drastic increase in the number of mobile phone subscribers, exposure to radiofrequency radiation (RFR) emitted from these phones has increased dramatically. Hence, the effect of RFR on humans is an area of concern. This study was performed to determine the impact of 4G mobile phone radiation on the male reproductive system, liver, kidney, and hematological parameters. METHODS Seventy-day-old Wistar rats were exposed to 4G radiation (2350 MHz for 2 h/day for 56 days). Sperm parameters such as sperm count, viability, sperm head morphology, mitochondrial activity, total antioxidant activity, and lipid peroxidation of sperm were evaluated. Histopathology of the testis, prostate, epididymis, seminal vesicle, liver, and kidney was carried out. Complete blood count, liver and kidney function tests, and testosterone hormone analysis were done. RESULTS At the end of the experiment, results showed a significant (p < 0.05) decrease in sperm viability with alterations in the histology of the liver, kidney, testis, and other reproductive organs in the exposed group of rats. A reduced level of testosterone, total antioxidant capacity, and decreased sperm mitochondrial function were also observed in the exposed rats. Moreover, the exposed rats showed an increase in sperm lipid peroxidation and sperm abnormality. Hematological parameters like hemoglobin, red blood cells (RBC), and packed cell volume (PCV) showed a significant (p < 0.05) increase in the exposed rats. CONCLUSION The results indicate that chronic exposure to 4G radiation may affect the male reproductive system, hematological system, liver, and kidney of rats.
Collapse
Affiliation(s)
- Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Sarsaiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
6
|
Tüfek NH, Yahyazadeh A, Altunkaynak BZ. Protective effect of indole-3-carbinol on testis of a high fat diet induced obesity. Biotech Histochem 2022; 98:1-12. [PMID: 35703014 DOI: 10.1080/10520295.2022.2073612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We investigated the effects of obesity caused by a high fat diet (HFD) on rat testes and evaluated the possible protective effects of indole-3-carbinol (IND). We used 24 8-10-week-old 200 g male rats randomly assigned to 4 groups: non-obese control (NC), obese control (OC), non-obese IND group (NI), obese + IND group (OI). Testis samples were examined using stereological, immunohistochemical, biochemical and histological methods. The number of spermatogenic cells, Leydig cells, mean volume of testes and seminiferous tubules was significantly decreased in the OC group compared to the NC group, but these values were increased significantly in the OI group compared to the OC group. We found a significant increase in catalase and myeloperoxidase activities in the OC group compared to the NC group. In the OI group, catalase and myeloperoxidase levels were decreased compared to the OC group. TUNEL-positive cells also were increased in the OC group compared to the NC group (p < 0.05), but these were fewer in the OI group than the OC group. We found marked morphological changes in testicular tissues between the NC and OC groups, as well as between the OI and OC groups. We found that HFD induced obesity was detrimental to rat testes and that administration of IND ameliorated testicular changes caused by obesity.
Collapse
Affiliation(s)
- Nur Hande Tüfek
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Medical Faculty, Karabuk University, Karabuk, Turkey
| | | |
Collapse
|
7
|
Maluin SM, Osman K, Jaffar FHF, Ibrahim SF. Effect of Radiation Emitted by Wireless Devices on Male Reproductive Hormones: A Systematic Review. Front Physiol 2021; 12:732420. [PMID: 34630149 PMCID: PMC8497974 DOI: 10.3389/fphys.2021.732420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to radiofrequency electromagnetic radiation (RF-EMR) from various wireless devices has increased dramatically with the advancement of technology. One of the most vulnerable organs to the RF-EMR is the testes. This is due to the fact that testicular tissues are more susceptible to oxidative stress due to a high rate of cell division and mitochondrial oxygen consumption. As a result of extensive cell proliferation, replication errors occur, resulting in DNA fragmentation in the sperm. While high oxygen consumption increases the level of oxidative phosphorylation by-products (free radicals) in the mitochondria. Furthermore, due to its inability to effectively dissipate excess heat, testes are also susceptible to thermal effects from RF-EMR exposure. As a result, people are concerned about its impact on male reproductive function. The aim of this article was to conduct a review of literature on the effects of RF-EMR emitted by wireless devices on male reproductive hormones in experimental animals and humans. According to the findings of the studies, RF-EMR emitted by mobile phones and Wi-Fi devices can cause testosterone reduction. However, the effect on gonadotrophic hormones (follicle-stimulating hormone and luteinizing hormone) is inconclusive. These findings were influenced by several factors, which can influence energy absorption and the biological effect of RF-EMR. The effect of RF-EMR in the majority of animal and human studies appeared to be related to the duration of mobile phone use. Thus, limiting the use of wireless devices is recommended.
Collapse
Affiliation(s)
- Sofwatul Mokhtarah Maluin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia.,Department of Physiology, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia (USIM), Nilai, Malaysia
| | - Khairul Osman
- Centre of Diagnostic Science and Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | | | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Almášiová V, Holovská K, Andrašková S, Cigánková V, Ševčíková Z, Raček A, Andrejčáková Z, Beňová K, Tóth Š, Tvrdá E, Molnár J, Račeková E. Potential influence of prenatal 2.45 GHz radiofrequency electromagnetic field exposure on Wistar albino rat testis. Histol Histopathol 2021; 36:685-696. [PMID: 33779980 DOI: 10.14670/hh-18-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An ever-increasing use of wireless devices over the last decades has forced scientists to clarify their impact on living systems. Since prenatal development is highly sensitive to numerous noxious agents, including radiation, we focused on the assessment of potential adverse effects of microwave radiation (MR) on testicular development. Pregnant Wistar albino rats (3 months old, weighing 282±8 g) were exposed to pulsed MR at a frequency of 2.45 GHz, mean power density of 2.8 mW/cm², and a specific absorption rate of 1.82 W/kg for 2 hours/day throughout pregnancy. Male offspring were no longer exposed to MR following birth. Samples of biological material were collected after reaching adulthood (75 days). In utero MR exposure caused degenerative changes in the testicular parenchyma of adult rats. The shape of the seminiferous tubules was irregular, germ cells were degenerated and often desquamated. The diameters of the seminiferous tubules and the height of the germinal epithelium were significantly decreased (both at ∗∗p<0.01), while the interstitial space was significantly increased (∗∗p<0.01) when compared to the controls. In the group of rats prenatally exposed to MR, the somatic and germ cells were rich in vacuoles and their organelles were often altered. Necrotizing cells were more frequent and empty spaces between Sertoli cells and germ cells were observed. The Leydig cells contained more lipid droplets. An increased Fluoro Jade - C and superoxide dismutase 2 positivity was detected in the rats exposed to MR. Our results confirmed adverse effects of MR on testicular development.
Collapse
Affiliation(s)
- Viera Almášiová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic.
| | - Katarína Holovská
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Sandra Andrašková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Viera Cigánková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Zuzana Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Adam Raček
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Zuzana Andrejčáková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Katarína Beňová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Štefan Tóth
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, the Slovak Republic
| | - Eva Tvrdá
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, the Slovak Republic
| | - Ján Molnár
- Department of Theoretical and Industrial Electrical Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Kosice, the Slovak Republic
| | - Enikö Račeková
- Institute of Neurobiology of Biomedical Research Center of Slovak Academy of Sciences, the Slovak Republic
| |
Collapse
|
9
|
Gazwi HSS, Mahmoud ME, Hamed MM. Antimicrobial activity of rosemary leaf extracts and efficacy of ethanol extract against testicular damage caused by 50-Hz electromagnetic field in albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15798-15805. [PMID: 32086737 DOI: 10.1007/s11356-020-08111-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Rosemary is a restorative plant that has numerous utilizations in traditional medicine. In this investigation, rosemary leaf extracts were examined for their antimicrobial and antioxidant activities. The antimicrobial activity was tested against 8 bacterial strains. The antioxidant feature of rosemary extract on rat testicular tissue after exposure to the electromagnetic field. Sixty adult male albino rats weighing 180-200 g (aged 2 months) were divided into six groups: control group, rosemary group (receiving rosemary extract at a dose of 5 mg/kg b.wt), EMF (2 h) group (exposed to 50 Hz and 5.4 kV per meter of magnetic field for 2 h), EMF (4 h) group (exposed to 50 Hz and 5.4 kV per meter of magnetic field for 4 h), EMF (2 h) + rosemary group (receiving both magnetic field for 2 h and extract), and EMF (4 h) + rosemary group (receiving both magnetic field for 4 h and extract). After 30 days, the rats were sacrificed, and some estimates were determined. Results exhibited that the ethanolic extract of rosemary leaves was active against pathogenic bacteria. Results also demonstrated that exposure to EMF diminished level of male hormones (e.g., follicle stimulating hormone (FSH), testosterone, and luteinizing hormone (LH)) in serum and catalase (CAT) activity remarkably and increased the malondialdehyde (MDA) levels in comparison to the control group. Signs of improvement in the male hormones, CAT activity, and MDA levels were noticed during the treatments with rosemary. Histological results showed that the rosemary extract inhibited the destructive effect of electromagnetic fields on testicular tissue. This research reveals that the ethanolic extract of rosemary has many beneficial effects that can be compelling in supporting individuals living with EMF ecological contamination.
Collapse
Affiliation(s)
- Hanaa S S Gazwi
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt.
| | - Magda E Mahmoud
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Moaz M Hamed
- National Institute of Oceanography and Fisheries, Red sea branch, Hurghada, Egypt
| |
Collapse
|