1
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
2
|
Liu HH, Zhang L, Yang F, Qian LL, Wang RX. The role and mechanism of heme oxygenase-1 in arrhythmias. J Mol Med (Berl) 2024; 102:1001-1007. [PMID: 38937302 DOI: 10.1007/s00109-024-02462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The global incidence and prevalence of arrhythmias are continuously increasing. However, the precise mechanisms of underlying arrhythmogenesis and the optimal measures for effective treatment remain incompletely understood. The inducible form of heme oxygenase, known as heme oxygenase-1 (HO-1), is recognized as a potent antioxidant molecule capable of exerting anti-inflammatory and anti-apoptotic effects. Recent research indicates that HO-1 plays a role in preventing arrhythmias by mitigating cardiac remodeling, including electrical remodeling, ion remodeling, and structural remodeling. This review aimed to consolidate current knowledge regarding the involvement of HO-1 in arrhythmias and elucidate its underlying mechanisms of action.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Lei Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Fan Yang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Ru-Xing Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
3
|
Swain HN, Boyce PD, Bromet BA, Barozinksy K, Hance L, Shields D, Olbricht GR, Semon JA. Mesenchymal stem cells in autoimmune disease: A systematic review and meta-analysis of pre-clinical studies. Biochimie 2024; 223:54-73. [PMID: 38657832 DOI: 10.1016/j.biochi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mesenchymal Stem Cells (MSCs) are of interest in the clinic because of their immunomodulation capabilities, capacity to act upstream of inflammation, and ability to sense metabolic environments. In standard physiologic conditions, they play a role in maintaining the homeostasis of tissues and organs; however, there is evidence that they can contribute to some autoimmune diseases. Gaining a deeper understanding of the factors that transition MSCs from their physiological function to a pathological role in their native environment, and elucidating mechanisms that reduce their therapeutic relevance in regenerative medicine, is essential. We conducted a Systematic Review and Meta-Analysis of human MSCs in preclinical studies of autoimmune disease, evaluating 60 studies that included 845 patient samples and 571 control samples. MSCs from any tissue source were included, and the study was limited to four autoimmune diseases: multiple sclerosis, rheumatoid arthritis, systemic sclerosis, and lupus. We developed a novel Risk of Bias tool to determine study quality for in vitro studies. Using the International Society for Cell & Gene Therapy's criteria to define an MSC, most studies reported no difference in morphology, adhesion, cell surface markers, or differentiation into bone, fat, or cartilage when comparing control and autoimmune MSCs. However, there were reported differences in proliferation. Additionally, 308 biomolecules were differentially expressed, and the abilities to migrate, invade, and form capillaries were decreased. The findings from this study could help to explain the pathogenic mechanisms of autoimmune disease and potentially lead to improved MSC-based therapeutic applications.
Collapse
Affiliation(s)
- Hailey N Swain
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Parker D Boyce
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Bradley A Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Kaiden Barozinksy
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Lacy Hance
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Dakota Shields
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, USA.
| |
Collapse
|
4
|
Mesenchymal Stem Cells and Psoriasis: Systematic Review. Int J Mol Sci 2022; 23:ijms232315080. [PMID: 36499401 PMCID: PMC9740222 DOI: 10.3390/ijms232315080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are multipotent non-hematopoietic stromal cells found in different body tissues such as bone marrow, adipose tissue, periosteum, Wharton's jelly, umbilical cord, blood, placenta, amniotic fluid, and skin. The biological behavior of MSCs depends mainly on their interaction with the microenvironment in which they are found, whose quality deeply influences the regenerative and immunomodulatory properties of these cells. Several studies confirm the interaction between MSCs and inflammatory microenvironment in the pathogenesis of psoriasis, designating MSCs as an important factor driving psoriasis development. This review aims to describe the most recent evidence on how the inflammatory microenvironment that characterizes psoriasis influences the homeostasis of MSCs and how they can be used to treat the disease.
Collapse
|
5
|
Peng A, Lu F, Xing J, Dou Y, Yao Y, Li J, Li J, Hou R, Zhang K, Yin G. Psoriatic Dermal-Derived Mesenchymal Stem Cells Induced C3 Expression in Keratinocytes. Clin Cosmet Investig Dermatol 2022; 15:1489-1497. [PMID: 35941858 PMCID: PMC9356611 DOI: 10.2147/ccid.s363737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Aihong Peng
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Funa Lu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yu Dou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuanjun Yao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Guohua Yin, Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5, Dong San Dao Xiang, Jiefang Road, Taiyuan, People’s Republic of China, Tel +86-0351-5656080, Email
| |
Collapse
|
6
|
Cx43 overexpression is involved in the hyper-proliferation effect of trichloroethylene on human embryonic stem cells. Toxicology 2022; 465:153065. [PMID: 34896440 DOI: 10.1016/j.tox.2021.153065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Trichloroethylene (TCE) is a major environmental contaminant. Maternal exposure of TCE is linked to developmental defects, but the mechanisms remain to be elucidated. Along with a strategy of 3Rs principle, human embryonic stem cells (hESCs) are regarded as most promising in vitro models for developmental toxicity studies. TCE interfered with hESCs differentiation, but no report was available for TCE effects on hESCs proliferation. Here, we aimed to explore the toxic effects and mechanisms of TCE on hESCs proliferation. Treatment with TCE, did not affect the pluripotency genes expression. However, TCE enhanced hESCs proliferation, manifested by increased cell number, PCNA expression and EdU incorporation. Moreover, TCE exposure upregulated the protein expression levels of Cx43 and cyclin-dependent kinases. Knockdown of Cx43 attenuated the TCE-induced cell hyper-proliferation and CDK2 upregulation. Furthermore, TCE increased Akt phosphorylation, and the inhibition of Akt blocked the TCE-induced Cx43 overexpression and cell proliferation. In conclusion, TCE exposure resulted in upregulation of Cx43 via Akt phosphorylation, consequently stimulated CDK2 expression, contributing to hyper-proliferation in hESCs. Our study brings to light that TCE stimulated the proliferation of hESCs via Cx43, providing a new research avenue for the causes of TCE-induced developmental toxicity.
Collapse
|
7
|
Chen ML, Ku YH, Yip HT, Wei JCC. Tonsillectomy and the subsequent risk of psoriasis: A nationwide population-based cohort study. J Am Acad Dermatol 2021; 85:1493-1502. [PMID: 33548305 DOI: 10.1016/j.jaad.2021.01.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tonsillectomy has been suggested as an intervention to resolve psoriasis. OBJECTIVE This study aimed to investigate the subsequent risk of psoriasis in patients who received tonsillectomy. METHODS We used data from the Taiwan National Health Insurance Research Database. The tonsillectomy group (case group) and the tonsillectomy-free group (comparison group) were matched at a ratio of 1:4 by demographic data, comorbidities, medical confounders, and the index date. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS We identified 2021 patients as the case group and matched 8084 individuals as the comparison group. The adjusted HR (aHR) of psoriasis was 0.43 (95% CI, 0.22-0.87; P < .05). The study population is composed of a mainly male (65%) and young population (mostly younger than 50 years). Notably, patients with rheumatoid arthritis increased the risk of psoriasis (aHR, 3.97; 95% CI, 1.17-13.48; P < .05). In our stratification analysis, the risk of psoriasis decreased in almost all subgroups. LIMITATION Our database did not include information on genome and the subtypes of psoriasis. CONCLUSION Our study showed a decreased risk of psoriasis in the tonsillectomy group after adjustment for baseline characteristics, comorbidities, and medical confounders compared with the reference group.
Collapse
Affiliation(s)
- Ming-Li Chen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Han Ku
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|