1
|
Ďúranová H, Kšiňan S, Kuželová L, Šimora V, Ďurišová Ľ, Olexíková L, Ernst D, Kolenčík M. Nanoparticle-plant interactions: Physico-chemical characteristics, application strategies, and transmission electron microscopy-based ultrastructural insights, with a focus on stereological research. CHEMOSPHERE 2024; 363:142772. [PMID: 38971445 DOI: 10.1016/j.chemosphere.2024.142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| | - Lenka Kuželová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Lucia Olexíková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 95141, Lužianky, Slovakia
| | - Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
2
|
Pasmiño G, Paredes M, Silva H. Effects of High-Intensity Swimming Interval Training on Area, Perimeter, Circularity Index and Phenotype of Cardiac Mitochondrial Ultrastructure in Sprague Dawley Rats. Life (Basel) 2024; 14:984. [PMID: 39202726 PMCID: PMC11355701 DOI: 10.3390/life14080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 09/03/2024] Open
Abstract
Physical inactivity impairs health by increasing morbidity. In childhood, modifiable risk factors associated with cardiovascular pathologies and related to mitochondrial function and structure are initiated by physical inactivity. The objective of this study was to analyze the effect of high-intensity swimming interval training (HIIT-swim) on cardiac mitochondrial ultrastructure in young Sprague Dawley rats compared with a sedentary group. Five-week-old Sprague Dawley rats (n = 18) were divided into a control group (C) (n = 6), a sedentary group (S) (n = 6) and an HIIT-swim group (H-s) (n = 6), the last of which performed HIIT-swim for 4 weeks. A mitochondrial ultrastructural evaluation was performed using transmission electron microscopy. In the H-s rats, mitochondrial areas and perimeters were found to be statistically significantly different from those of the C and S rats. In addition, no predominant intramitochondrial multifragmentation was observed in the mitochondria of H-s rats, but multifragmentation was evident in the mitochondria of S rats.
Collapse
Affiliation(s)
- Grace Pasmiño
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
- Laboratorio Fisiología del Ejercicio, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Marco Paredes
- Laboratorio de Biología Celular, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Héctor Silva
- Laboratorio Fisiología del Ejercicio, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Melo RCN, Silva TP. Eosinophil activation during immune responses: an ultrastructural view with an emphasis on viral diseases. J Leukoc Biol 2024; 116:321-334. [PMID: 38466831 DOI: 10.1093/jleuko/qiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Eosinophils are cells of the innate immune system that orchestrate complex inflammatory responses. The study of the cell biology of eosinophils, particularly associated with cell activation, is of great interest to understand their immune responses. From a morphological perspective, activated eosinophils show ultrastructural signatures that have provided critical insights into the comprehension of their functional capabilities. Application of conventional transmission electron microscopy in combination with quantitative assessments (quantitative transmission electron microscopy), molecular imaging (immunoEM), and 3-dimensional electron tomography have generated important insights into mechanisms of eosinophil activation. This review explores a multitude of ultrastructural events taking place in eosinophils activated in vitro and in vivo as key players in allergic and inflammatory diseases, with an emphasis on viral infections. Recent progress in our understanding of biological processes underlying eosinophil activation, including in vivo mitochondrial remodeling, is discussed, and it can bring new thinking to the field.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
4
|
Duranova H, Kuzelova L, Borotova P, Simora V, Fialkova V. Human Umbilical Vein Endothelial Cells as a Versatile Cellular Model System in Diverse Experimental Paradigms: An Ultrastructural Perspective. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:419-439. [PMID: 38817111 DOI: 10.1093/mam/ozae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Human umbilical vein endothelial cells (HUVECs) are primary cells isolated from the vein of an umbilical cord, extensively used in cardiovascular studies and medical research. These cells, retaining the characteristics of endothelial cells in vivo, serve as a valuable cellular model system for understanding vascular biology, endothelial dysfunction, pathophysiology of diseases such as atherosclerosis, and responses to different drugs or treatments. Transmission electron microscopy (TEM) has been a cornerstone in revealing the detailed architecture of multiple cellular model systems including HUVECs, allowing researchers to visualize subcellular organelles, membrane structures, and cytoskeletal elements. Among them, the endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus can be meticulously examined to recognize alterations indicative of cellular responses to various stimuli. Importantly, Weibel-Palade bodies are characteristic secretory organelles found in HUVECs, which can be easily distinguished in the TEM. These distinctive structures also dynamically react to different factors through regulated exocytosis, resulting in complete or selective release of their contents. This detailed review summarizes the ultrastructural features of HUVECs and highlights the utility of TEM as a pivotal tool for analyzing HUVECs in diverse research frameworks, contributing valuable insights into the comprehension of HUVEC behavior and enriching our knowledge into the complexity of vascular biology.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lenka Kuzelova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Petra Borotova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Simora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
5
|
Smith HE, Mackenzie AM, Seddon C, Mould R, Kalampouka I, Malakar P, Needham SR, Beis K, Bell JD, Nunn A, Botchway SW. The use of NADH anisotropy to investigate mitochondrial cristae alignment. Sci Rep 2024; 14:5980. [PMID: 38472304 PMCID: PMC10933486 DOI: 10.1038/s41598-024-55780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Life may be expressed as the flow of electrons, protons, and other ions, resulting in large potential difference. It is also highly photo-sensitive, as a large proportion of the redox capable molecules it relies on are chromophoric. It is thus suggestive that a key organelle in eukaryotes, the mitochondrion, constantly adapt their morphology as part of the homeostatic process. Studying unstained in vivo nano-scale structure in live cells is technically very challenging. One option is to study a central electron carrier in metabolism, reduced nicotinamide adenine dinucleotide (NADH), which is fluorescent and mostly located within mitochondria. Using one and two-photon absorption (340-360 nm and 730 nm, respectively), fluorescence lifetime imaging and anisotropy spectroscopy of NADH in solution and in live cells, we show that mitochondria do indeed appear to be aligned and exhibit high anisotropy (asymmetric directionality). Aqueous solution of NADH showed an anisotropy of ~ 0.20 compared to fluorescein or coumarin of < 0.1 and 0.04 in water respectively and as expected for small organic molecules. The anisotropy of NADH also increased further to 0.30 in the presence of proteins and 0.42 in glycerol (restricted environment) following two-photon excitation, suggesting more ordered structures. Two-photon NADH fluorescence imaging of Michigan Cancer Foundation-7 (MCF7) also showed strong anisotropy of 0.25 to 0.45. NADH has a quantum yield of fluorescence of 2% compared to more than 40% for photoionisation (electron generation), when exposed to light at 360 nm and below. The consequence of such highly ordered and directional NADH patterns with respect to electron ejection upon ultra-violet (UV) excitation could be very informative-especially in relation to ascertaining the extent of quantum effects in biology, including electron and photonic cascade, communication and modulation of effects such as spin and tunnelling.
Collapse
Affiliation(s)
- Holly E Smith
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Alasdair M Mackenzie
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Chloe Seddon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Rhys Mould
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Ifi Kalampouka
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Partha Malakar
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Sarah R Needham
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Jimmy D Bell
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Alistair Nunn
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK.
| |
Collapse
|
6
|
Yang C, Luo P, Yang YT, Fu XL, Li BX, Shen X, Xu DN, Huang YM, Tian YB, Liu WJ. Drp1 regulated PINK1-dependent mitophagy protected duck follicular granulosa cells from acute heat stress injury. Poult Sci 2024; 103:103247. [PMID: 37980731 PMCID: PMC10685035 DOI: 10.1016/j.psj.2023.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023] Open
Abstract
The mitochondrial quality control system is crucial in maintaining cellular homeostasis during environmental stress. Granulosa cells are the main cells secreting steroid hormones, and mitochondria are the key organelles for steroid hormone synthesis. The impact of the mitochondrial quality control system on granulosa cells' steroid hormone synthesis and survival under heat stress is still unclear. Here, we showed that acute heat stress induces mitochondrial damage and significantly increases the number of mitophagy-like vesicles in the cytoplasm of duck ovary granulosa cells at the ultra-structural level. Meanwhile, we also found heat stress significantly increased mitochondrial fission and mitophagy-related protein expression levels both in vivo and in vitro. Furthermore, by confocal fluorescence analysis, we discovered that LC3 was distributed spot-like manner near the nucleus in the heat treatment group, and the LC3 spots and lysosomes were colocalized with Mito-Tracker in the heat treatment group. We further detected the mitophagy-related protein in the cytoplasm and mitochondria, respectively. Results showed that the PINK1 protein was significantly increased both in cytoplasm and mitochondria, while the LC3-Ⅱ/LC3-Ⅰ ratio increase only occurred in mitochondrial. In addition, the autophagy protein induced by acute heat treatment was effectively inhibited by the mitophagy inhibitor CysA. Finally, we demonstrated that the alteration of cellular mitophagy by siRNA interference with Drp1 and PINK1 inhibited the steroid synthesis of granulosa cells and increased cell apoptosis. Study provides strong evidence that the Drp1 regulated PINK1-dependent mitophagy pathway protects follicular granulosa cells from acute heat stress-induced injury.
Collapse
Affiliation(s)
- Chen Yang
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Pei Luo
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | | | - Xin-Liang Fu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Bing-Xin Li
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Xu Shen
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Dan-Ning Xu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Yun-Mao Huang
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Yun-Bo Tian
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Wen-Jun Liu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China.
| |
Collapse
|
7
|
Shami GJ, Samarska IV, Koek GH, Li A, Palma E, Chokshi S, Wisse E, Braet F. Giant mitochondria in human liver disease. Liver Int 2023; 43:2365-2378. [PMID: 37615254 DOI: 10.1111/liv.15711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
This thematic review aims to provide an overview of the current state of knowledge about the occurrence of giant mitochondria or megamitochondria in liver parenchymal cells. Their presence and accumulation are considered to be a major pathological hallmark of the health and fate of liver parenchymal cells that leads to overall tissue deterioration and eventually results in organ failure. The first description on giant mitochondria dates back to the 1960s, coinciding with the availability of the first generation of electron microscopes in clinical diagnostic laboratories. Detailed accounts on their ultrastructure have mostly been described in patients suffering from alcoholic liver disease, chronic hepatitis, hepatocellular carcinoma and non-alcoholic fatty liver disease. Interestingly, from this extensive literature survey, it became apparent that giant mitochondria or megamitochondria present themselves with or without highly organised crystal-like intramitochondrial inclusions. The origin, formation and potential role of giant mitochondria remain to-date largely unanswered. Likewise, the biochemical composition of the well-organised crystal-like inclusions and their possible impact on mitochondrial function is unclear. Herein, concepts about the possible mechanism of their formation and three-dimensional architecture will be approached. We will furthermore discuss their importance in diagnostics, including future research outlooks and potential therapeutic interventions to cure liver disease where giant mitochondria are implemented.
Collapse
Affiliation(s)
- Gerald J Shami
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Sydney, New South Wales, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, Australia
| | - Iryna V Samarska
- Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ger H Koek
- Department of Internal Medicine division of Gastroenterology & Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Amy Li
- Centre for Healthy Futures, Torrens University Australia, Sydney, New South Wales, Australia
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Elena Palma
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Shilpa Chokshi
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Eddie Wisse
- Division of Nanoscopy, Multimodal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| | - Filip Braet
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Sydney, New South Wales, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Liu Q, Liu M, Yang T, Wang X, Cheng P, Zhou H. What can we do to optimize mitochondrial transplantation therapy for myocardial ischemia-reperfusion injury? Mitochondrion 2023; 72:72-83. [PMID: 37549815 DOI: 10.1016/j.mito.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Mitochondrial transplantation is a promising solution for the heart following ischemia-reperfusion injury due to its capacity to replace damaged mitochondria and restore cardiac function. However, many barriers (such as inadequate mitochondrial internalization, poor survival of transplanted mitochondria, few mitochondria colocalized with cardiac cells) compromise the replacement of injured mitochondria with transplanted mitochondria. Therefore, it is necessary to optimize mitochondrial transplantation therapy to improve clinical effectiveness. By analogy, myocardial ischemia-reperfusion injury is like a withered flower, it needs to absorb enough nutrients to recover and bloom. In this review, we present a comprehensive overview of "nutrients" (source of exogenous mitochondria and different techniques for mitochondrial isolation), "absorption" (mitochondrial transplantation approaches, mitochondrial transplantation dose and internalization mechanism), and "flowering" (the mechanism of mitochondrial transplantation in cardioprotection) for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Liu
- Comprehensive treatment area of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Duranova H, Fialkova V, Simora V, Bilcikova J, Massanyi P, Lukac N, Knazicka Z. Impacts of iron on ultrastructural features of NCI-H295R cell line related to steroidogenesis. Acta Histochem 2023; 125:152056. [PMID: 37321134 DOI: 10.1016/j.acthis.2023.152056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
The current study was intended to evaluate impacts of both iron (Fe) enrichment and overload (in the form of ferrous sulphate heptahydrate, FeSO4.7H2O) on ultrastructural characteristics of human adrenocarcinoma NCI-H295R cell line. Here, the NCI-H295R cells were treated with 0, 3.90, and 1000 µM FeSO4.7H2O, and consequently proceeded for purposes of ultrastructural studies. Micrographs taken under transmission electron microscope (TEM) were investigated from the qualitative and quantitative (unbiased stereological approaches) aspects, and obtained findings were compared among the three groups of the cells. The ultrastructural features related to the steroidogenic process were found to be similar between the untreated and both Fe-exposed cell populations, with conspicuous mitochondria with well-defined lamellar cristae (creating clusters of varying sizes in the regions of increased energy demands) and concentric whorls of smooth endoplasmic reticulum (SER) being the most noticeable characteristics. The precise estimates of the component (volume, surface) fractions of the nucleus, mitochondria, and lipid droplets (LDs), as well as of the nucleus/cytoplasm (N/C) ratio have revealed close similarities (P > 0.05) in all cell groups investigated. Nonetheless, the low concentration of FeSO4.7H2O exhibited beneficial action on ultrastructural organization of the NCI-H295R cells. In effect, these cells were distinguished by mitochondria with smoother surfaces and clearer outlines, higher density of thin, parallel lamellar cristae (deeply extending into the mitochondrial matrix), and more widespread distribution of fine SER tubules as compared to the control ones, all of them suggesting higher level of energy requirements and metabolic activity, and more intensive rate of steroidogenesis. Interestingly, no obvious ultrastructural modifications were observed in the NCI-H295R cells treated with high FeSO4.7H2O concentration. This finding can be linked to either an adaptive ultrastructural machinery of these cells to cope with the adverse effect of the element or to insufficient dose of FeSO4.7H2O (1000 µM) to induce ultrastructural signs of cytotoxicity. Purposefully, the results of the current study complement our previous paper dealing with impacts of FeSO4.7H2O on the NCI-H295R cell viability and steroidogenesis at the molecular level. Hence, they fill a knowledge gap considering structure-function coupling in this cellular model system upon the metal exposure. This integrated approach can enhance our understanding of the cellular responses to Fe enrichment and overload which can be helpful for individuals with reproductive health concerns.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Simora
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Jana Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
10
|
Ďúranová H, Šimora V, Ďurišová Ľ, Olexiková L, Kovár M, Požgajová M. Modifications in Ultrastructural Characteristics and Redox Status of Plants under Environmental Stress: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1666. [PMID: 37111889 PMCID: PMC10144148 DOI: 10.3390/plants12081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
The rate of global environmental change is unprecedented, with climate change causing an increase in the oscillation and intensification of various abiotic stress factors that have negative impacts on crop production. This issue has become an alarming global concern, especially for countries already facing the threat of food insecurity. Abiotic stressors, such as drought, salinity, extreme temperatures, and metal (nanoparticle) toxicities, are recognized as major constraints in agriculture, and are closely associated with the crop yield penalty and losses in food supply. In order to combat abiotic stress, it is important to understand how plant organs adapt to changing conditions, as this can help produce more stress-resistant or stress-tolerant plants. The investigation of plant tissue ultrastructure and subcellular components can provide valuable insights into plant responses to abiotic stress-related stimuli. In particular, the columella cells (statocytes) of the root cap exhibit a unique architecture that is easily recognizable under a transmission electron microscope, making them a useful experimental model for ultrastructural observations. In combination with the assessment of plant oxidative/antioxidative status, both approaches can shed more light on the cellular and molecular mechanisms involved in plant adaptation to environmental cues. This review summarizes life-threatening factors of the changing environment that lead to stress-related damage to plants, with an emphasis on their subcellular components. Additionally, selected plant responses to such conditions in the context of their ability to adapt and survive in a challenging environment are also described.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia; (Ľ.Ď.); (M.K.)
| | - Lucia Olexiková
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia;
| | - Marek Kovár
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia; (Ľ.Ď.); (M.K.)
| | - Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
11
|
Lazzarini R, Eléxpuru-Zabaleta M, Piva F, Giulietti M, Fulgenzi G, Tartaglione MF, Zingaretti L, Tagliabracci A, Valentino M, Santarelli L, Bracci M. Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114650. [PMID: 36805133 DOI: 10.1016/j.ecoenv.2023.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Extremely low-frequency electromagnetic fields (ELF-MF) can modify the cell viability and regulatory processes of some cell types, including breast cancer cells. Breast cancer is a multifactorial disease where a role for ELF-MF cannot be excluded. ELF-MF may influence the biological properties of breast cells through molecular mechanisms and signaling pathways that are still unclear. This study analyzed the changes in the cell viability, cellular morphology, oxidative stress response and alteration of proteomic profile in breast cancer cells (MDA-MB-231) exposed to ELF-MF (50 Hz, 1 mT for 4 h). Non-tumorigenic human breast cells (MCF-10A) were used as control cells. Exposed MDA-MB-231 breast cancer cells increased their viability and live cell number and showed a higher density and length of filopodia compared with the unexposed cells. In addition, ELF-MF induced an increase of the mitochondrial ROS levels and an alteration of mitochondrial morphology. Proteomic data analysis showed that ELF-MF altered the expression of 328 proteins in MDA-MB-231 cells and of 242 proteins in MCF-10A cells. Gene Ontology term enrichment analysis demonstrated that in both cell lines ELF-MF exposure up-regulated the genes enriched in "focal adhesion" and "mitochondrion". The ELF-MF exposure decreased the adhesive properties of MDA-MB-231 cells and increased the migration and invasion cell abilities. At the same time, proteomic analysis, confirmed by Real Time PCR, revealed that transcription factors associated with cellular reprogramming were upregulated in MDA-MB-231 cells and downregulated in MCF-10A cells after ELF-MF exposure. MDA-MB-231 breast cancer cells exposed to 1 mT 50 Hz ELF-MF showed modifications in proteomic profile together with changes in cell viability, cellular morphology, oxidative stress response, adhesion, migration and invasion cell abilities. The main signaling pathways involved were relative to focal adhesion, mitochondrion and cellular reprogramming.
Collapse
Affiliation(s)
- Raffaella Lazzarini
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Maria Eléxpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain.
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Gianluca Fulgenzi
- Experimental Pathology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Maria Fiorella Tartaglione
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Laura Zingaretti
- Occupational Medicine Unit, Marche University Hospital, 60126 Ancona, Italy.
| | - Adriano Tagliabracci
- Department of Excellence of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| | - Matteo Valentino
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Lory Santarelli
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| |
Collapse
|
12
|
Zhao J, Tang M, Tang H, Wang M, Guan H, Tang L, Zhang H. Sphingosine 1-phosphate alleviates radiation-induced ferroptosis in ovarian granulosa cells by upregulating glutathione peroxidase 4. Reprod Toxicol 2023; 115:49-55. [PMID: 36503164 DOI: 10.1016/j.reprotox.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Ferroptosis is a form of cell death caused by the accumulation of lipid peroxidation products due to abnormal iron metabolism. However, it remains unknown whether ferroptosis participates in the process of radiation-induced ovarian injury. Sphingosine-1-phosphate (S1P) is an important bioactive sphingolipid that has a protective effect on ovarian injury. The present study aims to determine whether X-ray radiation induces ferroptosis in the ovarian granulosa KGN cell line, and explore the potential effect of S1P and its mechanism in radiation-induced ferroptosis. The results indicated that irradiation reduced the viability of KGN cells, altered the mitochondrial morphology, induced the intracellular accumulation of iron ions, increased oxidative stress, and induced lipid peroxidation. Furthermore, the radiation exposure triggered the ferroptosis in KGN cells. S1P can alleviate radiation-induced ferroptosis. Furthermore, the protective effect of S1P was reversed after the application of siRNA to interfere with the glutathione peroxidase 4 expression. Ferroptosis might be pervasive in radiation-induced ovarian injury, and S1P may serve as a potential therapeutic approach to protect against the toxic effect of radiation in female gonads by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Jiahui Zhao
- Department of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital
| | - Mingyan Tang
- Department of Reproductive Medicine, the Second Affiliated Hospital of Soochow University
| | - Huaiyun Tang
- Department of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital
| | - Mei Wang
- Department of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital
| | - Huijuan Guan
- Department of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital
| | - Lisha Tang
- Department of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital
| | - Hong Zhang
- Department of Reproductive Medicine, the Second Affiliated Hospital of Soochow University.
| |
Collapse
|
13
|
Orozco-Ibarra M, Aparicio-Trejo OE, Jiménez-Uribe AP, Hernández-Cruz EY, Aranda-Rivera AK, Amador-Martínez I, Fernández-Valverde F, Pedraza-Chaverri J. Assessment of Kidney Mitochondrial Function by High-Resolution Respirometry, Transmission Electron Microscopy, and Histological Techniques. Methods Mol Biol 2023; 2664:283-308. [PMID: 37423995 DOI: 10.1007/978-1-0716-3179-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Proper kidney function depends highly on mitochondria homeostasis. This organelle is the primary source of ATP production in the kidney and regulates other cellular processes such as redox and calcium homeostasis. Although the mitochondria's primary recognized function is cellular energy production, through the function of the Krebs cycle, electron transport system (ETS), as well as oxygen and electrochemical gradient consumption, this function is interconnected with multiple signaling and metabolic pathways, making bioenergetics a central hub in renal metabolism. Furthermore, mitochondrial biogenesis, dynamics, and mass are also strongly related to bioenergetics. This central role is not surprising given that mitochondrial impairment, including functional and structural alterations, has been recently reported in several kidney diseases. Here, we describe assessment of mitochondrial mass, structure, and bioenergetics in kidney tissue and renal-derived cell lines. These methods allow investigation of mitochondrial alterations in kidney tissue and renal cells under different experimental conditions.
Collapse
Affiliation(s)
- Marisol Orozco-Ibarra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alexis Paulina Jiménez-Uribe
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Ana Karina Aranda-Rivera
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Isabel Amador-Martínez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Francisca Fernández-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
14
|
Sun X, Zeng C, Wang F, Zhang Z, Yang F, Liu ZP, Li K, Zhang GM. Neuromedin S Regulates Steroidogenesis through Maintaining Mitochondrial Morphology and Function via NMUR2 in Goat Ovarian Granulosa Cells. Int J Mol Sci 2022; 23:13402. [PMID: 36362185 PMCID: PMC9655409 DOI: 10.3390/ijms232113402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/04/2023] Open
Abstract
Neuromedin S (NMS) plays various roles in reproductive regulation, while the mechanism by which NMS regulates ovarian steroidogenesis remains unclear. In the current study, we confirmed the enhancement role of NMS in steroidogenesis in goat ovarian granulosa cells (GCs). To further explore the specific mechanism, we conducted a knockdown of NMUR2 in GCs followed by treatment with NMS and determined the effects of NMS treatment on mitochondrial morphology and function. The results found that NMS treatment increased the production of estrogen and up-regulated the expression of STAR, CYP11A1, 3BHSD, and CYP19A1, while the effects of NMS treatment were blocked by the knockdown of NMUR2 in goat GCs. Moreover, NMS treatment enhanced the fusion of mitochondria and up-regulated the expression of OPA1, MFN1, and MFN2, and increased mitochondrial membrane potential, the activity of respiratory chain enzymes and ATP production by maintaining a low expression level of mitochondrial unfolded protein response markers. The effects of NMS treatment on mitochondria were reversed by NMUR2 knockdown and NMS cotreatment. The possible mechanism of the results above was revealed by NMS treatment activating the Hippo pathway effector YAP1 and then managing the expression of phosphorylation PPARGC1A (Ser571). Together, these data showed that NMS promoted the fusion of mitochondria and protected mitochondrial function from mitochondrial unfolded protein response possibly via the NMUR2/YAP1/PPARGC1A pathway, thereby affecting the steroidogenesis of goat GCs. By elaborating the potential mechanism of NMS in regulating estrogen production in goat GCs, our results can serve as the mechanism reference for follicular growth and development.
Collapse
Affiliation(s)
- Xuan Sun
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Zeng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- College of veterinary medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Peng Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- College of veterinary medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Duranova H, Fialkova V, Valkova V, Bilcikova J, Olexikova L, Lukac N, Massanyi P, Knazicka Z. Human adrenocortical carcinoma cell line (NCI-H295R): An in vitro screening model for the assessment of endocrine disruptors' actions on steroidogenesis with an emphasis on cell ultrastructural features. Acta Histochem 2022; 124:151912. [PMID: 35661985 DOI: 10.1016/j.acthis.2022.151912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Cell lines as an in vitro model for xenobiotic screening and toxicity studies provide a very important tool in the field of scientific research at the level of molecular pathways and gene expression. Good cell culture practice and intracellular characterization, as well as physiological properties of the cell line are of critical importance for in vitro reproductive toxicity testing of various endocrine-disrupting chemicals. The NCI-H295R, human adrenocarcinoma cell line, is the most widely used in vitro cellular system to study the human adrenal steroidogenic pathway at the level of hormone production and gene expression, as it expresses genes that encode for all the key enzymes for steroidogenesis. In this review, we aim to highlight the information considering the origin, development, physiological and ultrastructural characteristics of the NCI-H295R cell line. The review also creates a broad overview of the cell line usage in various range of studies related to the steroidogenesis issues. To our best knowledge, the paper provides the first report of quantitative data (ex novo) from stereological estimates of component (volume, surface) densities of nuclei, mitochondria, and lipid droplets of the NCI-H295R cells. Such ultrastructural measurements can be valuable in the assessment of underlying mechanisms of changes in the cell steroid hormone production induced by the action of diverse endocrine disruptors. Thus, they can significantly contribute to complexity of structure-function relationships in association with steroidogenesis.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jana Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Lucia Olexikova
- Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic.
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| |
Collapse
|
16
|
Oxidative Stress Contributes to Cytoskeletal Protein Degradation of Esox lucius through Activation of Mitochondrial Apoptosis during Postmortem Storage. Foods 2022; 11:foods11091308. [PMID: 35564031 PMCID: PMC9104736 DOI: 10.3390/foods11091308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
This study investigated the role of oxidative stress in the mitochondrial apoptotic pathways and structural protein degradation of fish during postmortem storage by measuring oxidative stress levels, mitochondrial antioxidant enzyme activity, mitochondrial dysfunction, apoptotic factors, and structural protein degradation (n = 3). The results revealed that reactive oxygen species (ROS) increased gradually within the first 12 h and then decreased (p < 0.05) in mitochondria. Lipid peroxidation was increased, and superoxide dismutase, catalase, and glutathione peroxidase activities were decreased in mitochondria (p < 0.05). Furthermore, oxidative stress induced mitochondrial membrane opening, mitochondrial swelling, as well as the depolarization of mitochondrial potential. This led to an increase in the release of cytochrome c from mitochondria and caspase-3 activation. Ultimately, oxidative stress promoted small protein degradation (troponin-T and desmin) and induced myofibril susceptibility to proteolysis. These observations confirmed that oxidative stress mediated the activation of mitochondrial apoptotic factors-promoted protein degradation, initiating the deterioration of fish muscle through the mitochondrial apoptotic pathway.
Collapse
|
17
|
Bonjour K, Palazzi C, Silva TP, Malta KK, Neves VH, Oliveira-Barros EG, Neves I, Kersten VA, Fortuna BT, Samarasinghe AE, Weller PF, Bandeira-Melo C, Melo RCN. Mitochondrial Population in Mouse Eosinophils: Ultrastructural Dynamics in Cell Differentiation and Inflammatory Diseases. Front Cell Dev Biol 2022; 10:836755. [PMID: 35386204 PMCID: PMC8979069 DOI: 10.3389/fcell.2022.836755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are multifunctional organelles of which ultrastructure is tightly linked to cell physiology. Accumulating evidence shows that mitochondrial remodeling has an impact on immune responses, but our current understanding of the mitochondrial architecture, interactions, and morphological changes in immune cells, mainly in eosinophils, is still poorly known. Here, we applied transmission electron microscopy (TEM), single-cell imaging analysis, and electron tomography, a technique that provides three-dimensional (3D) views at high resolution, to investigate mitochondrial dynamics in mouse eosinophils developing in cultures as well as in the context of inflammatory diseases characterized by recruitment and activation of these cells (mouse models of asthma, H1N1 influenza A virus (IAV) infection, and schistosomiasis mansoni). First, quantitative analyses showed that the mitochondrial area decrease 70% during eosinophil development (from undifferentiated precursor cells to mature eosinophils). Mitophagy, a consistent process revealed by TEM in immature but not in mature eosinophils, is likely operating in mitochondrial clearance during eosinophilopoiesis. Events of mitochondria interaction (inter-organelle membrane contacts) were also detected and quantitated within developing eosinophils and included mitochondria-endoplasmic reticulum, mitochondria-mitochondria, and mitochondria-secretory granules, all of them significantly higher in numbers in immature compared to mature cells. Moreover, single-mitochondrion analyses revealed that as the eosinophil matures, mitochondria cristae significantly increase in number and reshape to lamellar morphology. Eosinophils did not change (asthma) or reduced (IAV and Schistosoma infections) their mitochondrial mass in response to inflammatory diseases. However, asthma and schistosomiasis, but not IAV infection, induced amplification of both cristae numbers and volume in individual mitochondria. Mitochondrial cristae remodeling occurred in all inflammatory conditions with the proportions of mitochondria containing only lamellar or tubular, or mixed cristae (an ultrastructural aspect seen just in tissue eosinophils) depending on the tissue/disease microenvironment. The ability of mitochondria to interact with granules, mainly mobilized ones, was remarkably captured by TEM in eosinophils participating in all inflammatory diseases. Altogether, we demonstrate that the processes of eosinophilopoiesis and inflammation-induced activation interfere with the mitochondrial dynamics within mouse eosinophils leading to cristae remodeling and inter-organelle contacts. The understanding of how mitochondrial dynamics contribute to eosinophil immune functions is an open interesting field to be explored.
Collapse
Affiliation(s)
- Kennedy Bonjour
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Eliane G Oliveira-Barros
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Igor Neves
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Victor A Kersten
- Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno T Fortuna
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| | - Amali E Samarasinghe
- Division of Pulmonology, Allergy-Immunology and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Christianne Bandeira-Melo
- Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora, Brazil.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Duranova H, Valkova V, Olexikova L, Radochova B, Balazi A, Chrenek P, Vasicek J. Rabbit Endothelial Progenitor Cells Derived From Peripheral Blood and Bone Marrow: An Ultrastructural Comparative Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-11. [PMID: 35297367 DOI: 10.1017/s143192762200037x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study was designed to compare the ultrastructure of early endothelial progenitor cells (EPCs) derived from rabbit peripheral blood (PB-EPCs) and bone marrow (BM-EPCs). After the cells had been isolated and cultivated up to passage 3, microphotographs obtained from transmission electron microscope were evaluated from qualitative and quantitative (unbiased stereological approaches) points of view. Our results revealed that both cell populations displayed almost identical ultrastructural characteristics represented by abundant cellular organelles dispersed in the cytoplasm. Moreover, the presence of very occasionally occurring mature endothelial-specific Weibel–Palade bodies (WPBs) confirmed their endothelial lineage origin. The more advanced stage of their differentiation was also demonstrated by the relatively low nucleus/cytoplasm (N/C) ratios (0.41 ± 0.19 in PB-EPCs; 0.37 ± 0.25 in BM-EPCs). Between PB-EPCs and BM-EPCs, no differences in proportions of cells occupied by nucleus (28.13 ± 8.97 versus 25.10 ± 11.48%), mitochondria (3.71 ± 1.33 versus 4.23 ± 1.00%), and lipid droplets (0.65 ± 1.01 versus 0.36 ± 0.40%), as well as in estimations of the organelles surface densities were found. The data provide the first quantitative evaluation of the organelles of interest in PB-EPCs and BM-EPCs, and they can serve as a research framework for understanding cellular function.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra94976, Slovak Republic
| | - Veronika Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra94976, Slovak Republic
| | - Lucia Olexikova
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, Lužianky951 41, Slovak Republic
| | - Barbora Radochova
- Laboratory of Biomathematics, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, Prague 4CZ-14220, Czech Republic
| | - Andrej Balazi
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, Lužianky951 41, Slovak Republic
| | - Peter Chrenek
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, Lužianky951 41, Slovak Republic
- Faculty of Biotechnology and Food Science, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra94976, Slovak Republic
| | - Jaromir Vasicek
- NPPC, Research Institute for Animal Production Nitra, Institute of Farm Animal Genetics and Reproduction, Hlohovecká 2, Lužianky951 41, Slovak Republic
- Faculty of Biotechnology and Food Science, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra94976, Slovak Republic
| |
Collapse
|
19
|
Electron Microscopy Reveals Evidence of Perinuclear Clustering of Mitochondria in Cardiac Biopsy-Proven Allograft Rejection. J Pers Med 2022; 12:jpm12020296. [PMID: 35207783 PMCID: PMC8878136 DOI: 10.3390/jpm12020296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Acute cellular rejection is a major complication in heart transplantation. We focus on the analysis of new ultrastructural findings in cardiac biopsy rejection based on mitochondrial intracellular organization. This study includes heart transplanted patients from a single center who were referred for endomyocardial biopsies as a scheduled routine screening. Participants were divided into two groups: patients transplanted without allograft rejection (Grade 0R), and patients with biopsy-proven allograft rejection (Grade ≥ 2R). Using electronic microscopy, we detected a significant increase in the volume density of mitochondria (p < 0.0001) and dense bodies (p < 0.01) in the rejection group. The most relevant finding was the presence of local accumulations of mitochondria close to the nuclear envelope, pressing and molding the morphology of this membrane in all rejection samples (100%). We identified this perinuclear clustering of mitochondria phenomenon in a 68 ± 27% of the total cardiac nucleus observed from rejection samples. We did not observe this phenomenon in any non-rejection samples, reflecting excellent sensitivity and specificity. We have identified a specific phenomenon affecting the architecture of the nuclear membrane—perinuclear clustering of mitochondria—in endomyocardial biopsies from patients with cardiac rejection. This ultrastructural approach might complement and improve the diagnosis of rejection.
Collapse
|
20
|
In vitro effect of ferrous sulphate on bovine spermatozoa motility parameters, viability and Annexin V-labeled membrane changes. PLoS One 2021; 16:e0257766. [PMID: 34555113 PMCID: PMC8460022 DOI: 10.1371/journal.pone.0257766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to assess the dose- and time-dependent in vitro effects of ferrous sulphate (FeSO4.7H2O) on the motility parameters, viability, structural and functional activity of bovine spermatozoa. Spermatozoa motility parameters were determined after exposure to concentrations (3.90, 7.80, 15.60, 31.20, 62.50, 125, 250, 500 and 1000 μM) of FeSO4.7H2O using the SpermVisionTM CASA (Computer Assisted Semen Analyzer) system in different time periods. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, and the Annexin V-Fluos was applied to detect the membrane integrity of spermatozoa. The initial spermatozoa motility showed increased average values at all experimental concentrations compared to the control group (culture medium without FeSO4.7H2O). After 2 h, FeSO4.7H2O stimulated the overall percentage of spermatozoa motility at the concentrations of ≤ 125 μM. However, experimental administration of 250 μM of FeSO4.7H2O significantly (P < 0.001) decreased the spermatozoa motility but had no negative effect on the cell viability (P < 0.05) (Time 2 h). The lowest viability was noted after the addition of ≥ 500 μM of FeSO4.7H2O (P < 0.001). The concentrations of ≤ 62.50 μM of FeSO4.7H2O markedly stimulated (P < 0.001) spermatozoa activity after 24 h of exposure, while at high concentrations of ≥ 500 μM of FeSO4.7H2O the overall percentage of spermatozoa motility was significantly inhibited (P < 0.001) and it elicited cytotoxic action. Fluorescence analysis confirmed that spermatozoa incubated with higher concentrations (≥ 500 μM) of FeSO4.7H2O displayed apoptotic changes, as detected in head membrane (acrosomal part) and mitochondrial portion of spermatozoa. Moreover, the highest concentration and the longest time of exposure (1000 μM of FeSO4.7H2O; Time 6 h) induced even necrotic alterations to spermatozoa. These results suggest that high concentrations of FeSO4.7H2O are able to induce toxic effects on the structure and function of spermatozoa, while low concentrations may have the positive effect on the fertilization potential of spermatozoa.
Collapse
|